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Abstract
This note shows two important properties of absolute values of symmetrically distributed random 
variables. First, the characteristic function of absolute value |X| adds imaginary part which is equal 
to the Hilbert transform of the characteristic function of the original random variable X. Second, a 
sum of absolute values on any symmetric underlying distribution will maintain the property that its 
imaginary part will be equal to the Hilbert transform of its real part. It is shown how the first 
moment of E|X| can be used for estimation of dispersion of the underlying distribution and how the 
characteristic function of E|X| transforms to characteristic function of a sum ∑|Xi|. To demonstrate 
the results, the note shows a trivial example of a symmetric discrete value distribution and normal 
distribution as a special case of Levy-stable distributions. The main theorems are known facts used 
in signal processing. The contribution of this note is to demonstrate their applications in statistics.

The Main Theorem
This paragraph introduces the main theorem showing the equivalence between characteristic 
function of a symmetrically distributed random variable and characteristic function of its absolute 
value. It also demonstrates how absolute value moments are related to the characteristic function of 
the underlying random variable. The paragraph concludes with two examples, absolute value of a 
discrete symmetrically distributed random variable and a symmetrically distributed normal variable. 

Definition I: Let f(x) be a real valued function, we denote Hf its Hilbert transform

 Hf = 1
π
P f (x)

t − x
dx

−∞

+∞

∫          (1)

where P denotes principal value in the Cauchy sense2. The main properties of the Hilbert transform 
are summarized in the appendix, which we will refer to in the subsequent text.

Definition 2: Let us define the Fourier transform of f(x) as

 Ff ≡ 1
2π

f (x)e− iω x dx
−∞

+∞

∫         (2)
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2 For the purpose of this note, Cauchy’s principal value can be defined as

P f (x)
t − x

dx
−∞

+∞

∫ = lim
ε→0+

f (x)
t − x

dx
−∞

t−ε

∫ + f (x)
t − x

dx
t+ε

+∞

∫
⎡

⎣
⎢

⎤

⎦
⎥
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Given the definition, we have the relationship between probability distribution function (p.d.f.) f(x) 
and characteristic function3 (c.f.) φ(t),  f=Fφ.

Theorem 1: Let a random variable X has a symmetric (even) p.d.f. f(x). Then ∣Χ∣ has c.f. equal to  φ(t)
+iH φ(t) if and only if  φ(t) is c.f. of x.

Proof: Both implications will be proved separately.

(i) Let us assume that X has symmetric p.d.f. f(x) and c.f. φ(t), so f=Fφ. This implies that ∣Χ∣ has p.d.f. 
f(x)+sgn(x)f(x), so c.f. of ∣Χ∣ u(t)+iv(t) must satisfy,

 F(u + iv) = f + sgn(x) f

Taking F-1 of both sides and using (A3), we obtain equality

 u + iv = φ + iHφ

Because X has symmetric p.d.f., φ must be real-valued and we have u=φ and v=Hφ.

(ii) Let us now assume that ∣Χ∣ has c.f. equal to  φ+iHφ. Since it is a c.f., we can define p.d.f. f+

(x)=F φ+iFH(φ)=F φ+sgn(x)F φ and even function f(x)=(f+(x)+ f+(-x))/2 for all real x. This 
implies

 f (x) = 1
2
(Fφ + Fφ + Fφ − Fφ) = Fφ

which completes the proof.

The relationship between f+sgn(x)f and Fφ+iHFφ is trivial and well known. It is used in signal 
processing. A signal of the form  Fφ+iHFφ is called an analytic signal which is known to be formed 
by (only) positive frequencies.

By definition, a symmetrically distributed X will have even p.d.f. f. It is easy to see that φ=F-1f  
inherits this property (just apply transformation x→-x in (2)), so let’s assume that φ(t) is even. 
Further, φ will be real valued, |φ|≤1, φ(0)=1, and, assuming that EX exists, also φ’(0)=0. It turns 
out that if EX exists, E|X|≥0 exists as well and can be calculated directly from φ. 

The existence is clear from the fact that the distribution function of |X| is, up to a constant, the same 
as for X on the positive semi-axis. Therefore, if EX exists, E|X| must exist as well (the tail of the 
distribution vanishes sufficiently fast). Now, knowing that E|X| exists, it must be equal to

 E X = ∂
∂t
Hφ(0) = ∂

∂t
1
π
P φ(x)

t − x
dx

−∞

+∞

∫ = − 1
π
P φ(x)

x2
dx

−∞

+∞

∫     (3)

We can go on, assume existence of EX2 and find out that

 EX 2 = E X 2 = ∂2

∂t 2
φ(0)  or 

∂2

∂t 2
Hφ(0) = 0       (4)
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Or, in general, that the even moments are identical to those of X and that the odd moments 2k+1 (if 
they exist) are equal to

 E X 2k+1 = (−1)
k+1(2k +1)!
π

P φ(x)
x2k

dx
−∞

+∞

∫       (5)

Notes:

• We expect that E|X| will carry some information about how ‘wide’ the underlying distribution of 
X is without explicit request of the existence of the second moment. Intuitively, we expect that 
the more weight is put ‘away from zero’ the higher E|X| will be.

• For φ even, we have

 P φ(x)
x2k

dx
−∞

+∞

∫ = 2
π
P φ(x)

x2k
dx

0

+∞

∫         (6)

•  It turns out that

 −P φ(x)
x2

dx
−∞

+∞

∫ = P 1−φ(x)
x2

dx
−∞

+∞

∫        (7)

because P∫1/x2dx=0. This follows from integration of 1/z2 over upper semi-circle in the complex 
plain and from the fact that 1/z2 has a simple pole of second order at zero, where Res 1/z2=0. Also, 
because of (7) and the fact that φ(0)=1 and φ’(0)=0, the integrand of (3) can be continuously 
extended to zero.

• If 1-φ has a holomorphic extension in upper convex plain Ψ(z), then, thanks to the fact that 
φ(0)=1 and φ’(0)=0,  and  |φ|≤1, Φ(z) has a simple pole of second order in z=0 and 

 
1−φ(x)
x2

dx
−∞

+∞

∫ = −iπΨ '(0)         (8)

Example 1: Let us demonstrate the derived results by a trivial example of a symmetrically 
distributed discrete random variable X. Let us write the probability distribution function 
f(x)=Kδ(g(x)), for an even function g having 2n roots at ±x1,..., ±xn xk>0.  K is a normalization 
constant such that K∫δ(g(x))dx=1.

Characteristic function φ of X is equal to4

 φ(t) = K eixtδ (g(x))dx = 2K eixkt + e− ixkt

2 g '(xk )k=1

n

∑
−∞

+∞

∫ = 2K cos(xkt)
g '(xk )k=1

n

∑   (9)

and its Hilbert transform

 Hφ(t) = 2K sin(xkt)
g '(xk )k=1

n

∑         (10)
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4 We use identity δ (g(x)) = δ (x − xk )
g '(xk )g(xk )=0

∑



We can derive directly the expected result that

 E X = ∂
∂t
Hφ(0) = 2K xk

g '(xk )k=1

n

∑       (11)

i.e. that the expected value E|X| is the weighted average of the positive roots of g(x). Or, we can use 
(3) and (7) and write

 E X = 2K 1
g '(xk )k=1

n

∑ 1
π
P 1− cos(xkt)

x2
dx

−∞

+∞

∫

Since 1-cos(xt)=Re(1-eixz), using (8) we obtain

 
1
π

1− cos(xkt)
x2

dx
−∞

+∞

∫ = −i(ixk )

 and, consequently, the same result as (11).

Example 2: Let us apply the results to a less trivial case of symmetric Levy-stable distributions 
whose c.f. φ(t)=exp(-c|t|α), where c>0 is a scale constant measuring how ‘wide’ the bell curve of 
p.d.f. is and α is a constant related to its tail behavior. For α=1 and α=2, the c.f. describes well-
known Cauchy and Gaussian distributions (c=σ2/2). While Cauchy distribution does not have the 
first (and the second) moment, Gaussian distribution has all moments. It can be shown that for 
1<α<2, Levy-stable distributions have the first moment but do not have the second - a property 
often attributed to so called leptokurtic property. 

Theoretically, we should try to derive Hexp(-c|t|α) and calculate its first derivative at zero (which 
exists for 1<α). Practically, Hexp(-c|t|α) is not an analytical function (except for special cases 
described below), so applying formula (3) is an easier way to see that

 E X = − 2
π
P e−cx

α

x2
dx

0

+∞

∫ = − 2c
1/α

πα
Γ(− 1

α
) = 2c

1/α

π
Γ(1− 1

α
)     (12)

which makes sense for all 1<α and, as expected, approaches infinity for α→1+. Formula (12) is 
known (see [2], for example), but direct calculation of E|X| is more cumbersome. Note, that for all 
1<α , the first moment of E|X| carries information about the dispersion scale c. For the Gaussian 
case, the formula reduces to

 E X = 2c
1/2

π
π =σ 2

π
        (13)

so the first moment, up to a constant, is the dispersion of the underlying distribution. Similarly, the 
third moment can be found as

 E X 3 =σ 3 8
π

         (14)

Let us come back to the problem of deriving Hexp(-c|t|α) to demonstrate how the Hilbert transform 
of a relatively simple function leads to surprisingly complicated results.
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From (A8), we have for even φ

 H (φ) = tH (t −1φ)          (15)

and thus using (A2) and (A4)

 
∂
∂t
Hφ = H (t −1φ)− tH (t −2φ)+ tH (t −1 ∂

∂t
φ)       (16)

Since φ is even, φ(x)/x is odd, so if we can apply (A8) again to H(t-1 (φ/t)) to obtain identity

 tH (t −2φ) = H (t −1φ)+ 2
π
P φ(x)

x2
dx

0

+∞

∫

and substituting into (16) we derive a first order differential equation for Hφ

 
∂
∂t
Hφ = tH (t −1 ∂

∂t
φ)− 2

π
P φ(x)

x2
dx

0

+∞

∫        (17)

Note that the last term in (17)  is ∂/∂ tHφ(0) (if it exists).

For special choice of φ=exp(-ct2), t-1φ’=-2cφ and (17) becomes

 
∂

c1/2 ∂t
Hφ + 2c1/2tH (φ) = 2

π
        (18)

Figure 1: Hexp(-|t|α) for different parameters α
Dawson integral for α=2
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Knowing that Hφ(0)=0 (imaginary part of c.f.), equation (18) is the differential equation for 
Dawson integral5 multiplied by 2/√π and argument c1/2t,  so the solution is Hφ(t)= 2/√π 
DawsonF(c1/2t ). Figure 1 shows Hexp(-|t|α) for different values of α (and c=1).

Sum of Absolute Values

For practical purposes, we need to know how the distribution changes when we add absolute 
values of independent random variables, so we can form statistics suitable for estimation of the 
dispersion parameter c. It turns out that no matter what the underlying distributions are, the c.f. of 
the sum of absolute values will maintain the property that its imaginary part is Hilbert transform of 
its real part. Intuitively, it should not be surprising, as |x1|+|x2| can be viewed as a single random 
variable |y| and Theorem 1 states that its characteristic function must have the form φ+Hφ. 
However, it is not entirely clear how φ is related to the c.f. of  x1 and x2. The paragraph concludes 
with two examples.

Theorem 2: Let X1 and X2 be symmetrically distributed independent random variables whose c.f. 
are φ1 and φ2, then |X1| + |X2| has characteristic function

 c. f .( X1 + X2 ) = φ1φ2 − Hφ1Hφ2 + i(φ1Hφ2 +φ2Hφ1)      (19)

where H(φ1 φ2-Hφ1 Hφ2)= φ1 Hφ2+ φ2 Hφ1.

Proof: First, let us show that independence of  X1 and X2 implies independence of |X1| and |X2|. 
Probability of one conditional on another for any non-negative x1 and x2 is

 P( X1 = x1 / X2 = x2 ) = P( X1 = x1 / X2 = −x2 )P(X2 = −x2 )+ P( X1 = x1 / X2 = x2 )P(X2 = x2 )

and from independence of  X1 and X2 we have

P( X1 = x1 / X2 = −x2 ) =
P(X1 = x1)P(X2 = −x2 )+ P(X1 = −x1)P(X2 = −x2 )

P(X2 = −x2 )
= P(X1 = x1)+ P(X1 = −x1)

and therefore

 P( X1 = x1 / X2 = x2 ) = P( X1 = x1)(P(X2 = −x2 )+ P(X2 = x2 )) = P( X1 = x1)P( X2 = x2 )

Given the independence of |X1| and |X2|, we have immediately that the c.f. of |X1| + |X2| has the form 
of (19). What remains to show is the imaginary part is the Hilbert transform of the real part. This is a 
well-known fact from signal processing, namely, that a multiple of two analytic signals remains an 
analytic signal. 

We can restrict our proof to φ1 and φ2 even functions and demonstrate that the multiple (φ1+iHφ1) 
(φ2+iHφ2) can be written using inverse Fourier transform as F-1h+iHF-1h for a symmetric p.d.f. h. 
We will construct function h.

ON DISTRIBUTION OF ABSOLUTE VALUES	

 	

 MARTIN HLUSEK

PAGE 6 OF 11	

 	

 SEP 2011

5 Dawson integral (or function) has an integral representation

 DawsonF(t) = e− t
2
ex

2
dx

0

t

∫  

For properties, see http://mathworld.wolfram.com/DawsonsIntegral.html, for example.

http://mathworld.wolfram.com/DawsonsIntegral.html
http://mathworld.wolfram.com/DawsonsIntegral.html


Let us assume that X1 and  X2 have (even) p.d.f. f1 and f2. Then the multiple of c.f. can be written as

 φ1 + iHφ1( ) φ2 + iHφ2( ) = F−1( f1 + sgn(x) f1)*( f2 + sgn(x) f2 )     (20)

where * denotes convolution. Evaluating each convolution and using the fact that f1 and f2 are even, 
we obtain

 f1 * f2 + sgn(x) f1 *sgn(x) f2 = 2 f1( x
0

x

∫ − u) f2 (u)du      (21)

and

 f1 *sgn(x) f2 + sgn(x) f1 * f2 = 2sgn(x) f1( x
0

x

∫ − u) f2 (u)du     (22)

so the candidate for distribution h(x) is

 h(x) = 2 f1( x
0

x

∫ − u) f2 (u)du         (23)

It is easy to see that h is a proper p.d.f., i.e. non-negative, normalized to 1 and symmetric in x. 
Consequently, multiple of c.f. (20) can be written as

 φ1 + iHφ1( ) φ2 + iHφ2( ) = F−1(h + sgn(x)h) = F−1h + iHF−1h     (24)

which completes the proof.

Notes:

• By induction, the theorem can be extended to any finite number of |Xi|, i=1,...,N. In general, the 
real part of (19) is across even functions (even number of Hilbert transforms applied) and the 
imaginary part across odd functions (odd number of Hilbert transforms applied).

• When Xi are identically distributed with c.f. φ, (19) becomes

 (φ + iHφ)N = N
k

⎛
⎝⎜

⎞
⎠⎟k−even=0

N

∑ (−1)k /2 (Hφ)kφN−k + i N
k

⎛
⎝⎜

⎞
⎠⎟k−odd=0

N

∑ (−1)(k−1)/2 (Hφ)kφN−k  (25)

N stands for ‘degrees of freedom’, similarly as for χ2, for example. Note that (25) does not say that 
the c.f. for sum |X1|+⋯+|XN| will be the same or similar to that of individual |Xi|. It just shows 
the transformation of c.f. and guarantees that the result will have imaginary part equal to the 
Hilbert transform of the real part.

• Note that (25) includes φN for k=0, which the c.f. for X1+⋯+XN .

Example 3: Let us take φ and Hφ from Example 1 and apply transformation (19). The real part of 
c.f. of |X1|+|X2| will be

 φ 2 − (Hφ)2 = 4K 2 cos(xkt)cos(xlt)− sin(xkt)sin(xlt)
g '(xk ) g '(xl )k ,l=1

n

∑ = 4K 2 cos((xk + xl )t)
g '(xk ) g '(xl )k ,l=1

n

∑  (26)

and imaginary part

 2φHφ = 4K 2 sin((xk + xl )t)
g '(xk ) g '(xl )k ,l=1

n

∑        (27)
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and thus E(|X1|+|X2|) is the normalized sum over all combinations of two positive roots of g.

Example 4: Let us conclude the note with a practical example of estimating standard deviation 
from absolute values of independent normally distributed random variables X1,⋯,XN ∼N(0,σ2).

Not surprisingly, the average of absolute values will converge to standard deviation multiplied by 
√2/π (as we have seen in Example 2).

 E 1
N

Xk = 2
π
σ

k=1

N

∑          (28)

However, what is interesting is the variance of this statistic. From independence of |Xi| we have

 Var 1
N

Xk
k=1

N

∑ = 1
N 2 Var( Xk

k=1

N

∑ ) = 1
N 2 EXk

2 − E2 ( Xk
k=1

N

∑ ) = σ 2

N
(1− 2

π
)   (29)

For comparison, traditional estimate of standard deviation based on squares will have the first and 
second moments equal to6

 E 1
N

xk
2

k=1

N

∑ = 2
N

Γ(N / 2)
Γ((N −1) / 2)

σ        (30)

 Var 1
N

xk
2

k=1

N

∑ = σ 2

N
N −1− 2Γ2 (N / 2)

Γ2 ((N −1) / 2)
⎛
⎝⎜

⎞
⎠⎟

      (31)

Figure 2: N −1− 2Γ2 (N / 2)
Γ2 ((N −1) / 2)

⎛
⎝⎜

⎞
⎠⎟
/ 1− 2

π
⎛
⎝⎜

⎞
⎠⎟

Note that (29) and (31) are equal for N=2 but for any N>2 expression (31) is strictly greater than (29). 
Of course, asymptotically, variance of both will vanish for sufficiently high N. However, the estimate 
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6 Can be shown by deriving moments  of √Χ2 with N-degrees of freedom. See  http://
mathworld.wolfram.com/StandardDeviationDistribution.html for example.

http://mathworld.wolfram.com/StandardDeviationDistribution.html
http://mathworld.wolfram.com/StandardDeviationDistribution.html
http://mathworld.wolfram.com/StandardDeviationDistribution.html
http://mathworld.wolfram.com/StandardDeviationDistribution.html


based on absolute values is more efficient. Intuitively, it makes sense as high values of |Xi| are 
magnified by taking squared values and thus estimate (31) will have a slower convergence. Figure 2 
shows the ratio of (31) and (29) for N=2, ⋯,100.

The estimate based on absolute values (28) has additional advantage over the traditional estimate 
(30). The advantage is that (28) will converge even if (30) fails to converge to a constant. There is 
number of indications that financial time-series follow Levy-stable distributions with tail coefficient 
1.5<α<2 and thus have infinite variance (see [3], for example). In this case, traditional dispersion 
estimates will fail as they will oscillate for any high number of observations. However, we have seen 
in Example 2 that E|X| still exists for a range of Levy-stable distributions with tail coefficient α>1 
and thus (28) will still converge to a single number. However, misspecification of α will create a 
bias. To see how big the bias is, let us assume that we use the sum of absolute values to estimate 
dispersion c1/α (equivalent of σ). Our correct estimation statistic should be7

 ĉ1/α =
Γ( 1

α
)sin(π

α
)

2N
Xi

i=1

n

∑         (32)

but assuming α=2, we will calculate

 ˆ̂c1/α = π
2N

Xi
i=1

n

∑          (33)

and thus overestimating true dispersion by a factor of

 
π

Γ( 1
α
)sin(π

α
)

          (34)

This ratio is approximately 1.055 for α=1.9 and increases towards 1.5 as α approaches 1.5. 
Overestimation should not be surprising as we will try to explain ‘fat tails’ by higher standard 
deviation rather than by leptokurtic shape of the underlying distribution.
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7 From (12), using Γ(1-x) Γ(x)=π/sin(πx)



Appendix
This appendix lists the main properties of the Hilbert transform. Properties 1-5 are standard and are 
presented without proof (see [4], for example). Property 6 is a generalization of the Hilbert 
transform of a function multiplied by its argument and is presented with proof.

1. Rearranging the integral in definition 1, gives us alternative formulas for the Hilbert transform,

Hf = 1
π
P f (t − x)

x
dx = 1

π
lim
δ→0+

f (t − x)− f (t + x)
x

dx
δ

+∞

∫
−∞

+∞

∫      (A1)

where the latter is often useful for numerical evaluations.

2. The Hilbert transform is linear, i.e. for constants a1 and a2

H (a1 f1 + a2 f2 ) = a1Hf1 + a2Hf2         (A2)

3. For the Fourier transform of f

Ff ≡ 1
2π

f (x)e− iω x dx
−∞

+∞

∫

H and F are related as,

F(H n f ) = (−isgn(ω ))n Ff          (A3)

Note that for n=2 and from linearity of F, we have H2=-I, or H-1=-H.

4. If f is n-times differentiable and Hdnf/dtn exists, the Hilbert transform and differentiation are 
mutually exchangeable, i.e.

∂n

∂t n
Hf = H ∂n

∂xn
f (x)           (A4)

5. The Hilbert transform can be understood as a convolution f∗(1/πt) allowing us to extend the 
definition to distributions (generalized functions). H applied to delta function is

Hδ = 1
π t

 and H ∂n

∂xn
δ = ∂n

∂t n
1
π t

        (A5)

6. Let us define

g(x) ≡ akx
k

k=−∞

+∞

∑   

where we assume that the sum converges for any x (or the sum contains only a finite number of 
non-zero elements), then

H (gf ) = gHf + t k ajζ kj
j=k

−∞

∑
k=−1

−∞

∑ − t k ajζ kj
j=k+1

+∞

∑
k=0

+∞

∑  for constants ζ kj =
1
π
P x j−k−1 f (x)dx

−∞

+∞

∫  (A6)
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Proof:

Following the definition, we have

H (gf ) = 1
π
P ak

xk f (x)
t − xk=−∞

+∞

∑ dx
−∞

+∞

∫

and if we change the order of summation and integration (both are limits in fact), we obtain

H (gf ) = ak
1
π
P xk f (x)

t − x
dx

−∞

+∞

∫
k=−1

−∞

∑ + a0Hf + ak
1
π
P (xk − t k ) f (x)

t − x
dx

−∞

+∞

∫ + t kHf
⎛

⎝⎜
⎞

⎠⎟k=1

+∞

∑

Using identities

t k − xk

t − x
= t k−1− j x j

j=0

k−1

∑  and 
1

xk (t − x)
= 1
t k (t − x)

+ 1
t k− j+1x jj=1

k

∑

the last formula transforms into

H (gf ) = akt
k

k=−∞

+∞

∑ Hf + ak t k− j−1
j=−1

k

∑ 1
π
P x j f (x)dx

−∞

+∞

∫
k=−1

−∞

∑ − ak t k− j−1
j=0

k−1

∑ 1
π
P x j f (x)dx

−∞

+∞

∫
k=1

+∞

∑

and rearranging such that we put together all terms corresponding to the same power of t, we 
obtain

H (gf ) = gHf + t k aj
j=k

−∞

∑ 1
π
P x j−k−1 f (x)dx

−∞

+∞

∫
k=−1

−∞

∑ − t k aj
j=k+1

+∞

∑ 1
π
P x j−k−1 f (x)dx

−∞

+∞

∫
k=0

+∞

∑

which completes the proof.

Two interesting identities follow from A(6) for g(x)=x and g(x)=x-1,

H (tf ) = tHf − 1
π
P f (x)dx

−∞

+∞

∫         (A7)

H (t −1 f ) = t −1Hf + t −1 1
π
P f (x)

x
dx

−∞

+∞

∫        (A8)

which reduces for odd function f to H(tf)=tHf and even function f to H(t-1f)=t-1Hf, respectively.
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