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Abstract. A large number of dimensions may cause various problems in real-world applications.
Some dimensions can worsen the output quality and are required to be revised. In most exercises
with real datasets, points are distributed along a highly nonlinear manifold whose structure is
unknown. In this paper, we aim to analyze the Coreference Resolution (CR) problem from
the perspective of Manifold Learning. We investigate the influence of dimensionality reduction
on the neural CR framework performance and empirically verify the hypothesis that one can
affect the efficiency in both positive and negative directions quality-metric-wise. Furthermore,
we identify coreferent clusters in the OntoNotes 5 dataset and examine their evolution during
the framework training process, showcasing that the current CR architectures do not account
for separating such clusters. With that, we open a slot for further research.

Keywords: coreference resolution, dimensionality reduction, manifold learning, noise reduction

Abstrakt. Vysoký počet dimenzí může způsobit různé problémy v reálných aplikacích. Některé
rozměry mohou zhoršit kvalitu výstupu a je nutné je revidovat. Kromě toho, při práci se skuteč-
nými daty se často setkáváme s případy, když jsou distribuována podél nějaké nelineární variety,
jejíž struktura není známa. V tomto příspěvku se zaměřujeme na analýzu problému rozlišení
koreferencí (angl. Coreference Resolution - CR) z pohledu varietního učení. Zkoumáme vliv re-
dukce dimenzionality na výkon neuronové architektury CR a empiricky ověřujeme hypotézu,
že lze ovlivňovat efektivitu v pozitivním i negativním smyslech z hlediska kvality modelu. Dále
identifikujeme koreferenční clustery v datové sadě OntoNotes 5 a zkoumáme jejich vývoj během
učení, přičemž ukazujeme, že současné architektury CR nepočítají s prostorovým oddělením
takových clusterů, a otevíráme prostor pro další výzkum.

Klíčová slova: redukce dimenzionality, redukce šumu, rozlišení koreferencí, varietní učení

1 Introduction
Modern Natural Language Processing (NLP) approaches can achieve significant results
in standard textual analysis tasks. The list of tasks includes but is not limited to such
fields as text classification, e.g., determining the general topic of the news article [1]
or determining the text author’s attitude towards the topic [22]; sequence tagging, e.g.,

∗This work was supported by the Grant Agency of the Czech Technical University in Prague, grant
No. SGS23/187/OHK4/3T/14.
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2 V. Belov

named entity recognition (NER) [29, 37, 35, 19] and part-of-speech tagging [7]; and
text generation [13]. For some applications, it is essential to combine these tasks to
achieve more comprehensive results. For instance, in the general case of the sentiment
analysis task, one aims to classify whether the author of the piece of text refers to the
topic in a negative or positive sense. However, to obtain an adequate understanding of
why their attitude is inferred to be equal to a particular value, it is essential to discern
contextual dependencies within the piece, especially in cases when the range of output
values goes beyond "polarity" (positive/neutral/negative) and matures into a broader
spectrum of values like doubt, contempt, or enjoyment. The NLP research community
not only actively develops models for improved natural language understanding, i.e.,
representing language in a vector space, [26, 9, 36] but also proposes different fine-tuning
approaches for these models [18, 14, 27, 8].

In this work, we aim to perform research on constructing better contextual depen-
dencies in the form of improved Coreference Resolution (CR). The CR task is rather
complex to solve. Starting in 2017 [17] to this date [10], research activity in the field
has significantly advanced thanks to neural architectures. Even though improvements on
the standard benchmark [25, 33] have been relatively slight, the community pushed the
target F1 score to 81.0%. Nonetheless, this value is still imperfect, as it is insufficient for
real-world applications. Hence, the range of possibilities for new solutions is far enough
from exhausting and landing at the saturation point of the research.

Coreference Resolution combines detection and linking various mentions of entities
within the text: linking noun phrases with their counterparts and pronouns, anaphora
disambiguation, linking words with their pro-forms, etc. Hence, CR-solving models sig-
nificantly impact the quality of the text-mining algorithms. A good use case where coref-
erence resolution can be applied is categorizing entities and their pronouns to provide
one with a broader spectrum of information for future decision-making. Based on the ex-
tracted data, it is possible to unify all knowledge in the form of a Knowledge Graph (KG)
[31], which can be further utilized for linking concepts represented by textual spans. De-
pendencies and connections between the entities can enrich the feature space with highly
discriminative samples for other tasks. For example, we can assume having the following
two consecutive sentences: "John Smith and Amanda Brown are employees of company
XYZ. Amanda’s colleague was accused of drunk driving." Based on these sentences, one
could desire to classify if any of the entities from the text can be charged with a mis-
demeanor. For a human reader, it is evident that span "Amanda’s colleague" refers to
John. However, for a machine, that is a challenging task. Therefore, proper identification
of entity clusters like {"John Smith", "Amanda’s colleague"}, {"Amanda Brown"}, and
{"XYZ"} would significantly improve the machine’s understanding of the piece of text.

Existing CR models do not explore the topic of which dimensions to choose for mod-
eling; only raw high-dimensional context-dependent vector representations are passed to
CR models. We aim to investigate this aspect to analyze and enhance model learning
capabilities. Additionally, the optimization of vector embeddings outputted by complex
Transformer-based models may allow us only to use their pre-trained weights and focus
on training a lighter architecture. In [5], we explored existing nonlinear dimensional-
ity reduction techniques and investigated the ability to measure the quality of Manifold
Learning methods. Most of the time, some dimensions are redundant and carry no mean-
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ingful information. This noise unsatisfactorily affects the output of machine learning
algorithms due to overfitting. In addition, if data points are distributed along an un-
known manifold with a nonlinear structure whose actual dimension is smaller than the
original space, then even a simple comparison of pairwise Euclidean distances will be
insufficient. In such cases, one must approximate geodesics on the manifold to obtain
reliable results.

This work is structured straightforwardly: Sec. 2 comprises our knowledge of state of
the art, where we review the Coreference-Resolution-related literature and the concept
of nonlinear dimensionality reduction; Sec. 3 addresses the topic of neural Coreference
Resolution in greater detail; in Sec. 4 and Sec. 5, we analyze the embedding spaces of the
selected Coreference Resolution framework and discuss experimental results, respectively.
Finally, Sec. 6 concisely summarizes this paper.

2 Related Work

Coreference Resolution

Modern Coreference Resolution algorithms are combinations of sophisticated vector em-
beddings representing context and deep neural network superstructures performing the
coreference resolution. The first end-to-end neural coreference resolution model was in-
troduced in [17]. Its crucial difference from its predecessors was that it did not require
preprocessing in the form of syntactic parsing or rule-based mention detection since the
model can learn to mention dependencies on its own to a forerunner-outperforming ex-
tent. The main idea of the model is to learn to score pairs of textual spans in such a way
that takes into account, firstly, if these spans are entity mentions and, secondly, whether
the pair is of type antecedent-descendant in terms of coreference. The NLU model of
choice provides span representations. The goal is to assign to each span an antecedent
span. [14] belongs to the state-of-the-art approaches that utilize the same structure on
top of SpanBERT. One of the crucial drawbacks of the scoring approach is the choice of
spans: sizes of relevant spans can be different, so a constant width of the window may
not always be the right choice; spans can either overlap or be disjoint; if they overlap,
the value of the overlap also becomes a hyperparameter. In addition, the number of scor-
ing procedures is quadratic in complexity: each span has to be scored against all of its
counterparts. If the length of the document is significant, the memory needed to store all
entity mentions may become an issue (in [34], authors propose an incremental structure
for the CR model, which requires a lot less memory for the price of a slight decrease in
performance). While previous models can achieve decent results, their memory footprint
is still noticeable. The authors of [15] bypassed the need to create span representations,
relying on a combination of bilinear functions applied on endpoint token representations.
In addition, the new model is built on top of a Longformer encoder capable of processing
long documents. Furthermore, the World-Level coreference resolution model based on
RoBERTa [18] appeared with its novel approach, bypassing the necessity of span rep-
resentation and computing coreference scores between individual tokens instead. The
model from [10] went a step further and completely omitted the step of span represen-
tations, evaluating coreference scores on words. A different outlook on the CR problem
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is provided by Google’s sequence-to-sequence approach [6]. Their model transforms the
task from modeling the coreference scores to generating sequences with additional special
tokens from original texts. These special tokens are designed to represent coreference
clusters.

Manifold Learning

One of the earliest known Manifold Learning techniques, built on top of the classical Mul-
tidimensional Scaling, is Isomap [30]. It utilizes shortest paths on k-Nearest-Neighbors
graphs of data to preserve geodesics. At the same time as that of Isomap, Locally Linear
Embedding (LLE) [28] was introduced with the proposal to express each point as a linear
combination of its neighbors. The objective is to preserve these linear combinations in
the latent space. Other noteworthy methods are, for example, the Laplacian Eigenmaps
(Spectral Embedding) [3, 4] with its point proximity preservation using the Laplacian
of k-Nearest-Neighbors graphs and the Hessian Locally Linear Embedding (HLLE) [11]
which is considered to be not only an LLE modification based on second derivations but
also a projection technique mathematically closely related to the Laplacian Eigenmaps.
All of the abovementioned techniques can be considered "pure" Manifold Learning, as
they all aim to approximate geometric properties of original data in the latent space. For
instance, a completely different approach is introduced in the article on the t-Distributed
Stochastic Neighbor Embedding (t-SNE) [20], a method aimed at preserving the proba-
bility distribution of point neighborhoods. Another prominent technique is the Uniform
Manifold Approximation and Projection (UMAP) [21], built upon vast mathematical
fields such as topology and category theory. TriMap [2] is a technique based on triplet
constraints. The method is aimed at scoring designed to reflect the relative position
of clusters instead of individual points. Last but not least, we mention the Manifold
Learning method that is shown to be superior to its predecessors both in performance
and computation time - PaCMAP [32], an algorithm born from a comprehensive analysis
of other methods. The authors designed a particular loss function that is minimized in
multiple stages and accounts for near-pairs, mid-near pairs, and further pairs in terms of
points and k-neighborhoods.

3 Neural Coreference Resolution Models

Starting with basic notation, let D refer to a textual document. Each document contains
T words and, therefore, N = T (T+1)

2
possible spans. In addition, documents may contain

metadata such as speaker information or genre.
The main focus of a coreference resolution model is to assign to each span i an an-

tecedent span yi ∈ Y (i) = {ε, 1, 2, . . . , i− 1}. The definition of Y (i) clearly contains all
spans to the left of i.1 Span ε is a special antecedent reserved for empty coreference
relations.

The key to teaching a model to predict antecedents is to learn a conditional probability
that produces the correct clustering of antecedents:

1We consider left-to-right languages.
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P
(
y1, y2, . . . , yN |D

)
=

N∏
i=1

P
(
yi|D

)
=

N∏
i=1

e s(i,yi)∑
y′∈Y (i) e

s(i,y′)
, (1)

Where s(i, ·) is the pairwise coreference score for span i and its potential antecedent from
Y (i). Since ε denotes empty coreference, s(i, ε) = 0, for all i. In this text, all relations will
be assumed to be connected to a specific document - for this reason, the conditionality
concerning D will be omitted. It is important to note that major differences between
various models stem from how scoring function s is constructed.

In the learning phase, as the antecedents are latent, the minimization of the marginal
log-likelihood of only correct antecedents implied by the gold clustering is assumed:

LCOREF = − log
N∏
i=1

∑
y′∈Y (i)∩GOLD(i)

P (y′). (2)

In (2), GOLD(i) refers to the set of spans in the gold cluster mentioning span i. If i is
not found in any of the gold clusters or its true antecedents have been pruned during the
scoring, GOLD(i) = {ε}. With such a learning objective, only gold mentions undergo
positive updates when scores of non-gold antecedents are pushed lower.

The so-called end-to-end (E2E) model described in [17] computes the coreference score
as follows:

s(i, j) =

{
sm(i) + sm(j) + sa(i, j), if j ̸= ε,

0, if j = ε.
(3)

Where sm(·) is the score component evaluating whether a span is an entity mention and
sa(i, j) is the pairwise score assessing whether span j is an antecedent of span i.

The main difference between the start-to-end (S2E) [15] and the E2E [17] models is
based on the fact that the S2E model avoids computing span representations. Instead,
the mention sm and antecedent sa scores are proposed to be computed utilizing the series
of linear transformations over span boundaries, i.e., start and end tokens.

Word-Level (WL) Coreference Resolution

The number of spans in the document is O(T 2); therefore, the number of potential corefer-
ence links between spans is O(T 4). While introducing enhancements such as the mention
pruning to the existing framework, other neural models, such as E2E and S2E, still need
to address the complexity issue, as they are fully span-dependent. The WL model [10]
proposes to evaluate coreference links between individual words, reconstructing spans
afterward. This step facilitates the reduction of the model complexity to O(T 2). Such
reduction enables us to consider all potential coreference links without pruning out any
of the candidates.

The WL model coreference scores s(i, j) consist of only two factors: the coarse and
the fine antecedent scorers. Therefore, it is computed as the following straightforward
sum:

s(i, j) = sc(i, j) + sa(i, j). (4)
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Consequently, the span extraction model is applied to the tokens found to be corefer-
ent. The span model reconstructs spans by predicting their most probable start and end
tokens.

Furthermore, the WL model introduces an additional term as a regularization factor
to the main loss function to encourage the model to output higher coreference scores for
all correct coreferent mentions:

L = LCOREF + αLBCE. (5)

The value of α is originally put to 0.5 to prioritize the primary coreference loss.

4 Manifold Analysis of CR Frameworks

This section briefly describes our approach to the manifold-learning-based analysis of the
CR frameworks. In this paper, we aimed primarily at the WL CR model as a target for
the analysis due to the availability of the code base and ease of deployment on the RCI

W0

X0,0 X1,0 X1,1

W1 W2

X2,0

D - example of tokenization

I can ##not sleep

Encoder,
e.g., SpanBERT, RoBERTa, Longformer

Word-level Encoder

X0,0

X1,0

X1,1

X2,0

Token Representations

...

...

...

...

Coarse-to-Fine Antecedent Pruning

...

Dynamic Manifold Learning Module

W0

W1

W2

Word Representations

...

...

...

Figure 1: Diagram depicting the design of the experiment aiming to influence the out-
come of the WL Coreference Resolution model through dimensionality reduction applied
on word embeddings. The green box depicts the placement of the influencing module
introduced by us.
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infrastructure.2

The first analysis we carried out was aimed at the ability to influence the outcome of
the model predicting capabilities through applying dimensionality reduction to the layers
of word-level embeddings. Fig. 1 partially depicts the design of the experiment. The
critical assumption is that the initial embedding space containing the mention clusters is
noisy and contains redundant dimensions. Dimensionality reduction can either denoise
the space, making it easier for the model to represent antecedent probabilities, or reduce
the space excessively, causing the model to lose information about antecedents. Since
each Manifold Learning method involves minimizing a kind of loss function, the WL
model is also required to consider this loss. Therefore, we modified (5) as follows:

L = LCOREF + αLBCE + βLMANIFOLD (6)

Where β represents the aggressivity of the manifold-learning-based loss.3 For each run,
we measured the LEA F1 Score [23] on the test set of the OntoNotes 5 corpus [25, 33]
and compared it to the original model performance.

The second analysis once again concerns the word embeddings. This time, from a
different perspective: since the WL model is computing coreference scores for headwords,
one can straightforwardly analyze the relationship between the headword embeddings
and their connection to particular coreference clusters within the vector space. After
each epoch, we extract word embeddings for each document, reduce the dimensionality
of the input space,4 and map it onto a two-dimensional plane via PaCMAP technique.
Additionally, we measure the average in-cluster distance within the original space. We hy-
pothesize that the input word-level embedding space is being transformed during training
in favor of closer distance for coreferent mentions.

5 Experimental Results

For the first experiment involving influencing the outputs of the CR model with dimen-
sionality reduction (for simplicity, we utilize PCA-like reconstruction loss) applied to
word embeddings, our findings are displayed in Fig. 2. In Fig. 2a, one can see that for
β = 10−6 dimensionality reduction results in loss of predicting capabilities, as all vari-
ants underperform in comparison with the original model. However, a different trend
may be observed in Fig. 2b. Aggressivity β = 10−7 results in scores close to original
values, in some epochs even over-performing its counterpart. The causing factor of such
performance is the relative increase in precision (see Fig. 3). One can speculate that
dimensionality reduction reduces the noise in this case and introduces a new embedding
space, which is more favorable for higher precision values.

The results for the second analysis are depicted in Fig. 4, where we selected two

2The access to the computational infrastructure of the OP VVV funded project
CZ.02.1.01/0.0/0.0/16_019/0000765 “Research Center for Informatics” is also gratefully acknowl-
edged.

3In our experiments, we found β ∈ [10−7, 10−6] to be sufficient for scaling component magnitudes
evenly.

4The output dimensionality of the word-level encoder is set to 1024.
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(a) Aggressivity β = 10−6
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Figure 2: Evolution of LEA F1 Scores on the test set of OntoNotes 5 with different settings
of LMANIFOLD aggressivity. On the right-hand side, the legend depicts the percentage of
dimensions remaining after the dimensionality reduction: 1.0 is for the original model
with no dimensionality reduction involved, 0.85 stands for the 85% preservation of the
dimension count, etc.

documents and displayed two-dimensional PaCMAP mapping results.5 In the following
Fig. 5, we display the epoch-wise evolution of average pairwise in-cluster distances. Both
figures indicate that the space does not reflect coreference clusters initially since the
positioning of coreferent headwords is spontaneous. However, with time, the model starts
to adopt the behavior enforced by the coreference loss, pushing coreferent headwords
closer to each other. Even though we observe such an act, one can also notice that the
average in-cluster distance stabilizes quickly after a few epochs, and no significant changes

5Similar behavior is observed for other documents as well.
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Figure 3: Evolution of LEA Precision Scores on the test set of OntoNotes 5 for the
settings of Fig. 2b.

occur, while the model learning curve also achieves saturation (recall the lines for the
LEA F1 Score from Fig. 2). Hence, one can speculate that by improving the embeddings
further, the model can perform even better, separating the coreference clusters from each
other, enhancing mention scoring and the overall model performance statistics.

6 Conclusion

This paper reviewed the progress in neural Coreference Resolution and Manifold Learning
fields in Sec. 2. We described neural-network-based approaches in Sec. 3: the foundation
end-to-end architecture and the superstructures built upon it. We focus on the Word-
level CR framework to perform the manifold-learning-based analysis. In Sec. 4 and 5, we
investigate the influence of dimensionality reduction on LEA scores and the behavior of
the original word embedding space with respect to coreference clusters. We conclude that
dimensionality reduction can influence the performance of the models in both positive
and negative ways. Additionally, through nonlinear dimensionality reduction, we could
examine the original high-dimensional embeddings and deduce that the learning process
halts significant changes concerning coreferent mentions, potentially affecting the early
saturation of LEA F1 behavior. The approaches proposed in this paper introduce the
necessity and reason to pay more attention to underlying semantic representations from
NLU models and to research further potentials of improving the architecture, allowing
more efficient separation of coreferent mentions.

In the future, we aim to analyze the impact of more complex Manifold Learning
structures on the (sub-)word level. Additionally, the recent surge in the NLP commu-
nity around Generative AI capabilities opens doors for new approaches and improved
contextualized vectorization. For instance, it has been shown that embeddings from
hypothetical descriptions (AI-generated descriptions that do not have to be factually cor-
rect) lead to better performance when semantic inference is of interest [12]. Moreover,
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InstructGPT [24] performed well as a zero-shot coreference resolution system [16]. We
aim to deeply analyze the influence of such systems on the coreference resolution inference
and underlying spatial transformations.
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Figure 4: PaCMAP visualizations of coreference clusters over different training epochs
for two OntoNotes 5 documents. The blue color depicts non-coreferent document words.
Other colors represent individual coreference clusters.
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Abstract. Blind image deconvolution is a severely ill-posed problem requiring a suitable reg-
ularization. Zero-shot deep learning algorithm SelfDeblur which is based on deep image prior
efficiently recovers sharp images without any explicit regularization. This paper attempts to
shed some light on possible reasons of its success, namely the deep image prior and the effect
of the optimization method. An approach to the analysis of the results is also discussed with
a focus on stochastic influences and differentiation between the no-blur solution and a solution
with artifacts.

Keywords: blind image deconvolution, deep learning, deep image prior

Abstrakt. Slepá dekonvoluce obrazu je špatně podmíněná úloha vyžadující vhodnout regula-
rizaci. Algoritmus SelfDeblur založený na hluboké neuronové síti sloužící jako deep image prior
je schopný úspěšně zrekonstruovat rozmazaný obraz bez další explicitní regularizace a učení se
na datasetu. Tento příspěvek se snaží vysvětlit možné důvody jeho efektivity, zaměřuje se pře-
devším na roli deep image prior a metodu optimalizace. Dále je diskutována analýza výsledků
vzhledem ke stochastickým vlivům a možnost odlišení různě poškozených řešení.

Klíčová slova: slepá dekonvoluce obrazu, hluboké učení, deep image prior

1 Introduction

Recovery of a sharp, clean image from a degraded one is a difficult task regardless of the
type of degradation. This paper deals with blurring, which may be caused by a relative
motion of a camera and a scene, turbulence in the atmosphere or the focus of a camera.
Assuming a spatially invariant blur, a blurred image d ∈ Rn×m

+,0 can be represented as a
convolution of a point spread function (PSF) k ∈ Rs×s

+,0 and an underlying sharp image
x ∈ Rn×m

+,0

d = k ⊛ x+ n, (1)

where n ∈ Rn×m denotes a noise matrix. The deconvolution is basically an inverse
operation to the convolution with the aim of recovering the sharp image from the blurred
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one. The deconvolution is called blind (BID) when not only the sharp image but also the
blur is unknown. The task is then to minimize

∥d− k ⊛ x∥, (2)

with respect to both x and k. To preserve the energy, k is required to contain only
nonnegative values and sum to 1.

Minimizing (2) is difficult since there can be a high amount of local minima and apart
from the ground-truth solution it is minimized globally by the trivial solution. This
solution is called the no-blur solution and is not ruled out by the assumption that the
sum of the elements of the PSF equals to one. Therefore, it is necessary to add some
regularizer to (2) that helps recover the real sharp image x.

1.1 BID methods

As the problem is highly ill-posed, some prior information is vital to the estimation. The
Bayesian approach received a lot of attention at the beginning of the century, starting
with Miskin and MacKay [10], Likas and Galatsanos [9] and Molina et al. [11]. Varia-
tional Bayes [17], [7] and Maximum Aposteriori (MAP) [8], [12] approaches were mainly
discussed and various priors were proposed [20]. Although these traditional methods are
quite successful, their efficiency depends on a blur type, and inverse operations often
leave the estimates of the sharp images degraded by artifacts.

Another interesting approach to the problem of blind image deconvolution is deep
learning [3], [21], [22]. Deep learning models usually require training on large datasets,
giving them more information than the traditional methods get and, therefore, outper-
forming them. However, there are real-world scenarios where large datasets are not avail-
able, usually because of a screening method, and, for a long time, traditional Bayesian
methods were state-of-the-art for these problems. In 2018, Ulyanov et al. proposed Deep
Image Prior (DIP) [18] and they state that the structure of a deep neural network is a
regularizer of the problem itself and that it may prefer images with certain characteristics.
They successfully used it for image denoising, inpainting, and superresolution. Ren et al.
combined the DIP image network with a fully connected network representing the PSF
in 2020 and proposed SelfDeblur [13]. This model deblurs images without any training
dataset and outperforms the traditional methods that are used for BID. A similar ap-
proach was chosen by Asim et al. in [1] exploiting the structure of generative networks in
combination with classical handcrafted priors. DualDeblur [16] utilizes DIP and multiple
blurry images. Wang et al. focus on the PSF and represent it with DIP as well as the
sharp image [19]. Huo et al. proposed to combine DIP with variational Bayes in [4].

Reconstructions obtained with SelfDeblur are far from perfect. There are several
issues that are connected to optimization as well as to the general ambiguity of BID. The
deep learning nature of the algorithm does not simplify their analysis nor search for their
solution. These topics will be discussed in this paper.

1.2 SelfDeblur

As described in [13], the model combines two generative neural networks, one for the
sharp image, denoted as Gx, and one for the PSF, denoted as Gk. The estimates of the
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sharp image and the PSF are generated by inputting fixed arrays zx and zk, that are
randomly sampled from uniform distribution, into the networks. The deconvolution is
then formulated as

min
θx,θk

∥d− Gk(θk|zk)⊛ Gx(θx|zx)∥,

s.t. 0 ≤ Gx(θx|zx)i ≤ 1,∀i,

Gk(θk|zk)j ≤ 0, ∀j,∧
∑
j

Gk(θk|zk)j = 1, (3)

where θx and θk represent learnable parameters of the neural networks. The restrictions
on the values of the image and the PSF can be easily incorporated using softmax and
sigmoid output layers. Gx is, as in [18], 5-level U-net [14] with skip connections, batch-
normalization, leaky ReLU activations and bilinear upsampling. Gk is a fully connected
neural network with one hidden layer with hardtanh activation. The two networks are
optimized jointly in 5000 epochs using Adam optimizer [6] with learning rates 10−2 for
image and 10−4 for blur.

Results in this paper were obtained with a simpler blur model - it is represented only
by an array θk (a bias vector if it was understood as a neural network) and a softmax
output layer (denoted as σ(.)) because we mainly focus on image network behavior. It
is optimized with a learning rate 10−2. Apart from that, optimization tricks used in
SelfDeblur - namely random perturbations of zx and learning rate scheduling - are not
used.

2 Metrics
The quality of a reconstruction of an image is commonly assessed by peak signal-to-noise
ratio (PSNR). For two images x1 and x2, PSNR(x1, x2) measures their similarity based
on the ratio of maximal value and their MSE (power of corrupting noise). Denoting
the estimate of the sharp image as x and ground-truth sharp image as xGT , there are
two main reasons for PSNR(x, xGT ) to be small: the estimate contains artifacts or the
algorithm achieved the no-blur solution. To distinguish between these two, we propose to
use not only PSNR-GT(x) := PSNR(x, xGT ) but also PSNR-NB(x) := PSNR(x, xNB)
measuring closeness to the no-blur solution xNB. Improvement in quality of an image
can be measured by improved peak signal-to-noise ratio (ISNR) defined as ISNR(x) =
PSNR-GT(x) - PSNR-NB(x) and is useful especially when results on more than one
blurred image are compared.

Two loss functions will be used for analysis: BID loss measuring mean-squared error
between the blurred image and convolution of estimates

LBID (θk,θx) =
1

nm
||d− σ (θk)⊛ Gx (θx|zx) ||2, (4)

and simpler U-net loss measuring mean-squared error between U-net output and an image
x

LUnet (θx|x) =
1

nm
||x− Gx (θx|zx) ||2. (5)
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3 Stochasticity and initialization

Before studying different aspects of SelfDeblur, it is worth noting that there are a couple
of sources of stochasticity that make the analysis of its results a bit tricky. As was
already mentioned, the input of the image network Gx is randomly sampled. Moreover,
the network itself is initialized randomly using Kaiming uniform initialization scheme [5].

Another source is an implementation of certain functions that are used to construct
the U-net: bilinear upsampling and convolution. While it is possible to use deterministic
convolution in Python 3.8 with pytorch 2.0.1, bilinear upsampling needs to be replaced
by some other operation to achieve reproducible results. Nearest neighbor upsampling
was used to study the effects of the implementation of the U-net in this paper.

Firstly, to test the influence of a GPU, 100 runs of SelfDeblur with nondeterminis-
tic U-net were performed on NVIDIA GeForce RTX 2080 and NVIDIA TITAN V; one
blurred image from the Levin dataset [8] was used. Graph (a) in Figure 1 shows that
the obtained results differ with the type of GPU. Secondly, SelfDeblur was run 100 times
with three combinations of initial values of parameters θx and the input array zx on
NVIDIA GeForce RTX 2080. Apart from these nondeterministic runs, deterministic one
was carried out for comparison. Graph (b) in Figure 1 shows that there is a strong
dependency on initial values. Furthermore, deterministic computations may lead to a
solution very different from the most likely one. On the right side of the figure, the three
deterministically obtained deblurring results are depicted.

This analysis shows how sensitive the algorithm is to small changes - differences in
computation caused by nondeterministic implementations of functions may lead to com-
pletely different results as well as random initialization. It also shows that the efficiency
of an algorithm like SelfDeblur should not be judged only from one value, but histograms
should be compared instead.

4 The prior

4.1 Deep image prior

Authors of DIP [18] state that the prior information helping recover the clean image is
formed by a structure of the image network. This claim is supported only by experiments
and it is not clear what is the key aspect leading the algorithm to the right solution.
An important observation supporting the hypothesis is that naturally-looking images get
learned faster by the U-net. This is illustrated in Figure 2, where 10 runs of simple
U-net optimization (minimization of LUnet loss function) were executed for ground-truth
sharp image and blurred image from the Levin dataset [8], and an image with artifacts
which was obtained by deblurring by a simpler method than SelfDeblur. According to
this experiment, U-net prefers smoother images which generally achieve higher values of
PSNR-GT than images with artifacts. Shi et al. [15] explain this behavior by the ability
of convolutional networks to learn the lower frequency information faster than the higher
frequency one. In the case of deblurring, early stopping is necessary to achieve a naturally
looking smooth estimate. Unfortunately, the blurred image is the no-blur solution in BID,
so this prior should not be strong enough to achieve the correct reconstruction.
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(a)

(b)

Figure 1: Comparison of image deblurring with different initial values and GPU set-
ting. (a) PSNR-GT histograms of results obtained by nondeterministic computations
on NVIDIA GeForce RTX 2080 Ti and NVIDIA TITAN V. (b) PSNR-GT histograms
for three different initial values and nondeterministic computations on NVIDIA GeForce
RTX 2080 Ti. The vertical lines show PSNR of a result obtained by deterministic opera-
tions from corresponding initial values. The three deterministically reconstructed images
are displayed on the right side of the figure.

It also should be noted that the learning gets more unstable with lower loss value,
which is one of the reasons of extremely low values of PSNR-GT in histograms. These
cases should be excluded from the analysis if the value of loss is not reasonably low.

Figure 2: Comparison of the speed of learning of the sharp image, the blurred image, and
an image with artifacts displayed on the right side of the figure.

4.2 Initialization of the PSF

Since DIP inside SelfDeblur should prefer the no-blur solution, learning of the PSF may
be the reason why SelfDeblur achieves the correct sharp solution. To study how strongly
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SelfDeblur is attracted to the no-blur and the ground-truth solutions, an augmented loss
was created

L (θk,θx|x) = αLBID (θk,θx) + (1− α)LUnet (θx|x),

for α ∈ ⟨0, 1⟩. By setting the value of α and choosing x to be either xGT or xNB we can
observe how quickly SelfDeblur learns the chosen image target and how PSF estimate
changes. Figure 3 shows that for α = 0.1 BID loss is minimized faster for the ground-
truth target than for the no-blur one in the first 500 iterations. On the other hand, U-net
loss is minimized faster for the no-blur target the whole time of the optimization. Both
loss functions reach lower values for the no-blur target, which suggests that the descent
of the BID loss is greater in the direction of the no-blur solution than in the direction of
the ground truth solution.

PSF is in all our experiments initialized by a flat array and its evolution is depicted in
Figure 3. For α = 0.9, which gives most of the weight to BID loss, we can see that PSF
estimates are similar after the first 100 iterations and they are closer to the ground-truth
estimate in the case of the no-blur target. We, therefore, suggest that the initialization of
the PSF helps to direct the optimization towards the ground-truth solution. Golatkar et
al. [2] argue that the beginning of the optimization of a deep neural network is the key to
achieving a good solution in terms of generalization. The effect of the PSF learning may
be similar in this case, it helps the algorithm find the direction of a gradient towards the
correct minima. As can be seen from Figure 3, the speed of learning slows down with the
number of iterations and the estimated solution pair does not get significantly changed
in the late steps of the algorithm, apart from the instability at the low values of the loss
function.

Figure 3: Speed of learning for LUnet and LBID and estimates of the PSF. Speed of
learning is displayed for α = 0.1. Estimates of PSF are displayed in iteration numbers
100, 200, 300, 400, and 500 for α = 0.9. The first row shows the case of the no-blur
target, the second row the case of the ground-truth target.
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Figure 4: Sensitivity of the solution to the optimizer hyper-parameters in terms of PSNR-
NB and ISNR. Left: variation of the PSF learning rate ηk. Right: variations of β1 of
the Adam optimiser of the U-net. Solid vertical line points in the direction of the ground-
truth solution, dashed horizontal line in the direction of the no-blur solution.

4.3 Parameters of the optimization

The optimization setting plays an important role in directing the algorithm toward the
correct solution. Two groups of parameters are learned (θx,θk) and their interplay in-
fluences the solution. Both are optimized with the Adam optimizer [6], which has three
hyperparameters: learning rate η, β1, and β2. Figure 4 and left graph in Figure 5 show
how results of deblurring of one image from the Levin dataset [8] differ depending on
the setting of the hyperparameters. Some combinations of learning rates of the sharp
image and PSF prefer the correct solution while some the no-blur one. Apart from that,
even the forgetting parameters inside of the Adam optimizer - in this case β1 - direct the
optimization toward different solutions. Unfortunately, every blurred image prefers a dif-
ferent setting of learning rates, this is illustrated on the right side of Figure 5, where there
are results of deblurring of two different images. Moreover, the two depicted cases have
the same ratio of ηk and ηx, so there seems to be no dependence on the ratio as well. This
result makes it difficult to improve the optimization, the only option may be to use some
meta-learning to estimate the right hyperparameters or even make it iteration-number
dependent.

5 Conclusion

This paper focused on understanding neural blind image deconvolution, namely the effect
of deep image prior and optimization method in SelfDeblur algorithm. It was shown
that the deep image prior prefers naturally-looking smooth images, which in the case
of the blind image deconvolution is not necessarily a good prior because the blurred
image is smoother than the sharp one. The reason why SelfDeblur avoids the trivial no-
blur solution may lie in the optimization method - hyperparameters of optimizer - and
initialization of the PSF to a flat array. Unfortunately, the best choice of hyperparameters
depends on the blurred image, so it is difficult to find a good setting. Apart from that, it
was shown that the choice of GPU, nondeterministic implementation of convolution and
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Figure 5: Sensitivity of the solution to the learning rates in terms of PSNR-NB and
ISNR. Left: one image and different combinations of learning rates of PSF ηk and U-net
ηx. Right: for two different images, each denoted by a separate color. Solid vertical
line points in the direction of the ground-truth solution, dashed horizontal line in the
direction of the no-blur solution.

bilinear upsampling, and initial values of the noise array and parameters of the U-net
influence the deblurring results. New metric to differentiate between the ground-truth
solution and the no-blur solution was proposed and figures in the paper illustrated its
benefit in understanding the quality of a reconstruction.
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Abstract. Machine learning algorithms on graphs, in particular graph neural networks, became
a popular framework for solving various tasks on graphs, attracting significant interest in the
research community in recent years. As presented, however, these algorithms usually assume
that the input graph is fixed and well-defined and do not consider the problem of constructing
the graph for a given practical task. This work proposes a methodical way of linking graph
properties with the performance of a GNN solving a given task on such graph via a surrogate
regression model that is trained to predict the performance of the GNN from the properties
of the graph dataset. Furthermore, the GNN model hyper-parameters are optionally added as
additional features of the surrogate model and it is shown that this technique can be used to solve
the practical problem of hyper-parameter tuning. We experimentally evaluate the importance
of graph properties as features of the surrogate model with regards to the node classification
task for several common graph datasets and discuss how these results can be used for graph
composition tailored to the given task. Finally, our experiments indicate a significant gain in
the proposed hyper-parameter tuning method compared to the reference grid-search method.

Keywords: Graph neural network, Graph properties, Meta-learning, Hyper-parameter optimiza-
tion

Abstrakt. Algoritmy strojového učení na grafech, zejména grafové neuronové sítě, se staly
populárním nástrojem pro řešení nejrůznějších úloh na grafech a v posledních letech přitahují
značný zájem vědecké komunity. V prezentované podobě však tyto algoritmy obvykle předpo-
kládají, že vstupní graf je pevně daný a dobře definovaný, a neuvažují problém konstrukce grafu
pro danou aplikační úlohu. Tato práce navrhuje metodický způsob propojení vlastností grafu
s efektivitou GNN řešící danou úlohu na daném grafu prostřednictvím náhradního regresního
modelu, který je naučen předpovídat efektivitu GNN modelu z vlastností grafového datasetu.
Hyperparametry modelu GNN mohou navíc být přidány jako další příznaky náhradního mo-
delu a je ukázáno, že tuto techniku lze použít k řešení problému optimalizace hyperparametrů.
Experimentálně vyhodnocujeme význam jednotlivých vlastností grafu jako příznaků náhrad-
ního modelu s ohledem na úlohu klasifikace uzlů pro několik běžných grafových datových sad a
diskutujeme, jak lze tyto výsledky využít pro konstrukci grafu přizpůsobenou dané úloze. Naše
experimenty ukazují na významný přínos navrhované metody ladění hyperparametrů ve srovnání
s referenční grid-search metodou.
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Abstract. This paper introduces an extension of the LQR-tree algorithm [6, 5], which is a
feedback-motion-planning algorithm for stabilizing a system of ordinary differential equations
from a bounded set of initial conditions to a goal. The constructed policies are represented by a
tree of exemplary system trajectories, so called demonstrations [4], stabilized via linear-quadratic
regulator (LQR) feedback controllers. These stabilized demonstrations are used to cover the
investigated set: Either a conservative region of attraction of the goal set can be computed for
each demonstration [6], or these regions can be estimated via system simulations [5].

The key component of any LQR-tree algorithm is a demonstrator, a procedure that provides
control inputs that steer the system into the goal set. In previous work [6, 5, 2], this demonstrator
took the form of a trajectory optimization method [1]. However, such solvers require appropriate
initial guesses to provide valid results. If these guesses are not good enough, the demonstrator
regularly fails, causing the LQR-tree algorithm to progress slowly, if at all. This was the case
in the implementation of LQR-trees in [5], where the demonstrator was initialized with failed
system simulations generated during the run of the LQR-tree algorithm.

In this paper, we remedy this issue by extending the LQR-tree algorithm with exploration
of the state space based on randomized motion-planning. More specifically, we use rapidly-
exploring random trees (RRT) [3]. The RRT algorithm is an incremental algorithm that creates
a tree in the state space by connecting new states to already explored ones. We use it to further
extend the LQR-tree into areas of the state space that are not yet stabilized by the current
LQR-tree. The newly discovered connections then serve as initial solutions to the original
demonstrator based on a trajectory optimization method.

We provide computational experiments on several examples of dimension up to twelve that
illustrate the practical applicability of the method and we compare our generation of demon-
strations to the one in [5]. In this comparison, the exploring LQR-tree algorithm is more reliable
and often significantly faster.

Keywords: nonlinear systems, motion planning, learning from demonstrations

Abstrakt. V tomto článku zavedeme rozšíření LQR-tree algoritmu [6, 5], což je algoritmus pro
konstrukci zpětnovazebného řízení, které stabilizuje systém popsaný soustavou diferenciálních z
omezené počáteční množiny do dané cílové množiny. Toto řízení je zadáno pomocí stromu exem-
plárních systémových trajektorií, tzv. demonstrací [4], stabilizovaných lineárně-kvadratickým

∗This work was supported by the project GA21-09458S of the Czech Science Foundation GA ČR and
institutional support RVO:67985807.
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regulátorem (LQR). Tyto stabilizované demonstrace jsou použity k pokrytí počáteční množiny.
Toto pokrytí může být určeno buď napočítáním konzervativních oblastí atrakce cílové mno-
žiny [6], anebo odhadnuto pomocí simulací [5].

Klíčovým prvkem jakéhokoliv LQR-tree algoritmu je demonstrátor, který napočítává řízení,
které řídí systém do cílové množiny. V minulých pracích, byl tento demonstrátor implemento-
ván v podobě řešiče optimalizace trajektorií [1]. Takový řešič ale vyžaduje kvalitní počáteční
odhady řešení aby poskytl validní demonstraci. Pokud tyto počáteční odhady nejsou dostatečně
dobré, demonstrátor často selhává, což způsobuje pomalý, pokud vůbec nějaký, postup LQR-
tree algoritmu. Takové chování LQR-tree algoritmu je pozorováno v [5], kde byl demonstrátor
inicializován neúspěšnými simulacemi systému.

Abychom vyřešili tento problém, navrhujeme rozšíření LQR-tree algoritmu o exploraci sta-
vového prostoru založené na znáhodněném plánování. Jmenovitě aplikujeme algoritmus RRT
(rapidly-exploring random trees) [3]. Algoritmus RRT je inkrementální algoritmus, který vy-
tváří strom ve stavovém prostoru aplikováním náhodně zvolených akcí z již prozkoumaných
stavů systému. Toho využijeme pro rozšiřování stromu demonstrací do částí stavového prostoru,
které ještě nejsou stabilizovány. Tyto nová napojení následně slouží jako počáteční řešení pro
původní demonstrátor.

V článku poskytneme výpočetní experimenty na úlohách až do dimenze dvanáct, které uka-
zují praktické užití naší metody. Též porovnáme náš algoritmus s generováním demonstrací v
algoritmu [5]. Ukážeme, že náš algoritmus je výrazně spolehlivější a často i rychlejší.

Klíčová slova: nelineární systémy, plánování pohybu, učení se z demonstrací

Full paper: Jiří Fejlek and Stefan Ratschan. LQR-trees with Sampling Based Ex-
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Abstract. The graph-based random walk model of fractal diffusion is limited in its use to
the connected sets and does not allow for direct fractal dimension estimation based on observed
data. We discuss a task of directly obtaining accurate fractal dimension estimates and propose
butterfly diffusion as an alternative approach using an explicit relation between walk and fractal
dimensions. The validity of the presented approach is evaluated and statistical properties of the
dimension estimates are presented. Through experiments on self-similar sets, we demonstrate
the effectiveness of this approach in producing unbiased dimension estimates, offering a promising
tool for fractal analysis and Monte Carlo simulations. The estimate of fractal dimension can be
also created from spectral dimension, but this approach is less general and less accurate.

Keywords: dimension estimation, fractal dimension, point set, resistance scaling, walk dimension

Abstrakt. Model fraktální difúze založený na náhodné procházce grafem je omezen na souvislé
množiny a neumožňuje přímý odhad fraktální dimenze na základě pozorovaných dat. Práce se
věnuje úkolu přímého získání přesných odhadů fraktální dimenze a navrhujeme butterfly diffusion
jako alternativní přístup využívající explicitní vztah mezi procházkovou a fraktálními dimenzí.
Vyhodnocuje se platnost tohoto přístupu a uvádějí se statistické vlastnosti odhadů dimenzí.
Prostřednictvím experimentů na soběpodobných množinách je demonstrována účinnost tohoto
přístupu při vytváření nestranných odhadů dimenzí, který nabízí slibný nástroj pro fraktální
analýzu a Monte Carlo simulace. Odhad fraktální dimenze lze také vytvořit z spektrální dimenze,
tento přístup je však méně obecný a méně přesný.

Klíčová slova: odhad dimenze, fraktální dimenze, bodová množina, škálování odporu, procházková
dimenze
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Abstract. This paper serves as the basic introduction to the problem of the Dirac operator
with the singular potential. We try to emphasize the importance of dealing properly with formal
operators, since the very similarly looking formal operators will correspond to the different
mathematical models. Well known results concerning δ-interactions models are presented. New
type of interactions is introduced and the self-adjointness of the operator is proved using the
boundary triples technique.

Keywords: δ-interactions, boundary triples, Dirac operator, local shell interactions, non-local
shell interactions, self-adjointness

Abstrakt. Tento článek slouží zejména jako úvod do problematiky singulárních poruch Diracova
operátoru. Ukážeme, že podobné singulární potenciály vedou k různým matematickým modelům,
a tudíž je důležité zacházet s formálními operátory opatrně. V článku jsou zopakované důležité
výsledky pojednávající o lokální Diracově δ-interakci. Dále se čtenář může dočíst o nové nelokální
δ-interakci. Nakonec je diskutována důležitá otázka samosdruženosti tohoto nového modelu.

Klíčová slova: δ interakce, Diracův operátor, hraniční trojce, lokální delta interakce, nelokální
delta interakce, samosdruženost

1 Introduction

The δ-interactions model of physically relevant operators are important exactly solvable
mathematical models which can serve as good approximations of real physical situation.
We will turn our interest toward relativistic quantum model of the Dirac operator. One
dimensional Dirac operator with the point interaction have been already studied in math-
ematical details in many articles. We must mention the famous article of Šeba [1] where
he focused on two special cases of the point interaction of the Dirac operator and in some
sense started the hunt for the singular perturbation of the Dirac operator. Five years
after that, all self-adjoint realizations of the relativistic point interaction model in the
first dimension were discovered in [19] by Benvegnu and Dabrowski. They started with
the one dimensional Dirac operator restricted to the functions vanishing in the point of
interaction

Sψ(x) = −i d

dx
⊗ σ1ψ(x) +m⊗ σ3ψ(x), x ∈ R \ {0}

DomS = {ψ ∈ W 1,2(R;C2) | ψ(0) = 0},
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where m ∈ R is used for the mass term, σj, j ∈ {1, 2, 3} for the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

and by IN we will denote the N×N identity matrix. Since the operator S is a symmetric
operator with deficiency indices equal to two, they were able to use Von Neumann theory
to find all self-adjoint extensions. We found out in [3] that almost all of these self-adjoint
extensions correspond to the formal operator

DA = −i d

dx
⊗ σ1 +m⊗ σ3 + Aδ(x),

where δ stands for the Dirac delta function and A is 2 × 2 hermitian matrix. One can
easily recover the proper definition of the operator DA by examining the formal action
and taking into account condition DAψ ∈ L2(R;C2). From that we will end up with the
operator

(DAψ)(x) = (Dψ)(x), x ∈ R \ {0},
Dom(DA) = {φ ∈ W 1,2(R \ {0})⊗ C2 | (2i− σ1A)φ(0+) = (2i+ σ1A)φ(0−)}.

Natural question would be if this construction of the point interaction can be repro-
duced also in the higher dimensions. The easy answer is no. If the Dirac operator in
dimension two or three is restricted to the functions vanishing in the one single point, we
will end up with the essentially self-adjoint operator and therefore there is nothing inter-
esting to be found. To introduce δ-interactions for those cases we need to work a little
bit harder. Instead of perturbing the operator by the Dirac function we need to use a
singular potential that would perturbed the operator on the higher dimensional subset of
the Euclidean space. The potential we will consider is going to be single layer distribution
which is sometimes called, in the context of δ-interactions, the δ-shell distribution. We
will show that caution must be taken when handling with the formal operator with the
single layer distribution since seemingly similar operators can correspond to self-adjoint
Dirac operators with completely different transmission conditions along the boundary of
the subset.

2 Local vs non-local singular potential
Let Ω be an open bounded simply connected subset of Rn, n = 2, 3, with the Lipschitz
smooth boundary Σ and N = 2⌈

n
2
⌉. We will denote δΣ for the single layer distribution

defined on D(Rn;CN) as

(δΣ, φ) =

∫
Σ

φ.

In the one dimensional situation there is no difference between projecting on and multi-
plying by δ-function since we have

|δ⟩⟨δ|φ = (δ, φ)δ = ψ(0)δ = φδ = δφ.
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However, this is not the case for the single-layer distribution because we see that for
φ, ψ ∈ D(Rn;CN) we have

(δΣφ, ψ) =

∫
Σ

(φψ)

and
(|δΣ⟩⟨δΣ|φ, ψ) =

∫
Σ

φ

∫
Σ

ψ,

which is clearly different. Therefore, we will need to differ between the local singular
perturbation by the multiplication operator and the non-local singular perturbation by
the projection. The Dirac operator with the potential AδΣ, where A is a hermitian
matrix valued function, can be described by a transmission condition along Σ and has
been studied frequently, see, e.g. [8–11]. On the contrary, a formal operator A|δΣ⟩⟨δΣ| is
not even formally symmetric for the non-constant matrix A. To introduce weighted and
symmetric non-local singular perturbation we must be a little bit more shrewd. Instead
of multiplying whole projection by one matrix valued function, we will multiply both
bra and ket by F,G ∈ L2(Σ;CN,N) respectively. Eventually, we have non-local δ-shell
potential of a form

|FδΣ⟩⟨GδΣ|, (1)

where we naturally extend the definition of bra-vector as follows

|FδΣ⟩⟨GδΣ|φ := F (δΣ, G
∗φ)δΣ.

The potential (1) is clearly symmetrical if and only if in L2(Σ;CN,N) we have

F

∫
Σ

G∗φ = G

∫
Σ

F ∗φ.

3 Boundary triples
An investigation of the self-adjoitness can be quite challenging task. Fortunately, we have
useful tool in the form of the quasi and the generalized boundary triples. In this section,
we will summarize the most important definitions and theorems mainly following [7]. We
encourage reader to study the theory in more details in [13–16]. In this section, we will
assume that S is densely defined closed symmetric operator in a Hilbert space H and
T stands for a linear operator satisfying T = S∗. For our latter purposes S will be a
restriction of the free Dirac operator D0 to functions vanishing along Σ and the extension
of S will be identified with the Dirac operators with the δ-shell potential.

Definition 1. Let T be such that T = S∗. A triple (G,Γ0,Γ1) consisting of a Hilbert
space G and linear mappings Γ0,Γ1 : DomT → G is called a quasi boundary triple for S∗

if the following holds:

1. For all f, g ∈ DomT , ⟨Tf, g⟩H − ⟨f, Tg⟩H = ⟨Γ1f,Γ0g⟩G − ⟨Γ0f,Γ1g⟩G.

2. The range of Γ = (Γ0,Γ1) is dense in G × G.
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3. The restriction T0 := T ↾ Ker Γ0 is a self-adjoint operator in H.

If conditions (1) and (3) hold, and the mapping Γ0 : DomT → G is surjective, then
(G,Γ0,Γ1) is called generalized boundary triple. Note that every generalized boundary
triple is also a quasi boundary triple, because (2) follows from the defining properties of
the generalized triple [16, Lemma 6.1].

Definition 2. Let S, T be as above, (G,Γ0,Γ1) be a quasi boundary triple for S∗, and
T0 = T ↾ Ker Γ0. Then the associated γ-field and the Weyl function M are defined by

ρ(T0) ∋ z 7→ γ(z) = (Γ0 ↾ Ker(T − z))−1

and
ρ(T0) ∋ z 7→M(z) = Γ1(Γ0 ↾ Ker(T − z))−1.

For a linear operator B in G, we put

TB = T ↾ Ker(Γ0 +BΓ1). (2)

Since DomS = ker Γ0 ∩ ker Γ1 by [14, Prop. 2.2], S ⊂ TB. The following theorem yields
an eigenvalue condition for TB, an alternative description of Ran(TB − z), which may be
used in the proof of self-adjointness of TB, and a Krein-like formula for the resolvent of
TB.

Theorem 3. Let S, T be as above, (G,Γ0,Γ1) be a quasi boundary triple for S∗, T0 = T ↾
Ker Γ0, and γ and M denote the associated γ-field and the Weyl function, respectively.
Finally, let TB be given by (2). Then the following holds for all z ∈ ρ(T0):

1. z ∈ σp(TB) if and only if 0 ∈ σp(I +BM(z)). Moreover,

Ker(TB − z) = {γ(z)ψ | ψ ∈ Ker(I +BM(z))}.

2. If z /∈ σp(TB), then g ∈ Ran(TB − z) if and only if Bγ(z)∗g ∈ Ran(I +BM(z)).

3. If z /∈ σp(TB), then

(TB − z)−1g = (T0 − z)−1g − γ(z)(I +BM(z))−1Bγ(z)∗g (3)

holds for all g ∈ Ran(TB − z).

4 Relativistic δ-shell interactions
The time has come to introduce δ-shell interactions in dimensions two and three. To
make everything cleaner, we will slightly abuse bra-ket notation even further in the fol-
lowing manner. The symbol ⟨·, ·⟩ will be used for the scalar product, linear in the second
argument, on L2(Rn;CN) and we will naturally extend the notation to

⟨F, φ⟩ =
∫
Rn

F ∗(x)φ(x) dx,

⟨F,G⟩ =
∫
Rn

F ∗(x)G(x) dx,
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where φ ∈ L2(Rn;CN) and F, G ∈ L2(Rn;CN,N). Following the same pattern, we define
finite rank linear operator |F ⟩⟨G| in L2(Rn;CN) as

|F ⟩⟨G|φ := F ⟨G,φ⟩ = F

∫
Rn

G∗(x)φ(x) dx.

In the case of the integral operator K we will use K(x, y) for its integral kernel.
For the square root of the complex number z ∈ C \ (−∞, 0] we adopt the convention
Im

√
z ≥ 0.

Let us now recall the free Dirac operator. For the two dimensional situation, we put

α1 = σ1, α2 = σ2, α0 = σ3

and for the three dimensional case

∀k ∈ {1, 2, 3}, αk =

(
0 σk
σk 0

)
, α0 =

(
I2 0
0 −I2

)
.

The Dirac operator D0 acts like the following differential operator

D0 := −i(α · ∇) +mα0

and is defined as

D0φ = D0φ,

Dom(D0) = H1(Rn;CN).

It is well known that the operator D0 is self-adjoint, its spectrum is absolutely con-
tinuous and consists of

σ(D0) = σac(D0) = (−∞,−|m|] ∪ [|m|,+∞),

these results can be found for example in [12]. The resolvent for z ∈ C \ σ(D0) is given
by the integral operator (D0 − z)−1(x, y) = Rz(x− y) where

Rz(x) =

√
z2 −m2

2π
K1(−i

√
z2 −m2|x|)α · x

|x|
+

1

2π
K0(−i

√
z2 −m2|x|)(zI2 +mα0)

for the second dimension, with Kj denoted for the modified Bessel functions of the second
kind, and for the third dimension

Rz(x) =

(
zI4 +mα0 + (1− i

√
z2 −m2|x|)i(α · x)

|x|2

)
1

4π|x|
ei

√
z2−m2|x|.

4.1 Local relativistic δ-shell interactions

Recall that we assume Σ to be the Lipschitz smooth boundary of an open bounded simply
connected set Ω ≡ Ω+ ⊂ Rn, n = 2, 3. Denote the outer domain Rn \ Ω+ by Ω−. Then
we have decomposition of the Euclidean space as the disjoint union Rn = Ω+ ∪ Σ ∪ Ω−.
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Furthermore, we denote by n(x) the unit normal vector at x ∈ Σ pointing outwards of
Ω+. For s ∈ [0, 1], define the space

Hs
α(Ω±) := {ψ± ∈ Hs(Ω±;CN) | (α · ∇)ψ± ∈ L2(Ω±;CN)}.

It was shown in [7, Lemma 4.1 and Corollary 4.6] that ψ ∈ Hs
α(Ω±) admit Dirichlet traces

T± in Hs− 1
2 (Σ;CN). In particular, T±ψ± ∈ L2(Σ;CN) for ψ± ∈ H

1
2
α (Ω±).

Then, we have closed, symmetric and densely defined operator S = D0 ↾ H1
0 (Rn \

Σ;CN) for which S∗ is given by

S∗(ψ− ⊕ ψ+) = D0ψ− ⊕D0ψ+,

Dom(S∗) = {ψ− ⊕ ψ+ | ψ± ∈ H0
α(Ω±)},

cf. [17, Prop. 3.1]. Choosing

T := S∗ ↾ H
1
2
α (Ω−)⊕H

1
2
α (Ω+), (4)

the triple (G,Γ0,Γ1), where G = L2(Σ;CN) and

Γ0ψ = i(α · n)(T+ψ+ − T−ψ−) : DomT → L2(Σ;CN),

Γ1ψ =
1

2
(T+ψ+ + T−ψ−) : DomT → L2(Σ;CN),

(5)

form a generalized boundary triple for S∗. Corresponding γ-field and Weyl function were
shown to be

∀x ∈ Rn \ Σ, γ(z)ψ(x) =

∫
Σ

Rz(x− y)ψ(y) dσ(y)

and
∀x ∈ Σ, M(z)ψ(x) = lim

ρ→0

∫
Σ\B(x,ρ)

Rz(x− y)ψ(y) dσ(y),

respectively. Here, γ(z) is bounded and everywhere defined operator from L2(Σ;CN)
to L2(Rn;CN) with a compact adjoint and M(z) is bounded and everywhere defined
operator in L2(Σ;CN).

To recover proper definition of the Dirac operator perturbed by the formal potential
AδΣ. We will proceed similarly to the one dimensional situation. Firstly, one can verify,
using integration by parts, following identity for ψ = ψ− ⊕ ψ+ ∈ DomT

D0(ψ− ⊕ ψ+) = T (ψ− ⊕ ψ+) + i(α · n)(T+ψ+ − T−ψ−)δΣ. (6)

Next, we naturally extend the definition of AδΣ for ψ ∈ DomT in the following way

(AδΣψ, f) =
1

2

∫
Σ

(T+ψ+ + T−ψ−)f, f ∈ D(Rn;CN).

The condition ψ ∈ DomT, (D0 + AδΣ)ψ ∈ L2(Rn;CN) is true if and only if

i(α · n)(T+ψ+ − T−ψ−) +
1

2
A(T+ψ+ − T−ψ−) = 0. (7)

These considerations allow us to define the following operator
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Definition 4. We define the linear operator DA in L2(Rn;CN) as follows

DA(ψ− ⊕ ψ+) = D0ψ− ⊕D0ψ+

DomDA = {ψ− ⊕ ψ+ ∈ H
1
2
α (Ω−)⊕H

1
2
α (Ω+) | ψ satisfies (7)}.

We will call the operator DA the Dirac operator with local δ-shell interaction.

It was proved that for the large family of hermitian-matrix valued functions A the
operator DA is indeed the self-adjoint extension of the operator S. For more details
see [7]. We will try to show general ideas of the proof of the self-adjointness in the
following section where we will introduce completely new type of interactions.

4.2 Non-local relativistic δ-shell interactions

We will go back and try to use (1) as our formal perturbation of the free Dirac operator.
Embedding (6) and an extension of (1) to discontinuous functions along Σ in the following
way

|FδΣ⟩⟨GδΣ|ψ := F

∫
Σ

(
G∗1

2
(T+ψ+ + T−ψ−)

)
δΣ.

we again use the condition ∀ψ ∈ DomT, (D0 + |FδΣ⟩⟨δΣ|)ψ ∈ L2(Rn;CN) to recover the
transmission condition

i(α · n)(T+ψ+ − T−ψ−) +
1

2
F

∫
Σ

G∗(T+ψ ++T−ψ−) = 0. (8)

From that we define the following operator.

Definition 5. By the Dirac operator with non-local δ-shell interaction of the type |FδΣ⟩⟨GδΣ|
we mean the linear operator DF,G in L2(Rn;CN) given by

DomDF,G = {ψ− ⊕ ψ+ ∈ H
1
2
α (Ω−)⊕H

1
2
α (Ω+) | ψ satisfies (8)},

DF,G(ψ− ⊕ ψ+) = D0ψ− ⊕D0ψ+.

The transmission condition (8) may be rewritten as

Γ0ψ +BΓ1ψ = 0 with B = |F ⟩Σ⟨G|Σ, (9)

where |F ⟩Σ⟨G|Σ defined by

φ 7→ F

∫
Σ

(G∗φ)

is a finite rank operator in L2(Σ;CN). Note that

(|F ⟩Σ⟨G|Σ)∗ = |G⟩Σ⟨F |Σ. (10)

With this choice of B, DF,G = TB. In particular, D0,0 = T0 = D0 is the free Dirac
operator. Hence, we may use Theorem 3 to show self-adjoitness of DF,G efficiently.
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Theorem 6. Let F, G ∈ L2(Σ;CN,N) be such that

|F ⟩Σ⟨G|Σ = |G⟩Σ⟨F |Σ. (11)

Then DF,G is a self-adjoint operator.

Proof. In view of (10), the condition (11) is equivalent to the hermiticity ofB = |F ⟩Σ⟨G|Σ.
The property (1) from Definition 1 together with (9) then imply that the operator DF,G

is symmetric. Hence, to prove the self-adjointness of DF,G it is sufficent to show that
∀z ∈ C \ R, Ran(DF,G − z) = L2(Rn;CN). By the symmetry of DF,G, we also have
σp(DF,G) ⊂ R. Therefore, from the point (1) of Theorem 3, the operator (I +BM(z)) is
injective for all z ∈ C\R. Furthermore, B is a finite rank operator and thus compact. In
addition, M(z) is bounded, and so we deduce that the operator BM(z) is also compact in
L2(Σ;CN). On top of that, I is Fredholm operator with index 0 and the same holds true
for its compact perturbation (I +BM(z)) which implies that the operator (I +BM(z))
is also surjective. This yields Ran(DF,G − z) = L2(Rn;CN), due to the point (2) of
Theorem 3.

5 Conclusion
We looked at the already known results concerning the Dirac operator with the singular
potential such as δ-function for the one dimension and the single layer distribution for
higher dimensions. Also, completely new type of interaction, namely non-local δ-shell
interactions, were introduced and the condition on the self-adjointness was found.

Another important result that can be discussed is the question of the existence of the
regular approximation. Even though, the self-adjointness is important for the quantum
theory, without the regular approximation one cannot hope to connect these mathematical
models with the real physical situation. Another problem one can try to attack is the
non-relativistic limit, to find the non-relativistic counterpart of the model. This seems to
be particularly non-intuitive for the local δ-shell interaction, see [20], and even worse for
the non-local situation.
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Abstract. Research in the field of high energy physics relies significantly on artificial simulations
of particle behaviour in the detector. Standard simulation tools such as Geant4 are based
on Monte Carlo algorithms and provide high-fidelity simulations. However, they require vast
computation resources, especially for the highly granular calorimeter part of the detector.

Generative deep learning algorithms offer a speed up of a few orders of magnitude for the price
of a small loss of accuracy. Most of these models are based on MLPs or CNNs that are used
to build an adversarial generative network or a variational autoencoder. However, each model
is trained on a very specific detector and particle setting. In case of a small alteration to this
setting, new model needs to be trained.

Transformer is an encoder-decoder model that is based on the attention mechanism. It is
the state-of-the art approach in natural language processing due to its large learning capacity
and the ability to adapt to different tasks. Hence, this approach seems to be a suitable candidate
for a more general calorimeter simulation model. Unlike the convolution layers, the multi-head
attention blocks do not introduce strong inductive bias to the model which enables learning
complex dependencies within the data. Moreover, the training of the model is relatively fast
thanks to the parallel nature of the multi-head attention computation. Both of these properties
can be leveraged in the high energy physics domain.

In this work, we tested a transformer-inspired model on an auxiliary task of image comple-
tion. The calorimeter data are handled as images, split into smaller segments, partially masked,
and processed by the model containing the self-attention blocks that restores the masked seg-
ments. We examine the influence of different pre-processing to the resulting reconstruction of
images. We also experiment with the use of a graph neural network to obtain a better represen-
tation of the image segments.

Keywords: attention mechanism, calorimeter simulation, high energy physics, masked language
modeling, transformer

Abstrakt. Simulace chování částic v detektoru jsou nezbytnou součástí výzkumu v oblasti
částicové fyziky. Pro získání velmi přesných simulací jsou standardně používány nástroje jako
Geant4, které jsou založené na Monte Carlo algoritmech. Tyto nástroje jsou však velmi výpočetně
náročné, a to především v případě simulování odezvy kalorimetru, jednoho z obvyklých segmentů
detektoru.

∗This work was supported by the Grant Agency of the Czech Technical University in Prague, grant
No. SGS23/190/OHK4/3T/14.

41



42 K. Jarůšková

Generativní deep learning modely dokáží simulovat odezvu kalorimetru na částice až o několik
řádů rychleji za cenu jisté ztráty původní přesnosti. Většina z dnes užívaných modelů je založená
na vícevrstvých perceptronech nebo konvolučních sítích, které jsou spojovány do komplexněj-
ších architektur typu generativní kompetitivní síť nebo variační autoencoder. Zpravidla je však
takový model natrénován pro velmi specifický typ detektoru a částice. Pokud jsou parametry
detektoru nebo vstupní částice změněny, je potřeba model natrénovat znovu na odpovídajících
datech.

Transformer je model typu encoder-decoder, jehož základním stavebním blokem je tzv. at-
tention mechanismus. Jedná se o state-of-the-art přístup v oblasti zpracování textu. Jeho hlavní
předností je velká kapacita z hlediska extrakce informací z dat a možnost adaptace na různé
úlohy. Proto je tento typ modelu vhodný kandidátem pro sestavení obecnějšího nástroje pro simu-
laci kalorimetrů. Mechanismus multi-head attention nevnáší do modelu implicitní předpoklady
o datech a lze jej díky tomu natrénovat i na datech s komplexní vnitřní strukturou. Výpočet
multi-head attention lze navíc velmi dobře paralelizovat, což umožňuje relativně rychlé trénování
modelu. Obě tyto vlastnosti jsou pro použití v částicové fyzice žádoucí.

V této práci je prezentován model inspirovaný transformerem, který byl použit pro pomoc-
nou úlohu doplnění obrazu. Na trénovací data odezvy kalorimetru na částici se díváme jako
na 3D obrázky, které na začátku rozdělíme na menší segmenty. Na většinu těchto segmentů ná-
sledně aplikujeme masku a upravený obrázek zpracujeme modelem se self-attention bloky, který
překryté segmenty zrekonstruuje a obrázek tak doplní. Navíc byl zkoumán vliv předzpracování
dat na trénování modelu a úspěšnost rekonstrukce obrázků. Bylo také testováno použití grafové
konvoluční sítě pro zlepšení embeddingu segmentů.

Klíčová slova: attention mechanismus, simulace kalorimetru, fyzika vysokých energií, maskované
jazykové modelování, transformer

Full paper: K. Jaruskova and S. Vallecorsa. Self-attention for Image Completion Task
on the Calorimeter Data in High Energy Physics. Full version to be published in the
Proceedings of the 14th International Conference on Stochastic and Physical Monitoring
Systems 2023.
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Abstract. We investigate the phase stability of a multicomponent mixture at constant volume,
temperature and moles (VTN stability). Our work is based on the TPD criterion derived in
Mikyška, J., Firoozabadi A., 2012, Investigation of Mixture Stability at Given Volume, temper-
ature and number of moles, Fluid Phase Equilibria and the branch and bound algorithm from
Smejkal T., Mikyška J., 2020, VTN-phase stability testing using the Branch and Bound strategy
and the convex-concave splitting of Helmhotz free energy density, Fluid Phase Equilibria. In
this contribution, we improve the algorithm with more effective bounding strategy. This im-
provement is achieved using the necessary condition of optimality. In the bounding step of the
algorithm, before solving an underestimated convex optimization, we check whether the pressure
(given by the Peng-Robinson equation of state) is feasible. If it is not the case, we can exclude
the corresponding part of the feasible set from the search. The pressure function given by the
Peng-Robinson equation of state is not convex and therefore leads to a non convex optimization
problem which is computationally expensive. We propose to use a less precise estimate of the
global maximum of the pressure. This estimate can be found by comparing the finite number
of the values of the tangent plane to a concave overestimate of the Peng-Robinson equation of
state. Another benefit of this additional step is to avoid the optimization of the underestimated
objective function. The proposed method is tested on several specific examples.

Keywords: phase stability, global optimisation, convex-concave split, branch and bound method,
multi component mixtures

Abstrakt. Zkoumáme fázovou stabilitu vícesložkových směsí za konstantního objemu, teploty
a molární koncentrace (VTN formulace). Tato práce je založena na kritériu odvozeném v Miky-
ška, J., Firoozabadi A., 2012, Investigation of Mixture Stability at Given Volume, temperature
and number of moles, Fluid Phase Equilibria a metodě větví a mezí z Smejkal T., Mikyška J.,
2020, VTN-phase stability testing using the Branch and Bound strategy and the convex-concave
splitting of Helmhotz free energy density, Fluid Phase Equilibria. V tomto příspěvku zlepšujeme
algoritmus o lepší zamítaní neperspektivních oblastí přípustné množiny. Tohoto vylepšení je
dosaženo s uplatněním nutných podmínek optimality. V kroku mezí, před řešením podhodnoce-
ného konvexního problému, zkontrolujeme, zda je tlak (daný Pengovou-Robinsonovou stavovou

∗This work has been supported by the Ministry of Education, Youth and Sports of the Czech Republic
under the OP RDE grant number CZ.02.1.01/0.0/0.0/16 019/0000778 Centre for Advanced Applied
Sciences, and by the Czech Science Foundation project no. 21-09093S.
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rovnicí) přípustný. Pokud tomu tak není, jsme oprávněni tuto část přípustné množiny vyřadit z
hledání. Tlak daný Pengovou-Robinsonovou stavovou rovnicí není konvexní funkcí a tedy je její
globální optimalizace výpočetně náročná. Navrhujeme použití méně přesného odhadu globálního
maxima tlaku. Tento odhad může být nalezen porovnáním konečného počtu bodů tečné nadro-
viny k nadhodnocené konkávní Pengově-Robinsonově stavové rovnici. Další výhoda tohoto kroku
je vyhnutí se optimalizaci účelové funkce. Metoda je testována na několika určitých příkladech.

Klíčová slova: fázová stabilita, globální optimalizace, konvexně-konkávní rozklad, metoda větví
a mezí, vícesložkové směsi

Full paper: Martin Jex and Jiří Mikyška, An improved branch and bound algorithm for
phase stability testing of multicomponent mixtures, Fluid Phase Equilibria, Volume 566,
2023, 113695, ISSN 0378-3812, https://doi.org/10.1016/j.fluid.2022.113695
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Abstract. In recent years various generalizations of entropy have been employed to examine
diverse plethora of physical issues from statistical perspective. These include applications of
non-extensive entropy in deriving GUPs (and EUPs), which are of interest due to allowing to
account for minimal length scale; applications to cosmological problems, such as possibility to
obtain accelerated expansion phase with ordinary matter; or description of entropy of black holes
in extensive manner. In note this we investigate feasibility of combined entropy, leveraging prop-
erties of two different entropy generalizations, specifically we will be employing two-parameter
entropic functional Sq,δ introduced by Tsallis [1]. We will attempt to apply this entropic func-
tional to the case of black holes. We end the text by discussing relation of Tsallis entropy to
conformal and scale symmetry.

Keywords: black holes, non-extensive entropy, scale symmetry

Abstrakt. V poslednich letech byly různe generalizace entropie použity při zkoumání různo-
rodých fyzikálních problemů ze statistické perspektivy. Tyto zahrnují aplikace ne-extenzivních
entropií při odvozování GUP (a EUP), které jsou zajímavé jelikož umožnují zahrnout efekt mi-
nimalní délkové škály; aplikace na kosmologické problémy, jako například možnost akcelerované
expanze vesmíru pouze s běžnou hmotou; nebo popis entropie černých děr v extenzivní formě.
V tomto článku prozkoumáme užitečnost kombinované entropie, která využívá vlastnosti dvou
různých zobecnění entropie, konkrétně použijeme dvou parametrický entropický funkcionál Sq,δ

ktery byl poprvé popsán Tsallisem v [1]. My se pokusíme tento entropický funkcionál aplikovat
na příklad černých děr. Text je zakončen diskuzí o vztahu Tsallisovy entropie ke konformní a
škálové symetrii.

Klíčová slova: černé díry, ne-extenzivní entropie, škálová symetrie

1 Introduction
It was noted already by Boltzmann that the Boltzmann–Gibbs (BG) statistics is not
suitable for description of systems exhibiting long-range interactions (such as gravitational
systems) nor for systems with strong correlations (of either classical or quantum nature).
[2]. The reason for this, in the case of system with long-range attractive interactions,
is that the BG statistics assumes the partition function to have finite value, which is
not the fulfilled in such systems, as the energy can decrease without limit violating the

∗This work was supported by the Grant Agency of the Czech Technical University in Prague, grant
No. SGS22/178/OHK4/3T/14.
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assumption of finiteness. In systems with strong correlations assumption of additivity
of entropy is violated, as e.g. entanglement entropy present large contribution to total
entropy. It is thus likely that BG entropy is inadequate for proper description of the
early Universe, such as inflationary Universe, and we should be searching for more fitting
alternatives. We will specifically focus on the issue of proper entropic functional for such
systems, as black hole entropy (and more generally horizon entropy) provides us with a
possible guide.

Over the last century, in the search for a more general framework for statistical de-
scription of physical systems numerous proposals for non-BG entropies were put forward.
To name a few Renyi entropy, entropies derived from superstatistics or spectral statis-
tics, and also Tsallis Sq and Sδ entropies [2],[1]. It is these last ones that are of primary
interest to us. In the rest of this note, we will focus on Tsallis Sq ≡ Sq,1 and Sδ ≡ S1,δ

entropies, and their the two-parametric generalization — entropic functional Sq,δ. We
will start with quick overview of their characteristics, before moving on to application of
the more general Sq,δ to early-universe cosmology and links to conformal symmetry.

2 Tsallis Sq entropy
The Tsallis entropy Sq was first put forward by Tsallis in 1988 [3] as a candidate for
generalization of BG entropy, and lead to formulation of non-extensive q−generalized
statistics. Since then the Sq entropy (and q-generalized statistics) has found numerous
applications in various branches of physics, including for example turbulence in plasma,
particle production in QCD processes [4], non-linear QM, generalized uncertainty prin-
ciples (GUPs) [5], and many others [2]. Of special attention should be the link to
QCD processes, as it can be considered a hint that at high energies it would be relevant
for gravity as well due to postulated links between gravity and gauge theories, such as
gravity/gauge duality [6] or ’gravity = gauge × gauge’ conjecture [7].

Sq has the following prescription

Sq = kb

∑
i p

q
i − 1

1− q
= kB

W∑
i=1

pi

(
lnq

1

pi

)
(1)

where in the second expression lnq is the q−logarithm defined as

lnq (x) =
x1−q − 1

1− q
. (2)

It can be easily checked that Tsallis entropy reduces to BG entropy in the limit q → 1.
Tsallis entropy maintains most properties of BG entropy, being non-negative, expan-

sive , however it is non-additive, with the following rule for addition

Sq (A+B) = Sq (A) + Sq (B) + (1− q)Sq (A)Sq (B) . (3)

From the above it is clear Sq can be either sub-, or supra-additive depending on the value
of entropic index q. We stress that name "non-extensive entropy/statistics" is a bit of
a misnomer, since typically a system does have a single appropriate value of q (which
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can be different from 1) for which Sq is extensive quantity. More appropriate would be
appellation ’non-additive’ entropy/statistics since the entropy actually is non-additive.
However, by now the term "non-extensive statistics" has entered common parlance, so
we are using it as well.

The entropic index q has effect on probabilities, specifically for q < 1 it results in
effective enhancement of rate of rare events, whereas q > 1 enhances frequent events
[2]. From the physical perspective q can be considered as carrier of information about
intrinsic fluctuations of the physical system, and it can be shown it is in general suitable in
the situations where the described objects have some additional structure [8]. Effectively
then, the parameter q is determined a priory from the microscopic dynamics of the system
studied, however in practice it is treated as fitting parameter, since those dynamics are
typically unknown.

The non-additive Tsallis q-entropy is an appropriate entropy for systems with quasi-
power scaling of quantities, i.e. where the number of states scales with the number of
system’s elements N as

W (N) ≈ BN τ . (4)

which are typically systems with strong correlations.
For this reason we can presume that Sq entropy should be relevant in the early uni-

verse prior to decoupling of various degrees of freedom, e.g. during reheating inflaton
field and SM fields were strongly coupled and correlated. Similarly, the SM fields had
strong correlations among each other in early post-inflationary universe, fact used in in-
terpretation of CMB and its relation to cosmic structure formation. It is then natural to
apply entropic functional which inherently accounts for these correlations.

Of additional interest to us is that this entropy also comes into play when deriving
GUP relations [5]. Emergence of a generalized uncertainty principle (GUP) is a generic
prediction of theories of quantum gravity, these then imply a minimal length of the
order of the Planck length. This minimal length then affects the phase space structure
by modifying the elementary cell volume, which becomes momentum-dependent. It can
then be shown that statistics maximizing the entropy are non-Gaussian, and is significant
for high energies. Additionally, these non-Gaussian statistics produce the same effects as
the GUPs, and so describe the same underlying physics from the different viewpoints.
These non-Gaussian statistics can be shown to be of the same type as q-generalized Tsallis
statistics [9].

Finally, there is an interesting relation to Jackson derivate (which is derivative em-
ploying dilation operator instead of translation operator), where

Sq = Dq

∑
i

pxi . (5)

In this sense, Tsallis entropic index q is related to how the behaviour differs on scales
separated by q. This link to scaling and its (a)-symmetry, should not be surprising, as
the original development of Sq entropy was inspired by multifractal behaviour. Fractals
(and by extension multifractals) need to possess scale symmetry only asymptotically
for vanishing length scales. However, for fractals/multifractals generated by iterative
processes, scale symmetry holds for a finite discrete range of scales, these are called
self-similar fractals/multifractals.
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3 Tsallis Sδ entropy

In 1972 A. Bekenstein first postulated that black holes possess entropy, and proposed
it should be proportional to its surface area [10]. The constant of proportionality was
derived 3 years later by Hawking [11], fully establishing Bekenstein-Hawking entropy SBH .
Feature of this entropy that immediately captured interest of physicists is the fact that
entropy SBH is proportional to area A of the surface of the black hole, not to its volume.
This has lead to in depth research into holography in the context of gravitational physics,
and indeed to dualities such as AdS/CFT [12]. More generally, in d-dimensional strongly
correlated quantum systems exists an area law for entropy, i.e. SBG ≈ Ld−1 = Lα. Looked
at from another angle, the scaling factor α determines dimensionality of the problem, and
then α + 1 can be considered to be the fractal dimension of the problem.

The different scaling has lead to research into a second class of non-additive
entropies, the so-called Sδ entropy [1]. In contrast with Sq entropy, Sδ entropy is relatively
recent addition, motivated by insufficiency of other entropy generalizations to provide
extensive entropy for black holes.

The formulae defining the Sδ is as follows

Sδ = kB

W∑
i=1

pi

(
ln

1

pi

)δ

, (6)

which for, e.g. black holes is extensive quantity [1] for appropriate values of δ, and is in
general of interest when considering systems with sub-exponential (but non-polynomial)
scaling of quantities, i.e. where the number of states scales with the number of system’s
elements N as

W (N) ≈ CηN
γ

; C > 0; η > 1; 0 < γ < 1 . (7)

The practical outcome of the δ parameter can be summarized as rescaling of the entropy,
e.g. Sδ

BG = Sδ, much more straightforward relation than in the case of Sq entropy. For
equal probabilities we can write for the entropy Sδ

Sδ = kB lnδ W. (8)

Application to black holes is straightforward. We notice that for black holes we have
behaviour of type lnW (L) ∝ Ld−1, i.e. the same scaling in 7. This than implies that
black hole is suitable for description by Sδ entropy, being extensive for δ = d/ (d− 1).
For equal probabilities we easily obtain Sδ=d/(d−1) ∝ (SBG)

d/(d−1).
For the reason above, Sδ can be considered as the proper extensive entropy for BHs,

and by extension for gravitating systems with (event or causal) horizons. Recently it has
been used to derive modified cosmology (Tsallis cosmology) where for appropriate values
of the parameter δ it was possible to obtain the correct accelerated phase of the Universe
even with ordinary matter [13]. Regarding physical interpretation of the δ parameter,
similar entropy (called Barrow entropy) for black holes was proposed by Barrow in [14],
where ∆ = 2 (δ − 1) is parameter describing fractal structure of the surface of black hole
due to quantum deformations.
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4 Two-parameter entropic functional Sq,δ

In the previous sections we have discussed the distinct entropies, Sq and Sδ. We can
notice that both have features which are desirable for entropy in quantum cosmology. Sq

has link to quadratic GUPs, which are expected to play role at sufficiently high energies
as they are generic prediction of different approach to quantum gravity, such as: string
theory, loop string gravity, doubly special (and de Sitter) relativity, etc, all of which
imply finite minimal length scale. Sδ on the other hand provides possibility of describing
black hole (and horizon) entropy in terms of extensive quantity, which can be a desirable
feature.

Additionally, there is evidence that high-energy scattering processes are better de-
scribed by q-statistics (along with Sq entropy) [4]. There are also conjectures on the
relation of gravitational and gauge theories, such as gauge-gravity duality originating
from string theory [6], or "gravity = gauge × gauge" relating scattering amplitudes [7].
These two facts combined suggest a link between Sq entropy and by extension q-statistics
and theories of gravity at high energies, at least on level of scattering amplitudes.

As a result of the above considerations, an appropriate merger of both kinds of
aforementioned entropies would be a natural step in a statistical/thermodynamic descrip-
tion of the early Universe. In Ref. [2] a natural two-parameter merger of Sq and Sδ was
introduced. These, so called Sq,δ entropies are defined as

Sq,δ = kB

W∑
i=1

pi

(
lnq

1

pi

)δ

, (9)

which can be extensive for systems with both sub-exponential scaling and also polyno-
mial scaling, i.e. where the number of internal configurations scales with the number of
system’s elements N as

W (N) ≈ DN τηN
γ

. (10)

We can take the perspective that this allows us to take into account sub-leading correc-
tions to the entropy. For equal probabilities the entropic functional Sq,δ can be written
as

Sq,δ = kB (lnq W )δ , (11)

fact we will soon leverage.
This suggestion that Sq,δ could possibly take into account sub-leading correction is

interesting from perspective of black hole entropy, since it is well known that universal
leading-order correction to the Bekenstein-Hawking entropy is a logarithmic term [15],
resulting in entropy of the form

SBH−corrected ≈ SBH + α lnSBH + κ , (12)

where α and κ depend on details of the theory.
The presence of logarithmic correction is closely related to conformal anomaly [16].

Due to its nature as universal correction, which can be derived from many different con-
siderations (Euclidean action, conformal anomaly, GUPs, etc.), it is natural to consider
(12) as an appropriate extension of Bekenstein-Hawking entropy (at least in the functional
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form). We are then interested if we can obtain such form of entropy from assumption
that Sq,δ is suitable for description of black holes.

We will be starting from assumption that the entropy functional Sq,δ describes (with
some degree of precision) entropy of black hole, then starting from expressions for scaling
of number of internal configurations and for entropy Sq,δ in case of equal probabilities

W
(
Ld

)
≈ D

(
Ld

)τ
η(L

d)
γ

,

S = kB (lnq W )δ , (13)

we obtain

SBH−q,δ = kb

(
W 1−q − 1

1− q

)δ

, (14)

by combination of the two. Additionally, we demand that the total number of internal
configurations W is such that lnW = SBH , so that we may recover the usual Beken-
stein–Hawking formula in the Boltzmann limit q → 1 and δ → 1.

We expand the formula (14) around q = 1 as we are interested in small deviations
from extensivity. The reasoning is that cosmological observations and other estimates
from high energy physics show that if Sq entropy is used the entropic index q is typically
around the value 1.218 [17] [18]. Later on this assumption of small deviation will be
justified by consistency of the result with the assumption, up to some finite energy scale.
This limitation to certain energy scales should not be suprising, as QFT effects typically
exhibit scale dependency.

After short algebraic operations, we obtain

SBH−q,δ ≈ kb

(
lnW − 1

2
ln2W (q − 1)

)δ

, (15)

where we neglect terms of order (q − 1)2 and greater.
We can express lnW in terms of the Ld by using the scaling relation for number of

configurations. Taking its logarithm we obtain

lnW ≈ ELd/δ + lnLdτ (16)

where E = ln η. Setting

q = 1 + 2
(
lnLdτ − lnLd/δ

) (
ELd/δ + lnLdτ

)−2

δ = d/ (d− 1) (17)

we obtain the usual form of the black hole entropy along with logarithmic corrections

SBH−q,δ ≈ kB
(
ELd−1 + lnLd−1

)d/(d−1)
. (18)

Of course this is only approximate calculation, full calculation would be far more complex
as it would require proper treatment of lnq function, which does not share some of the
properties of logarithmic function we have leveraged.
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Let us draw attention to the fact that parameter q is running with the energy
scale (in this case specifically with the mass of BH). This should not be surprising, as the
entropy is a measure of the physical degrees of systems, which are scale-dependent in QFT.
Hence, the outcome of the calculation is rooted in quantum field theory considerations,
which although not taken into account by Tsallis in his original formulation of non-
extensive thermodynamics, are in principle mandatory when one tries to extend Tsallis
entropy to a more general QFT framework. Additionally, since the correction we calculate
is purely quantum in nature, appearance of QFT behaviour such as running should not
be surprising. So, purely from the assumption on the scaling behaviour of the degrees
of freedom of BH we were able to (approximately) derive black hole entropy along with
logarithmic corrections.

We note that it was the modification arising from the q deformation that lead to
presence of the logarithmic correction, showcasing the link to GUPs as they can be used
to derive the same term. The modification from δ plays comparatively small role, only
leading to rescaling of the dimension of entropy so that is extensive quantity.

Black hole horizons are not the only horizons present in general relativity (or its
generalizations). Cosmological horizons are also a type of event horizon, and so can be as-
sociated with entropy along the same lines as black holes. This fact was firstly recognized
by Gibbons, hence Gibbons–Hawking entropies [19]. From the successful application of
Sq,δ entropy to the case of black hole horizon we can conclude that Sq,δ entropy should
also be relevant to the cosmological horizons, and hence large-scale cosmology.

5 Summary and conclusion

We applied the non-extensive two-parameter entropic functional Sq,δ to the case of
primordial black hole. From this starting assumption (along with assumption on scaling
of number of microstates), we have derived the Bekenstein-Hawking entropy along with
logarithmic correction arising from quantum corrections.

Additionally, by considering relation of Tsallis Sq entropy to GUPs and Sδ entropy to
gravitational horizons, it is reasonable to assume that two parametric entropy functional
Sq,δ should play a significant role in the early-Universe cosmology. Since black hole
horizons are only one specific type of horizon present in theories of gravity, we further
extrapolate that the Sq,δ entropy is suitable for description of cosmological horizons as
well. For this reason, we should expect it to play role in cosmology of early universe,
where both borizon and GUPs effects can play role.

Regarding extremely early Universe, we stress that one would expect GUPs that
have also higher-order corrections beyond quadratic ones, necessitating entropy function-
als beyond Sq and Sq,δ. These would rise to relevancy as the energy scale increases.
Interestingly, studies of cosmology resulting from thermodynamics considerations with
varying non-extensive parameter has been recently addressed in the context of modified
cosmological models [20]. There, it has been shown that such cosmologies naturally lead
to inflationary de Sitter solutions, suggesting certain correspondence between cosmology
derived from power-law f (R) gravity and non-extensive cosmology. The correspondence
can be used to relate power-law exponent and the non-extensive exponent, at least within
de Sitter geometry.
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We end this by returning to the link to scaling symmetry. Q-statistics, based on Sq

entropy, often appear when the systems have fractal structure (so called ’thermofrac-
tal’ [21]) in energy-momentum space. As the conformal (and hence scaling) symmetry is
spontaneously breaking in inflationary universe, we posit that scale symmetry could leave
an imprint after spontaneous symmetry breaking in the form of fractal/multifractal struc-
tures. Indeed, recent work in this direction does suggest that scale symmetry breaking can
result in such features, such as fractal energy spectrum [22]. It is to be remarked that the
definition of multifractal, as well as the simpler definition of fractal set, are formulated in
terms of limits for some vanishing length scale. In other words, the scale symmetry only
needs to hold asymptotically for vanishing length scales. There is a class of multifractals
in which scale symmetry holds in a finite range of scales, namely the self-similar fractals
or multifractals. Therefore we argue that after SSB of conformal symmetry, such fractal
or multifractal behaviour could be present, further justifying application of q-statistics
and Sq entropy as a consequence of conformal symmetry.
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Abstract. A great deal of attention has been paid to alternative techniques to data augmenta-
tion in the literature. Their goal is to make convolutional neural networks (CNNs) invariant or
at least robust to various transformations. In this paper, we present an ensemble model combin-
ing a classic CNN with an invariant CNN where both were trained without any augmentation.
The goal is to preserve the performance of the classic CNN on nondeformed images (where it is
supposed to classify more accurately) and the performance of the invariant CNN on deformed
images (where it is the other way around). The combination is controlled by another network
which outputs a coefficient that determines the fusion rule of the two networks. The auxiliary
network is trained to output the coefficient depending on the intensity of the image deformation.
In the experiments, we focus on rotation as a simple and most frequently studied case of trans-
formation. In addition, we present a network invariant to rotation that is fed with the Radon
transform of the input images. The performance of this network is tested on rotated MNIST and
is further used in the ensemble whose performance is demonstrated on the CIFAR-10 dataset.

Keywords: CNN, rotation invariance, equivariance, Radon transform, network ensemble

Abstrakt. Alternativním technikám k datové augmentaci bylo v literatuře věnováno mnoho
pozornosti. Jejich cílem je učinit konvoluční neuronové sítě invariantní nebo alespoň robustní
vůči různým obrázkovým transformacím. V tomto článku představujeme ensemble kombinující
klasickou konvoluční síť s invariantní konvoluční sítí, přičemž obě jsou trénované bez jakékoliv
augmentace. Cílem je dosáhnout přesnosti klasické sítě na nedeformovaných obrázcích, na kte-
rých předpokládáme, že bude úspěšnější, a přesnosti invariantní sítě na deformovaných obrázcích,
kde předpokládáme opak. Přesná podoba kombinace se opírá o další sítí, která počítá koeficient,
jenž určuje, která ze dvou sítí bude mít při predikci konkrétního vstupu dominantní roli. Tato
pomocná síť je také trénovaná a počítaný koeficient na výstupu závisí na míře obrázkové defor-
mace. V experimentech se zaměřujeme na konkrétní příklad deformace, a to rotaci, z důvodu
její jednoduchosti a vysoké míry výskytu v literatuře. Dále představujeme konvoluční neurono-
vou síť invariantní na rotaci. Její konstrukce je založena především na Radonově transformaci
vstupních obrázků. Její efektivitu testujeme na datasetu “rotated MNIST” a dále ji využíváme
ve zmíněném ensembleu, jehož úspěšnost demonstrujeme na datasetu CIFAR-10.

Klíčová slova: konvoluční neuronové sítě, rotační invariance, ekvivariance, Radonova transfor-
mace, ensemble
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Abstract. Constructing a thermodynamically consistent dynamical van der Waals theory that
is compliant with experimental observations could prove to be a major leap towards a kinetic
theory of phase transitions. Here we propose two candidates for such a theory in the so-called
GENERIC (general equation for non-equilibrium reversible irreversible coupling) form that safe-
guards their consistency with the fundamental laws of thermodynamics. Some of the major
physical properties of the theories are discussed and the corresponding hydrodynamic equations
are derived. Directions of future research are indicated.

Keywords: van der Waals theory, kinetic equation, GENERIC, phase transitions

Abstrakt. Vybudovanie dynamickej van der Waalsovej teórie konzistentnej so zákonmi termo-
dynamiky i experimentálnymi pozorovaniami by nás mohlo výrazne posunúť smerom k ucelenej
kinetickej teórii fázových prechodov. Tento text predkladá dvoch kandidátov na takúto teóriu v
takzvanom GENERIC tvare, ktorý zaručuje súlad s fundamentálnymi zákonmi termodynamiky.
Ponúkame diskusiu vybraných kľúčových fyzikálnych aspektov týchto teórií, ako aj odvodenie
zodpovedajúcich hydrodynamických rovníc a naznačujeme smery ďalšieho výskumu.

Kľúčové slová: van der Waalsov plyn, kinetická rovnica, GENERIC, fázové prechody

Introduction
The van der Waals (vdW) theory represents probably the simplest known model that
allows for multiphase states[13] and as such is a natural candidate for modelling phase
transitions. As a result, establishing a dynamical vdW theory might be a vital step in
achieving the elusive goal of a dynamical theory of phase transitions. On the following
pages, we propose an alternative construction of the kinetic theory of vdW fluid to the
commonly deployed Enskog-Vlasov (EV) equation. The key features that distinguish this
theory from ideal gas are finite size of particles in the Enskog collision term[4] and a long-
range intermolecular interaction introduced by means of the Vlasov term[14] that causes
particle trajectories to divert from the straight lines of the Boltzmann gas. As it turns
out, these two features of the vdW gas allow for the phenomenon of phase transitions[6]

∗The author would like to express his sincere gratitude to professor Miroslav Grmela for his hospitality
and our fruitful collaboration. This work has also been supported by the Czech Grant Agency, project
number 20-22092S.
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not present in the Boltzmann theory, both gas-liquid[13, 3] and liquid-solid[2]. Our goal
is to construct a theory that provides a description of the kinetic phenomena near the
interface and has a straightforward relationship to the equilibrium theory as presented in
references[13] or [11], while bypassing the consistency issues of the EV equation with the
laws of thermodynamics[7, 1, 12]. This is achieved via a kinetic equation that has the
GENERIC (general equation for non-equilibrium reversible irreversible coupling)[8, 9]
form. We offer here two such equations, discuss their possible advantages and disad-
vantages and sketch directions of further analysis to either show their compliance with
other research in this domain, whether experimental, numerical or theoretical, or to re-
fute them as insufficient or inaccurate. These may include providing a description of the
corresponding equilibrium theory including an equation of state, analysing corresponding
mesoscopic (hydrodynamic) theories, formulating predictions with respect to the struc-
ture of the interface layer etc.

1 Two GENERIC van der Waals theories
We are going to propose and subject to inspection two alternative models for the van
der Waals gas, outlining prospective directions of further progress and discussing possible
advantages and disadvantages of the respective models. The broader framework of our
considerations will be the GENERIC (general equation for non-equilibrium reversible-
irreversible coupling)

ẋ = L(x)Ex + Ξx∗(x, x∗)|x∗=Sx , (1)

where x stands for the state variable, L(x) is the Poisson bivector, Ξ(x, x∗) is the dis-
sipation potential, E(x) is the energy, and S(x) is the entropy. That is to say that our
starting point is the more general, underlying model (1) and proposing a specific model
for the van der Waals gas is equal to choosing the state variables x as well as specifying
the quantities

(L, E, S,Ξ) (2)

of the model, the constitutive relations. As we shall see, the clear distinction between the
reversible and irreversible part of the dynamics provided by (1) is highly advantageous
for imposing (or studying the validity of) the requirements of fundamental physics on a
dynamical model.

As already noted, unlike the Boltzmann equation, the EV equation is not of the form
(1). Let us first demonstrate the choice of constitutive relations (2) corresponding to the
Boltzmann equation itself. We assume an energy functional E(f) given in terms of the
1-particle distribution function f and define the 1-particle energy to be the functional
derivative E(p) := δE

δf
≡ Ef . Denoting r and v the position and momentum, respectively,

the Boltzmann equation can then be written in the form

∂f(r,v)

∂t
= −

∂
(
f vi
m

)
∂ri

+ B(f(r,v)) (3)

where B is the Boltzmann collision term. We rewrite this equation in a more abstract
form as

∂f(r,v)

∂t
= −∂(fE

(p)
vi )

∂ri
+
∂(fE

(p)
ri )

∂vi
+ B(f(r,v)), (4)
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where we included the zero term E
(p)
ri for later use, the subscript meaning partial deriva-

tive. We will now demonstrate that the equation (3) is indeed of the form (1).
Let us start by making the observation that the (more general) Waldmann collision

term can be expressed as the functional derivative δΞ
δf∗

of the mass-action law dissipation
potential

Ξ(W )(f, f ∗) =

∫
dv

∫
dv1

∫
dv′
∫
dv′1W (v,v1,v

′,v′1, f)
(
eX + e−X − 2

)
(5)

with respect to the conjugate distribution function f ∗(r,v) = δS
δf(r,v)

≡ Sf(r,v), where the
thermodynamic force X defined by

X =
1

kB
(f ∗(r,v) + f ∗(r,v1)− f ∗(r,v′)− f ∗(r,v′1)) (6)

was introduced. Setting now S to be the Boltzmann entropy

S(f) = −kB
∫
dr

∫
dvf(r,v) ln f(r,v), (7)

the collision term becomes[11]

B(W )(f) = Ξ
(W )
f∗ =

∫
dv1

∫
dv′
∫
dv′1

2W (v,v1,v
′,v′1, f)

kB
√
ff1f ′f ′1

(f ′f ′1 − ff1) , (8)

where f = f(v), f1 = f(v1), f ′ = f(v′), f ′1 = f(v′1) and the common positional argument
r is omitted. Given the corresponding choice of the integral kernel W [15], (8) becomes
exactly the Boltzmann collision term B(f).

Following the choice of the dissipation potential Ξ and the entropy S, which specify the
dissipative part of the dynamics, the remaining task is to set the Poisson bivector L and
the energy E such that they yield the Hamiltonian part of the dynamics of equation (3).
As the Boltzmann (ideal) gas consists of free, colliding particles, its energy is obviously

E(f) =

∫
dr

∫
dvf(r,v)

v2

2m
, (9)

which sets the 1-particle energy to be E(p) = v2

2m
. Finally, the Poisson bracket correspond-

ing to (3) (which again carries Boltzmann’s name), is

{A,B} =

∫
dr

∫
dvf

(
∂Af
∂ri

∂Bf

∂vi
− ∂Bf

∂ri

∂Af
∂vi

)
. (10)

Let us recall that if a system is described by the one particle distribution function f as
the sole state variable, the reversible part of the evolution equation (1) is given by

∂f(r,v)

∂t
= LEf(r,v). (11)

Here, the energy E plays the role of a generating functional and the operator L(f), the
Poisson bivector, follows from the Poisson bracket by {A,B} = 〈Af ,LBf〉. Rewriting
(10) as

{A,B} =

∫
dr

∫
dvAf

(
∂Bf

∂ri

∂f

∂vi
− ∂Bf

∂vi

∂f

∂ri

)
,
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it can be seen that the Boltzmann Poisson bracket (10) generates an equation of the
abstract form (4). Clearly, with the energy (9), the Boltzmann equation (3) is recovered.

Before proceeding with alternative theories of the van der Waals gas, let us summarize
some of the key properties and assumptions that render systems of the form (1) consistent
with the laws of thermodynamics. We start with the Poisson bracket, which captures the
reversible (Hamiltonian) part of the evolution of the system in question and as such
is assumed to satisfy (besides antisymmetry and the Jacobi identity) the degeneracy
conditions

LSx = 0, LNx = 0 (12)

In other words, both the entropy S and the total number of particles N =
∫
dr
∫
dvf are

assumed to be Casimirs of the Poisson bracket. Evidently, this implies that the reversible
part of the dynamics preserves both. The Poisson bracket is taken to be the Boltzmann
Poisson bracket (10). It is a back-of-the-envelope calculcation to verify that any entropy
functional of the form

S =

∫
dr

∫
dvν(f), (13)

where ν : R → R is sufficiently smooth (e.g. of class C2([0, 1])), is a Casimir of the
Boltzmann Poisson bracket (10). Let us also note that under the assumptions (12),
equation (11) can be equivalently rewritten

∂f(r,v)

∂t
= TLΦf(r,v), (14)

with Φ(f, T, µ) := −S(f) + 1
T
E(f)− µ

T
N(f) denoting the thermodynamic potential. We

are going to ’abuse’ this observation later in the text by introducing a kinetic equation
of the form (14) with an entropy that is not a Casimir of the Boltzmann Poisson bracket
(10).

The irreversible part of the dynamics is expressed via the conjugate variables x∗ = Sx
as well as the dissipation potential Ξ. First of all, let us specify that by irreversibility
we mean dynamics that is even with respect to the time reversal transformation (TRT)
(r → r,v → −v, t→ −t), ı.e.

Ξ(x, x∗)
TRT−−→ Ξ(x, x∗).

The second law of thermodynamics is encapsulated into the requirement

〈Ξx∗ , x
∗〉 ≥ 0

(〈·, ·〉 again denotes scalar product), where the left-hand side becomes the temporal deriva-
tive of the entropy dS

dt
if the conjugate state variables Sx are substituted for x∗. The

equilibrium nature of the state x∗ = 0 is expressed by Ξ|x∗=0 = 0 and the conservation of
mass and energy is guaranteed by the degeneracy conditions

〈Ξx∗ ,Mx〉 = 0, 〈Ξx∗ , Ex〉 = 0.

Before proceeding, let us note that the energy of the system will be assumed in the
form

E(f) =

∫
dr

∫
dvf(r,v)

{
v2

2m
+

1

2

∫
dr1

∫
dv1f(r1,v1)φ(|r − r1|)

}
. (15)
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1.1 van der Waals-Vlasov equation I

The first dynamic van der Waals theory we will investigate is obtained by replacing the
entropy (7) with the van-der-Waals-like entropy

S(f) = kB

∫
dr

∫
dv f(r,v)

[
ln(h3f(r,v))− 1− ln

(
1− bf(r,v)

NA

)]
︸ ︷︷ ︸

=:η(f(r,v))

, (16)

where b > 0 represents the (duly normalized) volume occupied by NA molecules of the
gas. The additional term ln

(
1− bf(r,v)

NA

)
obviously accounts for the finite size of the van

der Waals particles.
First, note that this entropy is of the form (13) and is hence a Casimir of the Boltz-

mann Poisson bracket (10). This fact guarantees that the Hamiltonian part (generated
by the Boltzmann Poisson bracket) of the ensuing kinetic equation conserves entropy.
The collision term, however, will now differ from the Boltzmann collision term (8) due to
the alteration of f ∗ = Sf . The idea here is to replace the Enskog collision term with a
modification of the Boltzmann collision term. Since this new term will preserve locality
of collisions, we expect the effects of dissipation to be somewhat weaker compared to the
EV theory. The modified collision term corresponding to the entropy (16) takes the form

B(vdW )(f) =

∫
dv1

∫
dv′
∫
dv′1

2W (v,v1,v
′,v′1, f)

kB
√
ff1f ′f ′1

×

× [f ′f ′1 − ff1 + b (ff1 + f ′f ′1)(f ′ + f ′1 − f − f1)] +O(b2),

defining the kinetic equation corresponding to this model to be

∂f

∂t
= −

∂
(
f vi
m

)
∂ri

+
1

m

∂Ψ

∂ri

∂f

∂vi
+ B(vdW )(f), (17)

where
Ψ(r) =

∫
dr′n(r′)φ(|r − r′|), (18)

φ being the potential. Note that equation (17) is of the abstract form (4). Obviously, the
zeroth-order term is the Boltzmann collision term. The physical interpretation of this
first-order correction, which we expect to account (partially, at least) for the finite size
of the particles, is somewhat unclear.

It is worth noting that modifying the entropy has important consequences for the
equilibrium theory, too. The equilibrium distribution function feq obtained by entropy
maximization with respect to the entropy (16), given a knowledge of the energy (15)
and the number of particles N, will no longer be Maxwellian. More precisely, denoting
β = 1

2mkBT
, we find the equilibrium (maximum entropy) solution to be

feq(r,v) =
NA

b

W (x)

W (x) + 1
, (19)

where x(r,v) = b
NAh3

exp
(
−βv2 − ψ(r) + µ

kBT

)
, ψ(r) = 1

kBT
Ψ(r), with Ψ given in (18).

While this is only an implicit equation for feq as long as the Vlasov term ψ (which depends



64 J. Kováč

on n and hence implicitly on f) is included, it can be used to infer the (non-)Maxwellian
character of the equilibrium. If we now expand (19) into a Taylor series in b, we have

feq =
1

h3
exp (−ψ(r)) exp(−βv2)− 2b

h6NA

exp (−2ψ(r)) exp(−2βv2) +O(b2).

Clearly, for b 6= 0 we have a non-Maxwellian equilibrium, as the zeroth-order (Maxwellian)
term then obtains an additional first-order pseudo-Maxwellian correction.1

As kinetic theories are more conveniently tested (whether numerically or experimen-
tally) on more macroscopic levels, let us now proceed with formulation of the (generalized)
hydrodynamics that corresponds to the kinetic equation (17). There are, of course, mul-
tiple ways to do this, depending on the specific order of approximation as well as on
the choice of the state variables. We will demonstrate two of these theories, one in this
section and one in the next one. The common feature of both will be that we will only
take into account the Hamiltonian part of the dynamics, the Poisson bracket.

In the first example, we take a more general approach. First we define the state
variables to be the moments of the distribution function

ρ(r) =

∫
dvf(r,v), ui(r) =

∫
dvvif(r,v), bij(r) =

∫
dvvivjf(r,v),

s(r) =

∫
dvη (f(r,v)) , ai(r) =

∫
dvviη (f(r,v)) ,

(20)

with η defined in (16). Here ρ represents the number density, ui the momentum density,
bij the stress tensor, s the entropy density and ai can be interpreted as the entropic flux
multiplied by the mass density. Note the presence of the entropic moments s and ai.
We are going to admit dependence on these moments for as long as possible in order to
obtain their evolution equations.

The next step is to express the Poisson bracket for functionals dependent exclusively
on these moments. We choose to start with the Boltzmann Poisson bracket (10) and
insert Af = Aρ+Auivi+Abijvivj +Asηf +Aaiηfvi (where we omit formal delta functions)
to arrive at

{A,B} =

∫
dr { ρ (∂i(Aρ)Bui − ∂i(Bρ)Aui)

+ ui
(
∂j(Aρ)Bbij − ∂j(Bρ)Abij

)
+ ui

(
∂j(Aui)Buj − ∂j(Bui)Auj

)
+ bij

(
∂k(Aui)Bbjk − ∂k(Bui)Abjk

)
+ bik

(
∂j(Aui)Bbjk − ∂j(Bui)Abjk

)
+ bij

(
∂k(Abij)Buk − ∂k(Bbij)Auk

)
+ bij

(
∂k(Aρ)Bcijk − ∂k(Bρ)Acijk

)
+ s (∂i(As)Bui − ∂i(Bs)Aui) + s (∂i(Aρ)Bai − ∂i(Bρ)Aai)

+ ai
(
∂j(Aai)Buj − ∂j(Bai)Auj

)
+ ai

(
∂j(As)Bbij − ∂j(Bs)Abij

)
+ aj

(
∂i(Auj)Bai − ∂i(Buj)Aai

)
+ aj

(
∂i(As)Bbij − ∂i(Bs)Abij

)
+

∫
dv [ ηf∂j(η)

(
AajBs −BajAs

)
+ ηf∂vj(η)vk (As∂j(Bak)−Bs∂j(Aak))

+ ηf∂vj(η)vk (Aak∂j(Bs)−Bak∂j(As))

+ ηfvlBal

(
∂j(η)Aaj − ∂vj(η)vk∂j(Aak)

)
] } ,

(21)

1The higher-order terms are also, evidently, pseudo-Maxwellian.
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with ηf = ln (h3f)−ln
(

1− bf
NA

)
+ bf
NA−bf

, ηff = 1
f

+ b
NA−bf

. The last integral can, of course,
be rewritten in a manifestly antisymmetric form that is, however, more complicated. We
therefore prefer to keep it in this form. Note that the corresponding terms for the moments
of f are much easier to handle. Here the situation is more complicated due to the presence
of the function η(f), which, in the moments of f, is replaced with f itself or, in other
words, with σ(f) given by σ(x) = x, resulting in σf = 1, ∂jσ = ∂jf, etc. These terms will
not play a role in the equations of motion, however, if we constrain ourselves to energies
which only depend on ρ,u and b. Then the resulting equations take the form

∂ts = −∂j
(
sEuj

)
− 2∂j

(
akEbkj

)
,

∂tai = −∂j
(
aiEuj

)
− s∂iEρ − aj∂iEuj ,

∂tρ = −∂j
(
ρEuj

)
− 2∂j

(
ukEbkj

)
,

∂tui = −∂j
(
uiEuj

)
− 2∂j

(
bikEbjk

)
− ρ∂iEρ − uj∂iEuj − bjk∂iEbjk ,

∂tbik = −∂j
(
bikEuj

)
− uk∂iEρ − ui∂kEρ − bjk∂iEuj − bij∂kEuj .

(22)

Probably the most significant shortcoming of this hierarchy is the fact that a large
portion of the interrelation between s and a seems to be in the last 4 integrals in (21)
which are implicitly neglected by assuming E[ρ,u, b]. As for other aspects of the hierarchy,
the conservation of mass and entropy are manifest by virtue of the equations of motion
for s and ρ having the (divergence) form of local conservation laws. The same applies
to momentum, as can be seen from ∂tui = −∂j (σij + δijp) , where the stress tensor
σij := uiEuj + 2bikEbjk and the generalized pressure p = −e+ ρEρ + ujEuj + bjkEbjk were
introduced, e denoting the energy density, and the expansion ∂e

∂rj
= Eρ∂jρ + Eui∂jui +

Ebik∂jbik was used. However, no such conservation law is manifest for the entropy flux a.
One of the prospective directions of further investigation is elevating the generalized

hydrodynamics given in (22) to an autonomous mesoscopic theory by equipping it (besides
the Poisson bracket (21)) with an energy functional, entropy and dissipation potential all
given in terms of the state variables (20). Such a theory naturally invites confrontation
with experimental observations, numerical simulations (such as those given in [2, 3]) or
with other, competing mesoscopic theories for the van der Waals fluid, e.g. the Enskog-
Vlasov hydrodynamics investigated in [5].

1.2 van der Waals-Vlasov equation II

In this section we are going to propose another alternative theory of the van der Waals
fluid, namely one that bypasses the issues regarding consistency with the equilibrium
theory addressed in the previous section at the cost of introducing an additional term
proportional to ∂f

∂vi
to the kinetic equation as well as an entropy that is not a Casimir of the

Boltzmann Poisson bracket (10). Let us proceed directly by specifying the kinetic-level
entropy as

S(f) = −kB
∫
dr

∫
dvf(r,v) ln(f(r,v)) + kB

∫
drn(r) ln (1− bn(r)) . (23)

As already stated, this entropy is not a Casimir of the Boltzmann Poisson bracket. This
entails that entropy is not conserved by the kinetics of the theory and irreversibility (with



66 J. Kováč

respect to TRT; encapsulated in the dissipation potential) and dissipation (now present
in both the reversible and irreversible terms) play distinct roles. We account for this by
taking the thermodynamic potential Φ, rather than energy, as the generating potential
of the reversible evolution. On the other hand, since Φ is then obviously conserved by
the reversible evolution, any approach of the system towards equilibrium is necessarily
driven by the collision term, as is the case both in the Boltzmann equation and in the
theory of section 1.1.

Let us keep the remaining ingredients as before and let us derive the corresponding
kinetic equation. First, let us express Sf = kB

(
ln(1− bn)− ln f − 1

1−bn

)
and

Φf = kB

(
ln f − ln(1− bn) +

1

1− bn

)
+

v2

2mT
+

1

T

∫
dr′φ(|r − r′|)n(r′)− µ

T
. (24)

For the reversible part of the equation, this translates into

LΦf = − vi
mT

∂f

∂ri
+

[
1

T

∂Ψ

∂ri
+ b

(
1

1− bn
+

1

(1− bn)2

)
∂n

∂ri

]
∂f

∂vi
.

As for the irreversible part, observe that if we now set f ∗(f) := Sf and recall the form
of the thermodynamic force (6), the terms that only depend on the number density n (and
thus have no velocity-dependence) vanish due to the assumption of locality.2 It follows
immediately that the thermodynamic force X has the same form as in the case of the
Boltzmann entropy (7) and, using sinh(lnx) = 1

2

(
x− 1

x

)
, we arrive at the Boltzmann

collision term (8). We conclude that, unlike in the previous section, with our current
choice of the constitutive relations (2), there is no modification to the collision term and
the effect of the finite size of the particles (expressed via the entropy (23)) is wholly and
solely in the additional density-dependent reversible term.

It is quite straightforward to show that the collision term remains invariant if we, in-
stead, set f ∗(f) := −Φf . Hence, we can write the irreversible term as Ξf∗(f, f ∗)|f∗=Sf

=
Ξf∗(f, f ∗)|f∗=−Φf

and thus declare the thermodynamic potential Φ to be the sole gener-
ating potential of this theory. The governing equation can then be written

∂f

∂t
= − vi

m

∂f

∂ri
+

[
∂Ψ

∂ri
+ bT

(
1

1− bn
+

1

(1− bn)2

)
∂n

∂ri

]
∂f

∂vi
+ B(f), (25)

where B(f) is the Boltzmann collision term (8).
Just as before, let us know proceed with the hydrodynamics. This time, however, we

demonstrate the transition for a different set of state variables, namely the moments

ρ(r) =

∫
dvf(r,v), ui(r) =

∫
dvvif(r,v),

bij(r) =

∫
dvvivjf(r,v), cijk(r) =

∫
dvvivjvkf(r,v).

(26)

2Note that we could have assumed a (more general) non-local thermodynamic force X (resulting in
multiple position integrals in (6)) and enforce locality via W in the same manner in which we enforce
energy and momentum conservation in the collisions; this would obviously have no (practical) impact on
the resulting collision term.
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The first three again stand for familiar physical quantities, namely the number density
(ρ), the momentum density (ui) and the stress tensor (bij). We shall also introduce a
special symbol for the contracted third moment qi(r) := cijj(r), which represents the
flow of kinetic energy. As in section 1.1, we assume that all higher-order tensors are zero.
Under such assumption, the bracket below can be regarded as being (approximatively) a
Poisson bracket.

As mentioned above, the Poisson bracket of the theory is chosen to be the Boltzmann
Poisson bracket, except that now we only assume functionals dependent on the fields
(26). Hence, substituting the expansion Af = Aρ

δρ
δf

+ Aui
δui
δf

+ Abij
δbij
δf

+ Acijk
δcijk
δf

into
(10), we obtain

{A,B} =

∫
dr{ρ (∂i(Aρ)Bui − ∂i(Bρ)Aui) + uj

(
∂i(Aρ)Bbij − ∂i(Bρ)Abij

)
+ ui

(
∂j(Aρ)Bbij − ∂j(Bρ)Abij

)
+ bij

(
∂k(Aρ)Bcijk − ∂k(Bρ)Acijk

)
+ bjk

(
∂i(Aρ)Bcijk − ∂i(Bρ)Acijk

)
+ bik

(
∂j(Aρ)Bcijk − ∂j(Bρ)Acijk

)
+ ui

(
∂j(Aui)Buj − ∂j(Bui)Auj

)
+ bij

(
∂k(Aui)Bbjk − ∂k(Bui)Abjk

)
+ bik

(
∂j(Aui)Bbjk − ∂j(Bui)Abjk

)
+ cijk

(
∂l(Aui)Bcjkl − ∂l(Bui)Acjkl

)
+ cilk

(
∂j(Aui)Bcjkl − ∂j(Bui)Acjkl

)
+ cilj

(
∂k(Aui)Bcjkl − ∂k(Bui)Acjkl

)
+ bij

(
∂k(Abij)Buk − ∂k(Bbij)Auk

)
+ cijk

(
∂l(Abij)Bbkl − ∂l(Bbij)Abkl

)
+ cijl

(
∂k(Abij)Bbkl − ∂k(Bbij)Abkl

)
+ cijk

(
∂l(Acijk)Bul − ∂l(Bcijk)Aul

)
}.

(27)

The Hamilton’s equations for the state variables (26) resulting from this Poisson
bracket thus take on the form

∂ρ

∂t
= −∂i

(
ρΦui + 2ujΦbij + 3bjkΦcijk

)
∂ui
∂t

= −∂j
(
uiΦuj + 2bikΦbjk + 3ciklΦcjkl

)
− ρ∂i(Φρ)− uj∂i(Φuj)− bjk∂i(Φbjk)− cjkl∂i(Φcjkl)

∂bij
∂t

= −∂k (bijΦuk)− 2∂l (cijkΦblk)

− uj∂i(Φρ)− ui∂j(Φρ)− bik∂j(Φuk)− bjk∂i(Φuk)− cikl∂j(Φbkl)− cjkl∂i(Φbkl)

∂cijk
∂t

= −∂l(cijkΦul)

− bjk∂i(Φρ)− bik∂j(Φρ)− bij∂k(Φρ)− cikl∂j(Φul)− cijl∂k(Φul)− cjkl∂i(Φul).

(28)

Specifying energy and entropy (and thus the thermodynamic potential Φ) in terms
of the state variables (26) would again transform the system (28) into an autonomous
mesoscopic theory. All the research possibilities mentioned at the end of the previous
section, e.g. comparing the implications of (28) to other Grad-like approaches to phase
transitions, such as [5], are at hand. Note, however, an important feature of (28). Unlike
classical hydrodynamics as well as the theory presented in section 1.1, our current theory
uses neither the field of energy density nor that of entropy density as a state variable.
This fact has two important consequences.
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The first is that the hydrodynamics presented here preserves the structure of the
corresponding kinetic theory and can be seen as its reduced version. This is true both
for the hydrodynamic equations (28) and (22). Indeed, the state variables are moments
of the state variable (the one-particle distribution function) of the kinetic theory. Their
kinematics is directly related to the kinematics of the one particle distribution function[10]
and both the energy and the entropy in this hydrodynamic theory are of the same form
as their counterparts in the kinetic theory but expressed in terms of the moments (26).

The second consequence is that the van der Waals hydrodynamics presented here is
completely free from the local equilibrium assumption. Indeed, the classical hydrody-
namics requires that the energy field be in a one-to-one relationship with the entropy
field. In other words, the derivative of one of this two fields with respect to the other
that is chosen to play the role of one of the state variables is required to be either posi-
tive or negative. From the physical point of view, the derivative of the energy field with
respect to the entropy field is required to have the physical meaning of the local absolute
temperature. The local equilibrium assumption requires that the local entropy depend on
the local energy and the local mass in the same way as in the complete thermodynamic
equilibrium. The requirement that the derivative of the local entropy with respect to
the local energy be the local absolute temperature is thus a weak version of the local
equilibrium assumption. Here, we refrain from deploying this assumption in either form.

We are hopeful that further analysis will prove this to be a considerable advantage
compared to other hydrodynamic theories, whether aiming at a description of fluids in the
hard-sphere approximation or those attempting to describe fluids with a more complex
inner structure.

Conclusion

This manuscript aspires to provide a first step on the way towards a microscopic, ther-
modynamically consistent dynamical theory of the van der Waals fluid based on the mass
action law and suitable for the description of phase transitions. Two distinct kinetic
equations for the vdW gas are proposed and their respective pros and cons are discussed.
Subsequently, the hydrodynamic theories corresponding to each of the equations are de-
rived. These mesoscopic equations are suitable for comparing the predictions of each
of the theories with other theoretical, experimental and numerical treatments of phase
transitions. Based on the presented arguments, we are hopeful to demonstrate in our
future analysis these models as useful dynamical theories of the vdW gas and viable de-
scriptions of phase transition phenomena. Our preliminary theoretical analysis indicates
that this is not unlikely, particularly with regard to the approach presented in section
1.2, which leads to a theory free of the local equilibrium assumption. Asymptotic anal-
ysis is expected to play a major role in verifying the consistence of the proposed models
with the equilibrium theory. Additional theoretical and possibly numerical treatment
will facilitate the process of establishing the potential and the limitations of the proposed
theories.
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Abstract. Many models have been developed to model the behavior of metallic materials under
cyclic plastic loading. However, all of them have to be calibrated using measured data, which
typically leads to a non-convex optimization problem with many local minima. In this paper
we propose a neural network with a novel loss function that combines estimated parameters
and stress responses. Our method outperforms tensor train optimization on synthetic data, but
shows similar results on real data.

Keywords: deep learning, neural networks, parameter estimation

Abstrakt. Za účelem modelování chování kovových materiálů při cyklickém plastickém zatí-
žení bylo vyvinuto mnoho modelů, všechny však musí být kalibrovány podle naměřených dat,
což obvykle vede k nekonvexnímu optimalizačnímu problému s mnoha lokálními minimy. V této
práci představujeme neuronovou síť s novou ztrátovou funkcí, která kombinuje odhadované pa-
rametry spolu se stresovými odezvami. Naše metoda překonává optimalizaci tenzorovými vláčky
na syntetických datech, na reálných datech však vykazuje podobné výsledky.

Klíčová slova: hluboké učení, neuronové sítě, odhad parametrů

1 Introduction

There has always been a need to model the behavior of solid materials under load. A well-
performing model would speed up the design process of individual machine components.
Throughout history, there have been many ways to study material behavior, such as
static or impact loading tests. However, numerous bridge and railroad failures increased
the need to study material behavior under repeated loading. To this end, cyclic plastic
loading became one of the top priorities in materials research.

The behavior of materials under cyclic loading is a complex problem that has chal-
lenged researchers for decades. One phenomenon observed during cyclic loading is the
Bauschinger effect. When a metallic specimen is stretched beyond its elastic range, the
stress begins to cause permanent microscopic changes. The material begins to adapt to
the new stress state while reducing its ability to withstand compressive stress.

∗This work was supported by MEYS CR under grant No. LTA USA 18199 and by the Czech Science
Foundation through the project No. 22-11101S.
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Each material model must first be calibrated using data from a real cyclic loading
experiment. Each experiment is controlled by the total deformation ε(t), which is a
function of time. The measurable output is the stress S(ε) measured in MPa, which is a
function of the history of the total deformation and is considered independent of the speed
of the experiment. The total deformation is a sum of the elastic and plastic deformation
εe(t) and εp(t) respectively. Since the elastic deformation can be easily subtracted, it is
more convenient for the next purposes to work with only the plastic deformation εp(t).
For this reason, we will consider the stress as a function of only the plastic deformation
history, S(εp). The elastic properties of the material, defined by the Young’s modulus E,
are determined analytically.

Many hardening models have been developed to address various identified phenomena,
such as the Bauschinger effect. A prominent single yield surface model with nonlinear
hardening is the Armstrong-Frederick model (1966) [1]. Building upon similar princi-
ples, the MAFTr model introduced by Dafalias and Feigenbaum in 2011 [3] adds linear
hardening to one of the backstress components and further refines the behavior under
multi-axial loading.

In this paper, the analytical solution of the uni-axial MAFTr model presented by
Marek et al. (2022) [6] is used. However, the linear hardening has been removed for
simplicity. This analytical model Mθ represents a way to predict the stress response of
a metallic specimen given the plastic deformation history εp(t) and its material vector
parameter θ ∈ RN

+ . The composition of θ is shown in Table 1. The vectors c and a
have the same arbitrary dimension. With a higher dimension, the model may be more
accurate, but at the cost of increased complexity. In this paper we only use a dimension
of 4, which gives θ ∈ R11

+ .

Parameter Unit Description
k0 MPa Initial yield strength
κ1 MPa Adjustment of the rate of isotropic hardening
κ2 MPa−1 Inverted asymptotic limit of isotropic hardening
ci - Adjustment of the evolution rates of the backstress components
ai MPa Asymptotic limits of the backstress components

Table 1: Parameters of analytical model developed by Marek et al. and their descriptions.

The analytical model can never predict the material behavior exactly. The task is
therefore to find an optimal θ∗ that describes it as accurately as possible, i.e. to find

θ∗ := argmin
θ∈R11

+

L2

(∣∣Sm −Mθ(εp)
∣∣) (1)

for a known εp corresponding to the measured experimental setup, where Sm refers to the
measured stress response. Estimating θ∗ is a non-trivial problem since L2(|Sm−Mθ(εp)|)
is not a convex function. Current approaches often use a random search to determine
the initial point for the Nelder–Mead method [7] (hereafter referred to as "simplex").
This method is a non-gradient optimization technique that iteratively refines potential
solutions until an optimal result is achieved. However, this approach is time-consuming
and usually finds a suboptimal solution that is far from the global minimum.
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In this paper we develop several types of neural network estimators θ̂NN. A sufficiently
close estimate can then be used as an initial point for another optimization method, such
as simplex, which would find a θ close to a local minimum. This would significantly reduce
the time complexity compared to a random search that yields similar stress estimates.

The best performing neural networks are then compared to the recently published
tensor train optimization method, TTOpt, introduced by Sozykin et al.[8], which is a
general non-gradient method for approximating multivariable functions.

2 Data Preparation
In the real experiment, the stress response was recorded at a sampling rate of 10Hz
for 4 hours. Since the stress does not depend on the speed of the experiment, it may
be beneficial to first downsample this data to reduce computational complexity without
significantly reducing the information contained. This process mimics increasing the
speed of the experiment, however, it needs to preserve points of reversals as they in
fact define the experiment. To make each segment equally informative, in this paper we
downsample each segment of plastic loading differently, so that each segment consists of
exactly N = 14 increments resulting in 15 samples including the edge points.

Let ε0 = 0 stand for the plastic deformation in the beginning of the experiment and let
ε
(r)
1 , . . . , ε

(r)
K represent the plastic deformation in the end of each segment, where K = 43 is

the number of all segments. Then the i-th segment is interpolated in plastic deformations
ε
(1)
i , . . . , ε

(N−1)
i , where N = 14 represents the total number of increments in each segment.

Most of the useful information is expected to be at the beginning of each load segment,
where the stress level changes more rapidly. Therefore, these points are defined as

ε
(j)
i := ε

(r)
i−1 +

j∑
k=1

δk, ∀i ∈ {1, . . . , K}, ∀j ∈ {1, . . . , N − 1}, (2)

using geometrical sequence of increments δ1, . . . , δN generated so that

ε
(r)
i = ε

(r)
i−1 +

N∑
i=1

δi and δk+1 =
N−1
√
Rδk, ∀k ∈ {1, . . . , N − 1} (3)

for a chosen parameter R = 20. This setup is designed to make the ratio between the
first and the last increment in each cycle equal to R, thus δN

δ1
= R. Figure 1 shows the

resulting deformations from the measured experiment ε(exp)p , defined as

ε(exp)p :=
(
0, ε

(1)
1 , . . . , ε

(N−1)
1 , ε

(r)
1 , ε

(1)
2 , . . . , ε

(N−1)
2 , ε

(r)
2 , . . . , ε

(r)
K

)
. (4)

After preparing the sequence of plastic deformations and their associated stress re-
sponses, it is possible to estimate the parameter θ. For both neural networks and TTOpt,
it is necessary to first select an a priori distribution for θ. In the case of neural networks,
this allows the creation of a training set of stress responses and corresponding parame-
ters (see Section 3). TTOpt, on the other hand, needs a region defined by the Cartesian
product of intervals [θi,min, θi,max] for each parameter θi in which the optimal θ is to be
found, together with a properly chosen sampling for each of these intervals.
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Figure 1: Top: Example of the first 200 interpolated points of deformation taken to
cover each load segment by 15 points using a geometric sequence of increments defined
in Equation 3. Bottom: Interpolated stress from the measured data corresponding to the
interpolated points of deformation.

To cover the entire handpicked interval, a uniform distribution is chosen for each
parameter θi separately, see Table 2. All these ranges have been chosen to cover the
most commonly used materials and can be easily adjusted if needed. There are 2 addi-
tional conditions. The parameters ai are generated so that their sum would be in range
of [150, 350]. Second, since the pairs (ci, ai), i ∈ {1, . . . , 4} are commutative, they are
generated with the condition c1 ≥ c2 ≥ c3 ≥ c4 to make the training objective unique.
Unsorted parameters would make it harder for neural networks to predict correct val-
ues because their order would be inconsistent. For example, an optimal solution with
permuted (ci, ai) pairs could be considered incorrect.

k0 κ1 κ−12 log(c1) log(c2,3,4) a1,2,3,4
min 15 100 30 log(1000) log(50) 0
max 250 10000 150 log(10000) log(2000) 350

Table 2: Range of the a priori uniform distribution for each (transformed) parameter,
given the conditions

∑
ai ∈ [150, 350] and c1 ≥ c2 ≥ c3 ≥ c4. The symbol log stands for

the natural logarithm.

In practice, the first condition is realized by first generating ã ∼ U [150, 350] and
a′1, . . . , a

′
4 ∼ U [0, 1]. Then the desired parameters a1, . . . , a4 are calculated as

ai :=
a′i∑4
j=1 a

′
j

ã, ∀i ∈ {1, . . . , 4}. (5)

This way mimics generating ai ∼ U [0, 350] while satisfying the condition
∑
ai ∈ [150, 350].

The second condition is solved by simply sorting the ci parameters.
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3 Dataset
Training neural networks requires large amounts of data. Running real experiments on
such a scale is not feasible. The analytical model Mθ provides a fast way how to obtain
approximate stress responses in a cyclic plastic loading experiment given the parameters
θ and plastic deformation εP . For this reason, the dataset is created by generating θ from
a designed random distribution and then obtaining stress responses using the analytical
model Mθ.

In this paper 2 datasets are created. The first dataset is created to train neural
networks specifically for the plastic deformation measured in the real experiment ε(exp)p .
The second dataset is then generalized so that the neural networks would be able to
perform parameter estimation for any real experiment, i.e., an experiment with any plastic
deformation setup.

Let P11 represent the a priori distribution for θ described in Section 2. The first
dataset D1 consists of pairs (Si,θi) and is created as

D1 :=
{(

Mθi

(
ε(exp)p

)
, θi

)
, i ∈ {1, . . . , L}

}
, θ1, . . . ,θL

iid∼ P11, (6)

where L = 106 is the chosen length of the dataset. The plastic deformation does not
need to be a part of the dataset, as it remains constant across all generated data. In
neural networks, this is not an issue because their biases can effectively deal with such
constants.

The second dataset is generated to develop models capable of parameter estimation
independent of the experimental deformation setting. In this case the newly generated
dataset D2 must also include the plastic deformation, since it is different in all the gener-
ated data. These deformations need to be generated to mimic real experiments. Since the
stress depends only on the deformation and the speed of the experiment is arbitrary, it
is sufficient to first generate the plastic deformation only in the end of each load segment
ε
(r)
1 , . . . , ε

(r)
K , where K = 43 stands for the number of segments. The odd (elongating) de-

formations are generated using a handpicked a priori uniform distribution U [0.003, 0.005],
while the even (compressing) deformations are taken from U [−0.005,−0.003]. The data
points within each segment are then generated using Equation 2. An example of a ran-
domly generated set of data points is shown in Figure 1.

Let Uε represent the combined distribution of all data samples generated using the
procedure described above, i.e.

εp :=
(
0, ε

(1)
1 , . . . , ε

(N−2)
1 , ε

(r)
1 , ε

(1)
2 , . . . , ε

(N−2)
2 , ε

(r)
2 , . . . , ε

(r)
K

)
, ∀εp ∼ Uε, (7)

where N = 15 is the number of deformations in each segment and K = 43 stands for the
number of segments. Then the second dataset D2 consists of triplets (Si, εP,i,θi) and is
created as

D2 :=
{(

Mθi

(
εP,i
)
, εP,i, θi

)
, i ∈ {1, . . . , L}

}
, θ1, . . . ,θL

iid∼ P11, εP,1, . . . , εP,L
iid∼ Uε,

(8)
where L = 106 is the chosen length of the dataset.

Similar to the training datasets D1 and D2, corresponding validation datasets DV
1 ,

DV
2 composed of 20000 pairs and test datasets DT

1 , DT
2 with 1024 pairs are created for

evaluation purposes.
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4 Neural Network Architectures
In recent years, neural networks have started to dominate over previous methods due to
their ability to learn non-trivial features from the training dataset using a gradient-based
self-propagation method. However, there are still challenges in proposing an appropriate
architecture and finding optimal hyperparameters. This often involves training multi-
ple architectures on the training dataset and selecting the best performing one on the
validation dataset.

Each architecture takes as an input a matrix of shape 1× 603 for the data set D1 and
2×603 for D2 because the second data set also contains plastic deformation. To bring the
variance closer to 1, the first layer of each architecture is the batch normalization, which
converts the input data separately for each channel (stress and plastic deformation).

Each parameter θi has a different order of magnitude. For this reason, it would be
difficult to train neural networks to predict them directly, since the L2 loss function used
would generally favor some parameters over others. To avoid this potential problem,
each θ is then normalized element-wise based on means and variances determined by
the distribution P11. In practice, these means and variances are estimated based on 106

realizations of P11.
Let θ(N ) represent the parameter θ normalized element-wise using the mean and

variance estimates. The output of each model is a vector of length 11 representing
the parameter θ(N ). After scaling, there is no easy way to prevent the networks from
predicting negative values for individual parameters. For this reason, post-processing
must include replacing any negative estimated parameter with a small number η = 10−9

chosen for numerical stability.
The performance of the developed architectures is measured by 2 metrics. The first

one is the Lθ, defined as

Lθ :=
1

11

11∑
i=1

(
θ
(N )
i − θ̂(N )

i

)2
. (9)

The normalized parameter θ(N ) is used to deal with different scales between individual
parameters. The second and more important metric is the LS, which measures the average
difference between the reference stress S and the predicted stress, i.e.

LS :=
1

603

603∑
i=1

(
Si − Ŝi

)2
, Ŝ :=Mθ̂(εp). (10)

This metric indicates how far the predicted stress is from the reference stress, taking into
account the existence of many local minima in L2(|Sm −Mθ(εp)|).

In the following experiments, the shape (number of layers, number of neurons in
each layer, etc.) is first found using a manually directed random search. At this stage,
all networks are trained using the AdamW optimizer created by Loshchilov and Hutter
(2017) [5], with a learning rate of 10−3 and a weight decay of 10−2. The batch size is set
to 64. Each network is then evaluated on a validation dataset consisting of 20000 data
generated similarly to D1 and D2. Based on this evaluation, one network is selected for
the second phase. Here, different optimizer settings and batch sizes are tried to further
improve the performance of the selected network.



Parameter Estimation in Cyclic Plastic Loading 77

4.1 Feed-Forward Networks (FFN)

One of the simplest architectures is a neural network based solely on feed-forward layers.
Each hidden layer is followed by a ReLU activation function. Since θ(N ) can be negative,
no activation function is used after the last layer. ReLU is used because it is the simplest
nonlinear activation function commonly used for neural networks.

The set of hyperparameters consists of the number of layers and the number of neurons
in each layer. First, the layer structure is found by random search using a set of 25, . . . , 210
with decreasing number of neurons in each successive layer. The performance of 3 selected
networks is shown in Table 3. Numerical experiments indicate that having less than 3
layers leads to underperforming networks. Meanwhile, adding more layers does not seem
to significantly improve performance. For this reason, network number 2 is chosen for
the following experiments.

id fully-connected layers Lθ LS

1 [512, 256, 128, 64] 0.321 61.100
2 [512, 256, 128] 0.318 63.092
3 [256, 128] 0.321 112.010

Table 3: Metrics of 3 chosen feed-forward networks on validation dataset DV
1 .

The next step is to find a good optimizer setting. Experiments show that using
AdamW instead of Adam optimizer produces better performing networks. The best
found setting was using a batch size of 128 and beta parameters (0.9, 0.99), even though
the value of LS is similar to that in Table 3. This may indicate that the initial optimizer
setting was already strong.

4.2 Recurrent Neural Networks (RNN)

Recurrent neural networks are widely used for time series analysis. The nature of the
datasets D1 and D2 suggests that RNNs might have a better performance than CNNs.
Since the simple recurrent unit tends to perform worse for longer inputs, in this paper we
instead use both Gated Recurrent Unit (GRU) [2] and Long Short-Term Memory (LSTM)
[4] units. These commonly used architectures are designed to overcome the problem of
processing long sequences and could therefore potentially perform better on cyclic plastic
loading data.

LSTM and GRU both have as hyperparameters number of layers and hidden size,
which indicates the dimensionality of the hidden state and directly affects the capacity
and complexity of the model. As shown in Table 4, both architectures appear to have a
similar performance.

Similar to FFN, random search does not significantly improve network performance
for different optimizer setups. The only improvement comes from increasing the batch
size to 128 instead of 64. Both GRU and LSTM winning networks outperform the FFN
baseline. However, since GRU performs better than LSTM while being significantly faster
and simpler, only GRU is considered in the following experiments.
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id unit type GRU/LSTM layers hidden size Lθ LS

1 GRU 6 128 0.169 31.261
2 GRU 8 128 0.167 32.217
3 LSTM 6 64 0.189 33.977
5 GRU 4 128 0.173 37.762
7 LSTM 4 128 0.195 41.569
8 LSTM 6 128 0.185 43.329

Table 4: Metrics of 3 chosen LSTM and GRU networks on validation dataset DV
1 .

4.3 Dataset D2

The second data set consists of both stress response and plastic deformation, as it is
designed to train networks capable of estimating parameters for various deformation
setups. This makes the second data set more challenging. By analogy to a random
search performed on the D1 dataset, similar architectures also perform well on the more
complex D2 dataset. Table 5 shows that GRU outperforms the baseline and gives better
results in terms of Lθ and LS. The winning GRU network has 8 GRU layers, while the
best one for dataset D1 had 6 layers.

id architecture GRU layers hidden size fully-connected layers Lθ LS

1 GRU 8 128 - 0.144 29.224
2 GRU 6 128 - 0.164 29.344
3 FFN - - (256, 256, 128) 0.324 66.388
4 FFN - - (512, 256, 128, 64, 32) 0.321 70.487

Table 5: Metrics of 2 chosen GRU and FFN networks on validation dataset DV
2 .

4.4 Enhancement of Loss Function

Using only the L2 loss function between the predicted θ̂N and the reference θN proved
to be sufficient to make relatively close estimates. However, since the final objective is to
minimize the distance between the reference stress S and the predicted stress Ŝ :=Mθ̂(εp),
the training can be further improved by using a linear combination between the parameter
loss and the stress loss, i.e.

L(θ̂N ,θN , Ŝ,S) := kL2

(
θ̂N ,θN

)
+ α(1− k)L2

(
Ŝ,S

)
, k ∈ [0, 1], α ∈ R+. (11)

Experiments show that training the networks using this loss improves the performance
of the models as they are now trained to make closer stress estimates while also trying
to predict similar θ, see Figure 2. The parameter α = 30 is chosen to minimize the
difference between L2

(
θ̂N ,θN

)
and L2

(
Ŝ,S

)
at the beginning of training.

This approach requires being able to compute backpropagation over the analytic
modelMθ, which significantly increases computational complexity for calculating L2

(
Ŝ,S

)
.

The optimal k seems to be k = 3 for FFN and k = 6 for GRU to balance Lθ and LS, see
Figure 2.
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Figure 2: Comparison of Lθ and LS metrics for FFN and GRU trained with
L(θ̂N ,θN , Ŝ,S) for different k values.

4.5 Comparison to TTOpt

After the final GRU architectures are selected using the validation datasets DV
1 and DV

2 ,
they are then evaluated on the test datasets DT

1 and DT
2 . Since these networks are only

meant to provide a starting point for other optimization methods, the final Table 6 also
contains metrics of the predictions optimized by simplex. Simplex optimization is only
used for stress prediction, since the optimal θ∗ for the measured experiment would not
be known in advance.

architecture dataset Lθ LS Lθ - after simplex LS - after simplex
GRU DT

1 0.204 3.423 0.242 0.004
FFN DT

1 0.331 7.211 0.408 0.024
TTOpt DT

1 4.942 241.781 4.370 4.593
GRU DT

2 0.186 3.479 0.216 0.004
FFN DT

2 0.373 7.248 0.437 0.037
TTOpt DT

2 4.758 266.940 4.077 3.806

Table 6: Metrics of selected GRU and FFN networks compared to TTOpt on test datasets
DT

1 and DT
2 .
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Figure 3: Comparison between the real experiment stress and stress calculated using the
estimated parameters θ.

Compared to TTOpt, GRU seems to give a better prediction on synthetic data. How-
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ever, as shown in Figure 3, these two approaches give very similar estimates on real
experiment. This may indicate that having only synthetic data without additional aug-
mentation may not be sufficient to train neural networks capable of optimal estimation
on real data. Future research would be needed to determine what kind of augmentation
could possibly help to make better estimates.

5 Conclusion
Parameter estimation for a cyclic plastic loading model is challenging because it leads
to the minimization of a non-convex function with many local minima. An effective
strategy to solve this problem is the deployment of neural networks, specifically trained
on a synthetic dataset of stress-parameter pairs. Among these networks, the recurrent
architectures, in particular GRU and LSTM, have shown great promise.

Neural network training can be further improved by using a loss function based on
combining a loss of both the parameter estimation and the subsequent stress response
prediction. GRU trained in this way showed a high performance on the synthetic dataset
compared to the tensor train optimization method TTOpt. However, on real data, the
performance of GRU and TTOpt seems to be similar.
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Abstract. A mathematical model of myocardial perfusion based on the lattice Boltzmann
method (LBM) is proposed and its applicability is investigated in both healthy and diseased
cases. The myocardium is conceptualized as a porous material in which the transport and mass
transfer of a contrast agent in blood flow is studied. The results of myocardial perfusion obtained
using LBM in 1D and 2D are confronted with previously reported results in the literature and
the results obtained using the mixed-hybrid finite element method. Since LBM is not suitable
for simulating flow in heterogeneous porous media, a simplified and computationally efficient
1D-analog approach to 2D diseased case is proposed and its applicability discussed.

A biophysical model of myocardial perfusion coupled with a model of the transport of CA
in the vessels and myocardial tissue, see e.g. book chapter [26] and references therein, com-
bined with the data acquired during perfusion magnetic resonance imaging (MRI) represents
a great potential in providing more information about the proportion of microvascular disease
vs. pathology in large coronaries. Simulating the tissue perfusion is a computationally intensive
task [28]. The main goal of the present work is to advance the biophysical myocardial perfusion
modeling toward the applicability in the real clinical setup. Specifically, the paper proposes a
computationally efficient approach that would possibly allow to connect the model with data
directly during the perfusion MRI exam. Two types of acceleration are investigated: a) applica-
bility of the lattice Boltzmann method (LBM) for solving the mathematical model of myocardial
perfusion in a 2D homogeneous porous medium, and b) spatial reduction of the LBM model to
1D and its suitability to simulate the perfusion both in a homogeneous and heterogeneous (by
coupling two LBM-based 1D problems — “1D-analog”) porous media. The former aims to rep-
resent the healthy heart or the myocardium with a homogeneously decreased perfusion (such as,
e.g., in microvascular disease affecting the whole heart), the latter simulates a perfusion defect
(such as in epicardial coronary artery disease).

The results obtained by the proposed LBM model for the healthy cases in 1D and 2D are
compared to those reported by Cookson et al. [9]. Secondly, the proposed LBM-based 1D-analog
to the 2D problem, simulating the perfusion in a heterogeneous porous medium, is assessed. The
resulting simulated temporal profiles of CA concentrations in the healthy tissue and perfusion
defect are then compared to the results of the 2D perfusion problem obtained by the mixed-
hybrid finite element method (MHFEM) [18] which serves as the reference numerical method in
this study.
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Abstrakt. V rámci tohoto článku je navržen matematický model perfuze myokardu založený
na mřížkové Boltzmannově metodě (LBM) a je zkoumána jeho použitelnost u zdravých i nemoc-
ných pacientů. Myokard je koncipován jako porézní prostředí, ve kterém je studován transport
kontrastní látky v krevním proudění, včetně přestupu hmoty přes cévní stěnu. Výsledky perfuze
myokardu získané pomocí LBM v 1D a 2D jsou konfrontovány s dříve uvedenými výsledky v
literatuře a s výsledky získanými pomocí smíšené hybridní metody konečných prvků. Protože
LBM není vhodná metoda pro simulaci proudění v heterogenních porézních prostředích, je navr-
žen zjednodušený a výpočetně efektivní 1D model k 2D modelu nemocných a diskutována jeho
použitelnost.

Biofyzikální model perfuze myokardu spojený s modelem transportu CA v cévách a tkáni
myokardu, viz např. kapitola [26] a odkazy v ní, v kombinaci s daty získanými během perfuz-
ního MRI představuje velký potenciál pro získání více informací o poměru mikrovaskulárního
onemocnění a patologie ve velkých koronárních cévách. Simulace perfuze tkání je výpočetně ná-
ročná úloha [28]. Hlavním cílem této práce je posunout biofyzikální modelování perfuze myokardu
směrem k použitelnosti v reálném klinickém prostředí. Konkrétně je v práci navržen výpočetně
efektivní přístup, který by případně umožnil propojit model s daty přímo během perfuzního
MRI vyšetření. Zkoumají se dva typy zrychlení: a) použitelnost mřížkové Boltzmannovy me-
tody (LBM). pro řešení matematického modelu perfuze myokardu ve 2D homogenním porézním
prostředí a b) prostorová redukce modelu LBM na 1D a jeho vhodnost pro simulaci perfuze v
homogenním i heterogenním (spojením dvou 1D úloh založených na LBM — „1D analog”) po-
rézním prostředí. První z nich má za cíl reprezentovat zdravé srdce nebo myokard s homogenně
sníženou perfuzí (jako např. u mikrovaskulárního onemocnění postihujícího celé srdce), druhá
simuluje perfuzní defekt (jako např. u epikardiální ischemické choroby srdeční).

Výsledky získané pomocí navrženého modelu LBM pro případy zdravé tkáně v 1D a 2D jsou
porovnány s výsledky, které uvádí Cookson et al. [9]. Dále je navrhovaný 1D analog srovnán s
výsledky 2D úlohy simulující perfuzi v heterogenním porézním prostředí. Výsledné simulované
časové profily koncentrací kontrastní látky ve zdravé tkáni a v defektu perfuze jsou pak porovnány
s výsledky 2D úlohy perfuze získanými smíšenou hybridní metodou konečných prvků [18], která
v této studii slouží jako referenční numerická metoda.

Klíčová slova: mřížková Boltzmannova metoda, smíšená hybridní metoda konečných prvků, per-
fuze myokardu, vyšetření magnetickou rezonancí, advekčně-difuzní úloha, transport kontrastní
látky

Full paper: R. Fučík, J. Kovář, K. Škardová, O. Polívka, R. Chabiniok: A Lattice
Boltzmann Approach to Mathematical Modeling of Myocardial Perfusion. Under review
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Abstract. We study quadratic integrability of systems with velocity dependent potentials in
three-dimensional Euclidean space. Unlike in the case with only scalar potential, quadratic
integrability with velocity dependent potentials does not imply separability in the configuration
space [1, 2]. The leading order terms in the pairs of commuting integrals can either generalize
the forms leading to separation in the absence of a vector potential by adding some terms, or
have no relation at all [7] (first noted in [6]). We call such pairs of integrals generalized.

In this workshop contribution we summarize the state of the art concerning these system,
with focus on new results [4]. The classes to be considered were classified in [7] and an integrable
example in a class not extending any orthogonal coordinate system was presented, later extended
in [3]. The article [5] analysed generalized spherical and cylindrical cases. The former did not
lead to anything new, the latter includes 3 generalized integrable systems. One of them restricts
to the superintegrable helical undulator in infinite solenoid, the only such known system, which
has a generalized first order integral.

The new paper [4] focuses on three cases with generalized non-subgroup type integrals,
namely elliptic cylindrical, prolate / oblate spheroidal and circular parabolic integrals, together
with one case not related to any orthogonal coordinate system. We find two new integrable
systems, non-separable in the configuration space, both with generalized elliptic cylindrical in-
tegrals. In the other cases, all systems found were already known and possess standard pairs of
integrals.

Keywords: integrability, velocity dependent potentials, generalized integrals, non-subgroup in-
tegrals, classical mechanics

Abstrakt. Uvažujme kvadratickou integrabilitu na Euklidovském 3D prostoru s potenciálem
závislým na rychosti. Na rozdíl od skalárního případu již kvadratická integrabilita neimplikuje
separaci v konfiguračním prostru [1, 2]. Členy nejvyššího řádu dvou komutujících kvadratických
integrálů mohou tvar odpovídající separaci proměnných v případě bez vectorového potenciálu
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rozšiřovat o několik členů nebo k němu nemusí mít žádný vztah [7], (poprvé pozorováno v [6]).
Takovéto integrály nazýváme zobecněné.

V tomto příspěvku shrnujeme současný stavv poznání o těchto systémech se zaměžením na
nové výsledky z [4]. Třídy systémů, které je třeba zkoumat, byly klasifikovány v [7], kde byl
také představen systém bez souvislosti se separací proměnných, který byl následně rozšířen v
[3]. V článku [5] byly analyzovány případy nazvané zobecněný sférický a cylindrický. První z
nich nevedl k ničemu novému, v druhém byly nalezeny tři zobeceněné integrabilní systémy. Po
jisté restrikci parametrů se jeden z nich stává superintegrabilní a modeluje šroubovicový undu-
látor v nekonečném solenoidu. Jedná se o jediný známý superintegrabilní systém se zobecněným
integrálem, v tomto případě prvního řádu.

Nový článek [4] se zaměřuje na tři případy zobecňující integrály nepodgrupového typu, kon-
krétně elipticko cylindrické, protáhlé / zploštělé sferoidální a rotačně parabolické, a navíc jeden
případ bez souvislosti s ortogonálními souřadnicemi. Nacházíme dva nové integrabiliní systémy
neseparující na konfiguračním prostoru, oba s integrsály zobecněného elipticko-cylindrického
typu. V ostatních případech jsou nalezeny pouze již známé nezobecněné systémy.

Klíčová slova: integrabilita, potenciály závislé na rychlosti, zobecněné integrály, integrály nepod-
grupového typu, klasická mechanika

Full paper: Hoque, M.F., Kubů, O., Marchesiello, A. et al. New classes of quadratically
integrable systems with velocity dependent potentials: non-subgroup type cases. Eur. Phys.
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Abstract. This paper presents an introduction to the ”no hair” theorems in the form of a
review. It first gives a brief overview of the basic ideas and development of theorems (and
their possible avoidance) within (electro)vacuum general relativity and different kinds of its
generalisations. It then discusses the situation with the scalar field, which under usual conditions
does not allow for the appearance of ”hair”. Finally, it looks in some detail at the results and
possible future directions of research in gravity conformally coupled to the scalar field. This
theory is interesting both in context of no hair conjecture (remarkable hairy counterexamples
have been found) and physical description (e.g. the combination of gravity and other forces).

Keywords: black hole uniqueness, ”hairy” black holes, conformally coupled scalar field

Abstrakt. Př́ıspěvek představuje úvod do ”no hair”teorémů v podobě review. Nejprve podává
krátký přehled základńıch myšlenek a vývoje teorémů (a jejich možných porušeńı) v rámci
(elektro)vakua v obecné relativitě a r̊uzných druh̊u jeho zobecněńı. Následně se věnuje situaci se
skalárńım polem, které za běžných podmı́nek výskyt ”vlas̊u”neumožňuje. Konečně se detailněji
zaměřuje na výsledky a možné daľśı směry výzkumu v gravitaci konformně spjaté se skalárńım
polem. Tato teorie je zaj́ımavá jak z hlediska ”no hair”doměnky (byly nalezeny pozoruhodné
”vlasaté”protipř́ıklady), tak z hlediska fyzikálńıho popisu (např. kombinace gravitace a ostatńıch
sil).

Kĺıčová slova: unikátnost černých děr, ”vlasaté” černé d́ıry, konformně spjaté skalárńı pole

1 Introduction

The black hole (BH) uniqueness/no hair theorems (or the overall no hair conjecture ex-
pressing the general idea) basically say that black holes in equilibrium can, despite the
possibility of their formation in a very complicated process (gravitational collapse) be
described by only a few parameters. In the framework of general relativity, these pa-
rameters are mass m, angular momentum a and electric (and magnetic, if we allow for
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the existence of monopoles) charge q and p. Two BHs matching in these parameters are
therefore completely identical, unlike other astronomical objects which can be radically
different despite agreeing on these values. A nice historically stratified overview is pro-
vided by [20]. A detailed description of the basic theorems, proofs and methods can be
found in [13].

The first of such theorems was formulated by Israel [14] in 1967, who investigated
asymptotically flat vacuum solutions of Einstein’s field equations (EFE) with a regular
horizon and with conditions to be satisfied by static BHs. The result was that the only
possible such spacetime is the Schwarzschild one. He then generalized the theorem to the
electrovacuum [15] and revealed the Reissner-Nordström class of spacetimes as the only
possibility. Due to the growing body of knowledge about BHs (causal structure, horizon
topology...) and new methods (σ models, harmonic mapping...), the assumptions of the
theorem and its proofs were subsequently varied many times.

Although the question of the uniqueness of Kerr’s BH among stationary spacetimes
was already raised in [14], it waited for confirmation until 1975, when Robinson proved
it [21]. Thus, the overall result in GR is that the most general electrovacuum BH in
an asymptotically flat spacetime with a regular horizon is Kerr-Newman. Further in-
vestigations and generalizations involved more BHs, other dimensions, and of course the
addition of different matter fields or cosmological constant [13].

The aforementioned generalizations have made the subject considerably more com-
plicated. It turned out that many of the assumptions and methods valid in GR cease to
work with some fields (and/or cosmological constants) and the way of study must there-
fore be very different. A number of peculiar ”hairy” black holes have been found (e.g.
in Einstein-Yang-Mills theories [22]), but often problematic due to various divergences or
instability of solutions.

Current research includes proofs of no hair theorems, search for counterexamples
(analytical and numerical), their physical analysis (e.g. thermodynamics) or numerical
stability tests (e.g. [9]). In this paper we give an example of GR theorems and their
background, followed by a generalization to scalar fields. Finally, we will focus on one
particular interesting theory - gravity conformally coupled to the scalar field. In it, we
will look at the solutions and theorems found and discuss possibilities for further research.

2 Black hole uniqueness in GR

Before we get to the particular theorems, let us outline the framework in which we will
work [20]. First, what is a BH spacetime - it is a spacetime having an event horizon
H. This consists of the future event horizon H+(i.e. boundary of the set of events
in the causal past of future null infinity) and possibly the past event horizon H− (if
time orientation changed). The region hidden below the horizon is referred to as the
BH itself. No hair theorems always concern the horizon and its exterior, the so-called
domain of outer communication << M >> (i.e. set of events from which there exist
both future and past directed curves extending to arbitrary large asymptotic distances),
not the interior.

We also emphasize that the theorems only concern BH, not naked singularities. The
parameters used to describe them here are easily defined by the ADM formalism due to
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the high symmetries and asymptotic flatness. In order to make the solutions physical,
some version of the energy condition is usually assumed [11], e.g. a dominant energy
condition (T abWaWb ≥ 0; T abWa non-space-like for every time-like W a). We now start
with Israel’s theorem in a modern Robinson’s version and directly discuss its assumptions
folowing [20].

Theorem: The most general static, asymptotically flat single BH solution of
EFE with regular horizon is Schwarzschild solution.

Static: ∃ time-like hypersurface orthogonal Killing vector field (KVF), i.e. kαkα < 0;
k[αOβkγ] = 0 and adapted coordinate system (t,x) in which kα = (1,0) and ds2 =
−v2dt2 + gabdx

adxb (where v and gab are independent on t).

Asymptotically flat: gab = (1 + 2mr−1)δab + hab; ; v = 1 − mr−1 + µ; m = const,
where xa are asymptotically Euclidian coordinates and hab, µ are all O(r−2) and O(r−3)
in 1st derivatives as r = (δabx

axb)→∞.

Single regular horizon: B := H+ ∩ H− is regular compact, connected boundary to Σ
as v → 0, where Σ are regular hypersurfaces t = const, 0 < v < 1.

EFE: in the adapted coordinates given above, they read Rtt ≡ vDaDav = 0, Rta ≡ 0,
Rab ≡ Rab − v−1DaDbv = 0.

We do not have space to prove the theorem (although it is not very long [20]) here, but
we will try to outline its basic ideas. It uses the function w := −1

2
5[αkβ]5αkβ = gabv,av,b

(which, among other things, can be shown to be constant on B and equal to the square
of surface gravity) and the EFE expressed in terms of w and v. By integrating over Σ,
using boundary conditions, the Gauss-Bonnet theorem and assumptions, we obtain a set
of observations, identities and inequalities that give us information about the spacetime.
These are so restrictive that with them we can show that the so-called Cotton tensor Rabc

is zero (and hence gab is conformally flat) and determine the particular shape of w. This
is already enough to reveal the Schwarzschild in the assumed metric.

Concepts from assumptions can be defined in multiple equivalent ways. Israel’s orig-
inal [14] assumptions looked very different and were debated. Today we know they were
stronger than necessary. In addition to staticity, there were three conditions expressed
by Σ guaranteeing asymptotic flatness and geometric regularity. Furthermore, there was
an assumption/condition key in the proof that basically enforced the spherical topology
of equipotential surfaces v = const in Σ and also the possibility of covering Σ with one
coordinate system (with v as one of the coordinates). Using this system, it was then
possible to construct a number of identities that already restricted possible solutions to
Schwarzschild.

In the extension to electrovacuum we add an electromagnetic field to << M >>,
i.e. Einstein-Hamilton action will be S = 1

4π

∫
d4
√
−g
(
R
4
− 1

4
FµνF

µν
)

(using units G =
c = 4πε0 = 1). The modification of the proof of [15] here was essentially to show that
the equipotential surfaces of this field coincide with the (surface) gravitational ones and,
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finally, that they are necessarily spherical.
A generalization to stationary spacetimes (time-like KVF kα need not be hypersurface

orthogonal), i.e. a proof of the uniqueness of the Kerr (and with the addition of charge
later Kerr-Newman) solution, appeared in 1975 [21]. It exploited the new insights of
Hawking and Ellis [11] that << M >> of a stationary BH must be axisymmetric and
its topology is S2 ⊗ R. The proof used Carter’s [8] method of converting the EFE to
a boundary value problem of a system of elliptic partial differential equations on a two-
dimensional manifold.

3 Scalar field

The scalar field has a specific position in physics. It is, from a certain point of view, the
simplest ”matter” that can be added to the theory we want to investigate. It is both a
toy model but also a (potentially) real thing (Higgs field, physics behind the standard
model, models of dark matter/energy...)

It is also special in terms of no hair theorems. Naturally, scalar fields were among the
first generalizations of the theorems to be tested. While hairy black holes were found for
many ther kinds of fields [22] already in the 1980s, the no hair conjecture still seemed to
hold for scalar fields. A number of no hair theorems (e.g. [2, 4]) have been proved which
rule out scalar hair. In this section we look at look at an example of these theorems
and some issues related to it. We first formulate a generalization of Bekenstein’s no hair
theorem, restated by [12], and explane its assumptions.

Theorem: There is no regular rotating, stationary, asymptotically flat BH
spacetime with scalar hair for which: scalar field Φ is minimally coupled, in-
herits the spacetime symmetries and its potential V obeys ΦV ′ ≥ 0 everywhere
with ΦV ′ = 0 for (at most) some dicrete values Φi.

Canonical minimal coupling: means basically no mixed terms containing R and Φ at
the same time. Thus, the action is of the form S = 1

4π

∫
d4x
√
−g
(
R
4
− 1

2
5µ Φ5µ Φ− V (Φ)

)
and scalar field equations (SFE) are 5µ5µ Φ− V ′(Φ) = 0.

Symmetry inheritance: in adapted coordinates (t, r, θ, φ) stationar spacetime has two
KVF ∂t and ∂φ, so ∂tΦ = ∂φΦ = 0.

Potential condition: is in fact energy condition. It restricts the (physical) potentials to
which we can apply the theorem, the version mentioned here being the simplest. To make
the solution physical, we only need to assume a weak energy condition (T abWaWb ≥ 0
for every time-like Wa), the results are the same, the proofs are different.

The proof starts by multiplying SFE by Φ and integrating by parts over the exterior
of BH, i.e.

∫
d4x
√
−g (Φ5µ Φ5µ Φ + ΦV ′) = 0. There are two boundary terms - H and

infinity. The latter vanishes due to asymptotic flatness and the former due to field symme-
tries (H is also a Killing horizon). We therefore get

∫
d4x
√
−g (5µΦ5µ Φ + ΦV ′) = 0.

Now both terms of the integrand are non-negative (the first its orthogonality to both
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KV, the second from the potential condition). Therefore, for equality to hold, it must be
Φ = 0 (if Φ = Φi it is actually a cosmological constant and asymptotic flatness no longer
holds).

A few remarks on the theorem: note that EFEs do not appear anywhere in the proof.
This is quite typical for no hair theorems with added field, they usually work mainly with
field equations and boundary conditions. Next, what does the word regular mean here:
in the context of (potentially) hairy black holes with a field, it means regularity of both
the gravitational and other fields ( meaning T abTab) on and outside the horizon. (We will
return to this in the next section.)

We notice that by violating some of the assumptions ”hairy” BHs can be constructed
[23] (however often unphysical). We will be most interested in the first assumption. This
can of course be violated in various ways (e.g. higher order gravity theories), but in the
context of the next section let us focus on non minimal coupling. That is, adding a mixed
term (gravity and scalar field) to the action, and hence a term with curvature to the SFE.
Thus, the action to be addressed is

S =
1

4π

∫
d4x
√
−g
(
R

4
− 1

2
5µ Φ5µ Φ− V (Φ)− 1

2
ξRΦ2

)
,

where ξ is so called coupling constant. There are no hair theorems about this general
theory as well, e.g. [5], but we will specify them more in the next section.

4 Conformal coupling

In this section we focus on the gravity conformally coupled to the scalar field, i.e. the
choice of coupling constant ξ = 1

6
. In the simplest version (conformal scalar vacuum),

the action we are investigating takes the form

S =
1

4π

∫
d4x
√
−g
(
R

4
− 1

2
5µ Φ5µ Φ− 1

12
RΦ2

)
and SFE read 5µ5µ Φ− ΦR

6
= 0. It is also possible to add Λ or V (Φ) to the action.

One of the reasons why this theory is interesting is that when performing the con-
formal transformation gµν → g̃µν = Ω2gµν and Φ→ Φ̃ = Φ/Ω, the SFEs are invariant.
(EFEs - the same as in GR - are also invariant, but the overall action is not). Confor-
mal transformation is crucial not only in GR (e.g. it is used to investigate the causal
structure of spacetimes or to classify them) but also in the context of efforts to unify the
fundamental forces (conformal invariance is also expected from quantum models).

The first and still discussed solution of the above equations is the so-called BBMB
solution found independently by a group of Russian authors in 1970 [7] and by Bekenstein
in 1973 [2]. In Bekenstein’s case it was also the discovery of a method to generate (under
certain conditions) from a minimally coupled scalar field solution a conformally coupled
one. It is of the form

ds2 = −
(

1− M

r

)2

dt2 +

(
1− M

r

)−2

dr2 + r2(dθ2 + sin2 θdφ2), Φ =

√
3M

r −M
.
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This solution is essentially hairy BH but there are a few issues to adress. The field
is clearly diverging on the horizon r = M . This initially seemed to be a reason not
to accept it as ”physically allowed”. However, since this divergence does not translate
into a metric and a test scalar particle passing through the horizon should not experience
anything special [3], this does not seem to be such a problem. The BBMB solution is one-
parametric, geometrically identical to the extreme Reissner-Nordström for | QE |= M ,
so we have no new parameter/scalar charge. Such a case is called secondary hair (the
case where a new parameter would appear is primary hair). The solution is unstable,
so there is after all a kind of physical problem. A very important fact is that the solution
is unique. In 1991 it was proved [24] to be the only non-trivial static asymptotically flat
solution in gravity conformally coupled to a scalar field.

At this point, we make a generalization concerning Λ i.e. the geometry is no longer
asymptotically flat, but asymptotically (anti-)de Sitter. The cosmological constant is
both a natural generalization and a possible step towards a realistic model of our universe.
When added to pure GR, (albeit with more complicated proofs) the no hair theorem can
be extended to this case [10]. In the case of a scalar field, however, the situation changes
considerably. For positive Λ the no hair theorems can be extended, but for negative
ones it can be shown that solutions exist. (This applies to both minimal and conformal
coupling) [23]. It is also worth mentioning a number of interesting results concerning Λ
in 3D (e.g. [25]).

The reason of this ”theorem transfer” is the relation of minimal and conformal cou-
pling via conformal transformation. When we apply it to a conformally coupled scalar
field, we get an action in which quantities from the transformed metric and a new, min-
imally coupled field stand out, namely ϕ =

√
6 tanh−1 Φ√

6
(a similar transformation can

be done for a general coupling constant, but not with a general manageable integral).
The transformed potential may be unphysical, even if the original V (Φ) is not, which is
however not a problem. For Λ 6= 0, the potential also arises for V (Φ) = 0, specifically

U(ϕ) = ΛΦ2(12−Φ2)
(6−Φ2)2

.

The advantage of this method is that the obtained minimally coupled systems are gen-
erally easier treatable (both numerically and analytically) and generally better studied.
The disadvantage, on the other hand, is that the conformal transformation is not always
applicable (if Ω = 1− Φ

6
= 0 is on the horizon or outside, the transformation is invalid).

This method can also be used to establish no hair theorems by using their analogues for
minimal coupling [23]. For example, it can be seen that for a potential-free (i.e., massless)

field or a mass field of type V (Φ) = µ2

2
Φ2 and Λ > 0, the transformed potential is con-

vex and thus satisfies one of the Bekenstein variations of the energy/potential condition
[12]. From this we know that there are no regular solutions (so the most general one
is Schwarzschild-de-Sitter BH). On the contrary, for Λ < 0 well behaved solutions are
automatically offered as long as the field mass is not too large [23].

As for the solutions that have been found within Λ < 0 this has often been done by
numerical methods and the results cannot always be expressed explicitly. Nevertheless,
solutions have been successfully analyzed, for example [23], which are even stable against
perturbations.

For Λ > 0 there is a so-called MTZ solution from 2003, [17], which is essentially
a generalization of the BBMB solution with quartic potential (i.e. the above mentioned
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theorem does not apply to it). Its form is

ds2 = −

[
−Λ

3
r2 +

(
1− GM

r

)2
]
dt2 +

[
−Λ

3
r2 +

(
1− GM

r

)2
]−1

dr2 + r2dΩ2,

Φ(r) =

√
3

4π

√
GM

r −GM
.

As can be seen, this field does not diverge at the event horizon (which is no longer
extreme). The geometry is identical to Reissner-Nordstrom-de Sitter BH with | QE |=
M , so there are three horizons (inner, event and cosmological). The solution has been
extensively analyzed and discussed. It has been found to be unstable and there even seem
to be no stable solutions for the given conditions [9].

5 Conclusion and possible extensions

After a brief historical summary and outline of the no hair theorems in the first section,
we introduced (in the second section) the Israel theorem (restated by Robinson), outlined
its proofs and discussed its assumptions. We continued with information on its direct
generalization to electrovacuum and stationary spacetimes and mentioned other exten-
sions and generalizations in the problem (Λ, fields, other theories and dimensions...). In
the third section we focused specifically on scalar fields. Again, we gave an example of
the no hair theorem and the idea of its proof. We discussed the special features of the
scalar field and the importance of coupling. In the forth section we focused exclusively
on the conformally coupled scalar field, because of its specificity both in terms of physics
and solvability. Here we discussed the conformal transformation (its meaning and appli-
cations) and presented some solutions - BH with scalar hair, e.g. BBMB and MTZ and
discussed their properties. We also returned in detail to the generalization containing Λ
and its relevance in terms of no hair theorems in (not only) conformal coupling.

As far as other research directions are concerned, the possibilities of extending the no
hair theorems from GR are abundant. However, if we focus only on gravity conformally
coupled to scalar fields, there are many possibilities here as well. Traditionally, these are
variations of the assumptions, methods and proofs in no hair theorems and the search
for new ones. Then, of course, there is the search for new solutions of hairy black holes
and the analysis of these solutions in terms of both their physicality (stability, possible
divergences) and physical properties (e.g. thermodynamic, the appearance of so-called
spontaneous dressing up [18]).

Finally, it is also possible to take gravity conformally coupled to scalar field simply
as a new theory and treat it like GR, i.e. to make some classification of spacetimes, BH
spacetimes and their typical/possible properties. Another, somewhat broader possibility
is to add to this theory other fields sharing conformal invariance and study no hair
theorems and hairy BHs in them. The next step could then be to modify the gravity part
of the theory itself and study how things change in e.g. higher order gravity theories.

Although many hairy BHs are known today, it is still true that BHs are generally
described by a very small number of parameters. Putting this in a broader context, BH
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uniqueness is related to the information paradox (as e.g. a collapsing star loses its hair and
where/if the information is then stored somewhere), thermodynamic analysis (stability
and behaviour towards disturbances of equilibrium, new thermodynamic properties of
hairy BHs), or the cosmic censorship hypothesis (originally the no hair theorems were
considered purely in the context of gravitational collapse results, although this is no
longer the case, many of them seem to support the hypothesis).
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Abstract. Numeration systems for representing nonnegative integers were proposed in [1].
They are based on right-infinite fixed points of substitutions and we refer to them as to the
Dumont–Thomas numeration systems. We extend the Dumont–Thomas numeration systems
to Z by considering two-sided periodic points of substitutions. This allows us to represent any
integer in Z by a finite word (starting with 0 when nonnegative and with 1 when negative).
We show that a certain automaton naturally associated with a given substitution returns the
letter at position n ∈ Z of the corresponding periodic point when fed with the representation
of n. The Dumont–Thomas numeration systems can be naturally extended to Zd, for every
d ≥ 2. We give an equivalent characterization of the numeration systems in terms of a total
order on a regular language. Lastly, using particular periodic points of substitutions, we recover
the well-known two’s complement numeration system [2, §4.1] and the Fibonacci analogue of
the two’s complement numeration system [3], which can be used to describe a particular Wang
tiling [4].

Keywords: substitution, numeration system, automaton, two’s complement

Abstrakt. Numerační systémy pro reprezentaci nezáporných celých čísel byly definovány
v [1]. Jejich definice je založena na pevných bodech substitucí a podle jmen autorů se na-
zývají Dumont–Thomas numerační systémy. V tomto příspěvku rozšiřujeme Dumont–Thomas
numerační systémy na Z pomocí oboustranných periodických bodů substitucí. Díky tomu mů-
žeme reprezentovat jakékoli celé číslo konečným slovem (které začíná symbolem 0, pokud je číslo
nezáporné, a které začíná symbolem 1, pokud je číslo záporné). Dokážeme, že určitý automat,
který je přirozeně svázán s danou substitucí, vypíše písmeno na pozici n ∈ Z daného periodického
bodu, pokud na vstupu zadáme reprezentaci n. Dumont–Thomas numerační systémy mohou být
rozšířeny na Zd, pro každé d ≥ 2. Dále tyto numerační systémy charakterizujeme pomocí urči-
tého úplného uspořádání regulárního jazyka. Nakonec ukážeme, že příkladem Dumont–Thomas
numeračních systémů pro Z je známý dvojkový doplněk [2, §4.1] a také Fibonacciho obdoba
dvojkového doplňku [3], kterou lze použít k popisu určitého Wangova dláždění [4].
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Abstract. Courant algebroids are vector bundles with a certain additional structure. This
structure allows to introduce a so-called generalized Riemannian geometry of Courant algebroids.
In particular, there are generalizations of the notions of metric, connection, torsion, Levi-Civita
connection, and curvature. In paper [1], it was shown that the type IIB supergravity equations
can be very elegantly formulated in terms of generalized Riemannian geometry. In the follow up
paper [2] the result was further extended for heterotic supergravity.

In our paper, we develop the Palatini formalism within the framework of generalized Rie-
mannian geometry of Courant algebroids. In this context, the Palatini variation of a generalized
Einstein–Hilbert–Palatini action - formed using a generalized metric, a Courant algebroid con-
nection (in contrary to the ordinary case, not necessarily a torsionless one) and a volume form
- leads naturally to a proper notion of a generalized Levi-Civita connection and low-energy
effective actions of string theory.

Keywords: Generalized geometry, Courant algebroid connection, generalized torsion and curva-
ture, Einstein-Hilbert action, Palatini formalism, supergravity

Abstrakt. Courantovy algebroidy jsou vektorové bandly s jistou dodatečnou strukturou. Tato
struktura umožňuje na Courantových algebroidech vybudovat takzvanou zobecněnou Rieman-
novu geometrii. Konkrétně lze zavést zobecnění pojmů metrika, konexe, torze, Levi-Civitova
konexe a křivost. V článku [1] autoři ukázali, že rovnice supergravitace typu IIB lze velmi ele-
gantně formulovat v řeči zobecněné Riemannovy geometrie. V navazujícím článku [2] byl tento
výsledek rozšířen pro heterotickou supergravitaci.

V našem článku jsme vytvořili Palatiniho formalismus požívajíce jazyk zobecněné Rieman-
novy geometrie na Courantových algebroidech. V tomto případě Palatiniho variace zobecněné
Einstein-Hilbert-Palatiniho akce, jejímiž dynamickými proměnnými jsou zobecněná metrika, ko-
nexe na Courantově algebroidu (na rozdíl od klasického případu ne nutně bez torzní) a forma
objemu, vede přirozeně k vlastními pojmu zobecněné Levi-Civitovy konexe a nízko energetickým
efektivním akcím strunové teorie.

∗This work has been supported by the Grant Agency of the Czech Technical University in Prague,
grant No. SGS22/178/OHK4/3T/14.
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Abstract. Dirac operator on star-shaped graphs is introduced. All self-adjoint realisations
are given by transmission condition at the vertex in formalism of boundary triples. From the
boundary triple Krein’s resolvent formula can be quickly deduced. Finally, the correspondence
with relativistic point interaction in one dimension is demonstrated.
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Abstrakt. Nejprve zavedeme Diracův operátor na hvězdicovitém grafu. Všechny jeho samo-
sdružené realizace jsou popsány přechodovými podmínkami v jeho vrcholu. K popisu těchto
podmínek použijeme formalismus tzv. boundary triples. Díky tomuto formalismu můžeme rychle
napsat též Kreinovu formuli. Na závěr je demonstrováno, jak jeden jednoduchý graf přesně
odpovídá zavedení relativistické bodové interakce na reálné přímce.

Klíčová slova: Diracův operátor, relativistické kvantové grafy

1 Introduction

The aim of this brief paper is to introduce a star-shaped graph as a configuration space for
relativistic quantum mechanics of massless half-integer spin particles. These are subject
to Dirac equation, hence the Dirac operators will be studied on this graph. The required
definitions and notation is introduced in section 2.

The behaviour is assumed to be free on the edges with some interactions at the
vertices. The nature of interactions is closely related to transmission conditions at the
vertices. The theory of boundary triples (see [1]) will be used to efficiently describe
suitable transmission conditions resulting in self-adjoint operators in section 3.

Next, the section 4 provides the Krein resolvent formula. The most important result
which relates the spectrum and resolvents between two self-adjoint Dirac operators.

Finally, the section 5 discusses the special case of the graph with two edges. This case
can be directly related to the relativistic point interaction in one dimension studied in
[3].

2 Maximal Dirac operator on star-shaped graph

Firstly, let us familiarise ourselves with the configuration space.
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A star-shaped graph is a graph Γ with a single vertex V = {v} and arbitrary finite
number of external edges E = {ei|i ∈ {1, . . . , n}} (no internal edges I = ∅). The
boundary map ∂ assigns the single vertex to every external edge ∀i ∈ {1, . . . , n} : ∂(ei) =
v.

On the star-shaped graph the following Hilbert space can be introduced

H =
n⊕
i=1

L2(R+;C2) (1)

which is a direct sum of n copies of the Hilbert space of C2-valued square-integrable
functions on half-line, each copy associated with one external edge. Elements Ψ of the
H can be described by 2n-tuple of L2(R+;C) functions

Ψ =
(
ψ1

1 ψ1
2 · · · ψ1

n ψ2
1 · · · ψ2

n

)T (2)

where for each i the pair
(
ψ1
i ψ2

i

)T , frequently abbreviated as ψi, represent function
from L2(R+;C2) associated with the edge ei. In other words, in ψji the index i is the edge
index and the index j is the spinor index while in Ψ the first spinor components of all
edges are written first followed by all the second spinor components. To form a Hilbert
space, the direct sum (1) is endowed with a scalar product linear in the second argument.

〈Ψ|Φ〉H =
n∑
i=1

∫
R+

(
ψ1
i (xi)ϕ

1
i (xi) + ψ2

i (xi)ϕ
2
i (xi)

)
dxi

After the configuration space (the graph) and the quantum state space (the Hilbert
space), relativistic quantum mechanics for massless half-integer spin particles will be
considered, hence the role of a Hamiltonian will be played by a Dirac operator.

On the space H we define a differential operator

Dmax =
n⊕
i=1

−idxi ⊗ σ1 (3)

acting on the direct sum of Sobolev spaces DomDmax =
⊕n

i=1H
1(R+;C2). This is the

maximal domain where the differential expression makes sense. The operator Dmax is
called the maximal Dirac operator.

With the same expression as in (3) we define another Dirac operator D0 on the domain⊕n
i=1H

1
0 (R+;C2) where H1

0 stands for the Sobolev space with zero-trace functions. D0 is
a densely defined closed symmetric operator and its adjoint is D∗0 = Dmax and thus Dmax

is closed as well.

3 Boundary triple for Dmax

The Dirac operators D0 and Dmax, defined in section 2, are not self-adjoint and therefore
they are not proper quantum observables. We intend to study self-adjoint restrictions
of Dmax, which are at the same time self-adjoint extensions of D0, and thus enabling
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the quantum interpretation as Hamiltonian. To describe all self-adjoint extensions, the
theory of boundary triples will be used with [1] as a main reference.

Define G = Cn as an auxiliary Hilbert space with the standard scalar product 〈·|·〉G
and define a rectangular matrix Ga,b ∈ Cn,2n with parameters a, b ∈ C as a block matrix

Ga,b =
(
aIn bIn

)
(4)

where In is the identity matrix in Cn,n.
Recall that for every ψ ∈ H1(R+,C2) the boundary value ψ(0) is well defined in the

sense of the trace operator. By Ψ(0) for Ψ ∈ DomDmax is meant(
ψ1

1(0) ψ1
2(0) · · · ψ1

n(0) ψ2
1(0) · · · ψ2

n(0)
)T ∈ C2n.

Define two linear maps Γ1,Γ2 : DomDmax → G as

∀Ψ ∈ DomDmax : Γ1Ψ = G1,0Ψ(0),

Γ2Ψ = G0,iΨ(0).

On the right-hand side there is a matrix multiplication of n by 2n matrix with 2n column
vector, hence the result is indeed in G = Cn. Essentially, Γ1 picks out the traces of the
first spinor components on all edges and Γ2 picks out the traces of the second spinor
components on all edges multiplied by i.

Proposition 1. The triple (G ,Γ1,Γ2) defined above is a boundary triple for Dmax as
introduced in [1, Definition 1.7].

Proof. The first condition to verify is that

〈Ψ|DmaxΦ〉H − 〈DmaxΨ|Φ〉H = 〈Γ1Ψ|Γ2Φ〉G − 〈Γ2Ψ|Γ1Φ〉G
for every Ψ,Φ ∈ DomDmax. Note that on the left-hand side is the scalar product on
H and on the right-hand side is the scalar product on G . From now on, we will not
differentiate the products with index because it should be evident which one is intended.
The equality can be seen by a direct computation.

〈DmaxΨ|Φ〉 =
n∑
i=1

〈(−idxi ⊗ σ1)ψi|ϕi〉 =
n∑
i=1

2∑
j=1

∫ +∞

0

−idxi (σ1ψi)
jϕji

In the middle step the scalar product is meant on L2(R+;C2). At this point we use the
fact that integration per partes can be used on Sobolev spaces H1. We obtain

n∑
i=1

(
〈ψi|(−idxi ⊗ σ1)ϕi〉 − i

(
ψ2
i (0)ϕ1

i (0) + ψ1
i (0)ϕ2

i (0)
))

.

If we sum each term over i separately, we get the desired result.
n∑
i=1

〈ψi|(−idxi ⊗ σ1)ϕi〉 = 〈Ψ|DmaxΦ〉

n∑
i=1

−iψ2
i (0)ϕ1

i (0) = 〈Γ2Ψ|Γ1Φ〉

n∑
i=1

−iψ1
i (0)ϕ2

i (0) = −〈Γ1Ψ|Γ2Φ〉
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The second condition to verify is that the map (Γ1,Γ2) : DomDmax → G ⊕ G is
surjective. From

(Γ1,Γ2)Ψ =
((
ψ1

1(0) · · · ψ1
n(0)

)T
,
(
iψ2

1(0) · · · iψ2
n(0)

)T)
we see that if we take any function from H1(R+;C) with non-zero trace, e.g. take ψ̃(x) =
e−x, and define Ψi

j ∈ DomDmax with all entries zero except on the edge ei the j-th spinor
component equal to ψ̃, then images (Γ1,Γ2)Ψi

j form a basis in G ⊕ G , hence the map
(Γ1,Γ2) is surjective.

Last condition to check is a density of Ker (Γ1,Γ2) in H . This follows immediately
from the observation that the test functions (smooth compactly supported) are dense in
L2 space and

n⊕
i=1

D(R+;C2) ⊂
n⊕
i=1

H1
0 (R+;C2) = Ker (Γ1,Γ2) ⊂

n⊕
i=1

L2(R+;C2) = H .

This concludes the proof that (G ,Γ1,Γ2) is a boundary triple for Dmax.

The problem of self-adjoint extensions is now fully addressed by [1, Theorem 1.12], in
our case namely by the following corollary.

Corollary 2. There is a one-to-one correspondence between all self-adjoint relations Λ
in G = Cn and all self-adjoint extensions of D0 given by Λ ↔ DΛ, where DΛ is the
restriction of Dmax to the subset

DomDΛ = {Ψ ∈ DomDmax|(Γ1Ψ,Γ2Ψ) ∈ Λ} .

Remark 3. In the following section, one significant self-adjoint extension will become
helpful. Namely, a one defined as the restriction of Dmax to Ker Γ1, or equivalently DΛ

where Λ = 0⊕ G . To simplify the notation, we continue to write D0,G for D0⊕G .

4 Krein’s resolvent formula
The Krein resolvent formula relates a spectrum and a resolvent of any self-adjoint ex-
tension to the spectrum and the resolvent of one particular extension which is chosen
to be the operator D0,G from the remark 3. Besides the boundary triple, it is needed to
introduce so called Krein Γ-field and Q-function. This will be the content of the following
paragraphs.

Firstly, denote the defect subspaces of D0 as Nz = Ker (Dmax− z). Consequently, the
subspace is the solution of (Dmax − z)Ψ = 0 in the domain of Dmax. Using notation as
in (2) and putting ψi =

(
ψ1
i ψ2

i

)T , the equation can be written as the following.

∀i ∈ {1, . . . , n}
(−idxi ⊗ σ1 − z)ψi = 0 /iσ1·

dxiψi = iσ1zψi
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The solution is

ψi(x) = exp(iσ1zx)

(
ω1
i

ω2
i

)
=

[
eizx1

2
(I + σ1) + e−izx1

2
(I − σ1)

](
ω1
i

ω2
i

)
where ωji are complex integration constants. To be in DomDmax, the solution has to be
square integrable. Therefore, for =z > 0 the term with e−izx has to be missing and hence
∀i : ω1

i = ω2
i , and analogously for =z < 0 the term with eizx has to be missing and hence

∀i : ω1
i = −ω2

i . Finally, for a real z only the zero solution fulfils the requirements. To
summarise, assuming =z 6= 0 the defect subspace Nz is the following set (involving the
G matrix defined in (4)).

Nz = {ei sgn(=z)zxGT
1,sgn(=z)α | α ∈ Cn} (5)

Notice now, how Γ1 maps elements from Nz to Cn. The restriction is injective, there-
fore the inverse map can be denoted by γ(z) = (Γ1|Nz)

−1 : G → Nz and acting as

∀z ∈ C \ R,∀α ∈ G = Cn : γ(z)α = x 7→ ei sgn(=z)zxGT
1,sgn(=z)α. (6)

The map γ is called the Krein Γ-field.
Finally, define the Q-function as a composition of γ and Γ2

∀z ∈ C \ R : Q(z) = Γ2|Nz ◦ γ(z) : G → G .

Specifically
∀z ∈ C \ R,∀α ∈ G = Cn : Q(z)α = i sgn(=z)α.

The Krein resolvent formula, which was the main objective of this paper, is in our
case according to [1, Theorem 1.29] the following corollary.

Corollary 4 (Krein resolvent formula). For any self-adjoint linear relation Λ in G , it
holds

1. ∀z ∈ ρ(D0,G ) : Ker (DΛ − z) = γ(z)Ker (Q(z)− Λ),

2. ∀z ∈ ρ(D0,G ) ∩ ρ(DΛ) : 0 ∈ ρ(Q(z)− Λ) and

(D0,G − z)−1 − (DΛ − z)−1 = γ(z) (Q(z)− Λ)−1 γ∗(z),

3. σ(DΛ) \ σ(D0,G ) = {z ∈ ρ(D0,G ) | 0 ∈ σ (Q(z)− Λ)}.

5 Isomorphism to operator acting on real line
The interest of this section is a special case of star-shaped graph with exactly two edges.
This graph resembles the real line, the first edge associated with negative real numbers
and the second edge associated with positive real numbers. Consequently, the vertex
should be mapped to the zero of the real line. The idea is to compare the results for
star-shaped graph with the point interaction on the real line [3].

From the point of view of metric spaces, it is clear how the isomorphism between the
graph and the line should be defined. However, an isomorphism of Hilbert spaces that
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also respects studied Dirac operator is not as trivial as it could seem. This is also the
difference in comparison to the Schrödinger operator (minus Laplacian) because in that
case the naive isomorphism works.

To state the problem rigorously, put Hgraph = L2(R+;C2)⊕L2(R+;C2) as the special
case of the general Hilbert space (1). Also put Hline = L2(R \ {0};C2) as Hilbert space
on the real line. The exclusion of the zero will become clear as soon as domains of Dirac
operators will be defined.

According to (3), the maximal Dirac operator in the space Hgraph is given by Dgraph =
(−idxL ⊗ σ1)⊕ (−idxR ⊗ σ1) where the first edge is called the left with a variable xL and
the second edge is called the right with a variable xR. The domain of the Dgraph is
DomDgraph = H1(R+;C2)⊕H1(R+;C2).

The maximal Dirac operator on the real line is defined analogously Dline = −idx ⊗
σ1 with the domain DomDline = H1(R \ {0};C2). This is consistent with the point
interaction procedure in [3].

Now, the objective is to find a bijection J : Hgraph → Hline such that the following
diagram commutes in the sense that

∀Ψ ∈ DomDgraph : (Dline ◦ J)(Ψ) = (J ◦Dgraph)(Ψ).

DomDgraph Hgraph

DomDline Hline

Dgraph

J J

Dline

The claim is that a possible J is defined as the following.

∀ψL, ψR ∈ L2(R+;C2), i.e. ψL ⊕ ψR ∈Hgraph

J(ψL ⊕ ψR) = x ∈ R \ {0} 7→

{
ψR(x) for x > 0

ψL(−x) for x < 0

(7)

The important thing to notice is the complex conjugation of ψL. The inverse map is given
by the following.

∀ϕ ∈ L2(R \ {0};C2) J−1ϕ = ϕL ⊕ ϕR
where ∀x ∈ R+ : ϕL(x) = ϕ(−x)

ϕR(x) = ϕ(x)

It remains to compute both ways of composing J and the appropriate Dirac operator.
Let ψL ⊕ ψR be any element from DomDgraph. Then the application of the graph Dirac
operator and subsequently J gives

(J ◦Dgraph)(ψL ⊕ ψR) = J(−iσ1ψ
′
L ⊕−iσ1ψ

′
R) = x 7→

{
−iσ1ψ

′
R(x) for x > 0

+iσ1ψ′L(−x) for x < 0
.

The other way with the line Dirac operator yields

(Dline◦J)(ψL⊕ψR) = Dline

(
x 7→

{
ψR(x) for x > 0

ψL(−x) for x < 0

)
= x 7→

{
−iσ1ψ

′
R(x) for x > 0

+iσ1ψ′L(−x) for x < 0
.
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Hence
J ◦Dgraph = Dline ◦ J on DomDgraph.

It could be said that the map J preserves the Dirac operator while the configuration
space is described differently. However, the map does not preserve the structure of vector
space as it is not linear nor anti-linear. The same map also preserves the Schrödinger
operator (minus Laplacian).

However, the operators Dgraph and Dline are not self-adjoint. The self-adjoint realisa-
tions are their restrictions described by certain boundary conditions. The operator Dgraph

has the boundary condition from the corollary 2. According to [1, Theorem 1.2] every
self-adjoint relation Λ is uniquely parametrised by an unitary operator U on G = C2 such
that

Λ = {(w1, w2) ∈ C2 ⊕ C2|i(I2 + U)w1 = (I2 − U)w2}. (8)

On the other hand, one type of delta interaction is in [3, Equation 1.15] described by the
equations for one-sided limits at the zero.

χ ∈ H1(R \ {0};C2) θ1, θ2 ∈ [0, 2π)

χ1(0+)(1− eiθ1) = χ2(0+)(1 + eiθ1)

χ1(0−)(1 + eiθ2) = χ2(0−)(−1 + eiθ2).

(9)

The rest of the section demonstrates how every point interaction of the form of (9) is
described by self-adjoint restriction of Dgraph on (8) at the vertex. The claim is that the
right parametrization of Λ in (8) is

U =

(
eiθ2 0
0 −eiθ1

)
. (10)

Plugging U into (8) with w1 = Γ1Ψ, w2 = Γ2Ψ with Ψ ∈ DomDgraph yields(
1 + eiθ2 0

0 1− eiθ1

)(
ψ1
L(0)

ψ1
R(0)

)
=

(
1− eiθ2 0

0 1 + eiθ1

)(
ψ2
L(0)

ψ2
R(0)

)
. (11)

Using the bijection J (7)

∀j ∈ {1, 2} : ψjL(0) = ψj(0−) and ψjR(0) = ψj(0+)

the second row of (11) becomes exactly the first condition (9). The first row is

(1 + eiθ2)ψ1(0−) = (1− eiθ2)ψ2(0−).

To get the form of (9) complex conjugation of the equation needs to be multiplied by
(1 + eiθ2)/(1 + e−iθ2). If the numerator or denominator was zero then it is not necessary
(or even possible) because one of the sides was already zero and in the correct form. This
correspondence concludes the section.
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6 Conclusion
After introducing the star-shaped graph and assigning to it the Hilbert space H of
L2 functions, it was proceeded by studying the Dirac operators. To find all self-adjoint
realisations, the theory of boundary triples was used. It turned out that every self-adjoint
Dirac operator corresponds to a self-adjoint linear relation in the auxiliary Hilbert space
G = Cn. In the next section, the Krein resolvent formula was stated for the studied
problem.

Finally, the bijection was provided between star-shaped relativistic quantum graph
with exactly two edges and relativistic point interaction in one dimension.

The aim of the next research should be generalizing the results for more general
underlying graphs. The other suggestion is to release the condition of self-adjointness
and study operators which adjoint is only similar to them – quasi-self-adjointness. The
motivation is to obtain analogue results as for the Laplace operator in [2].
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Abstract. This contribution addresses the challenging task of specifying user preferences in
decision-making problems [2]. The average user is not educated in decision-making processes,
which can lead to an incomplete expression of their preferences or unrealistic and contradictory
preferences. This study uses a fully probabilistic design [3] (FPD) framework, which effectively
models the closed-loop between the user and a system in decision-making processes. Within
the FPD framework, an ideal probability density is introduced, assigning high probabilities
to preferred behaviors and low probabilities to undesirable ones. The optimal decision policy
is then determined by minimizing the Kullback-Leibler divergence between the real and ideal
probability densities.

As previously mentioned, preferences can become particularly complex, especially when users
have preferences for both states and actions. There is a parameter of weight that has to be
estimated to balance these two preferences. Estimating this parameter is a very challenging task
because users may not be able to express how much they prefer one option over another, and
predicting the weight without knowledge of the system is difficult. This challenge is resolved by
adding another (meta) closed-loop. The user observes sequences of states and actions and then
rates how much they like them using a grading system similar to that used in schools. In doing
so, the user can remotely adjust the parameter values. Based on this feedback, the parameters
of the main closed-loop are fine-tuned.

To validate the effectiveness of the meta closed-loop theory, we have developed a Python-
based web application. This application empowers users to actively influence the results of the
closed-loop and experiment with the theory, allowing us to further test and refine our approach.
http://nebula.utia.cas.cz/

Keywords: Adaptive, agent, Bayes’ rule, Decision making, Preference elicitation,

Abstrakt. Tento příspěvek se zabývá náročným úkolem specifikovat uživatelovy preference v
rozhodovacích problémech [2]. Běžný uživatel není v matematice rozhodovacích procesů vzdělaný
a to může to vést k neúplnému vyjádření preferencí nebo nereálným a protichůdným preferencím.
Nástroj použitý v tomto příspěvku se nazývá plně pravděpodobnostního návrh [3] (PPN), který
efektivně modeluje uzavřenou smyčku mezi uživatelem a systémem v rozhodovacích procesech.
V rámci PPN je zavedena ideální hustota pravděpodobnosti, která přiřazuje vysoké pravděpo-
dobnosti preferovanému chování a nízké pravděpodobnosti nežádoucímu. Optimální rozhodovací
politika je pak určena minimalizací Kullback-Leiblerovy divergence mezi skutečnou a ideální
hustotou pravděpodobnosti.

Jak bylo uvedeno výše, preference mohou být protichůdné, zejména pokud uživatel může
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preferovat jak stavy tak i akce. Existuje parametr váhy, který vyvažuje tyto dvě preference a je
třeba ho odhadnout. Odhadnout tento parametr je ale velmi obtížné, jelikož uživatel nedokáže
vyjádřit, jak moc preferuje jedno před druhým. Také je obtížné předpovědět váhu bez znalosti
systému. Tento příspěvek vyřešil tento problém přidáním další uzavřené smyčky. Uživatel sle-
duje posloupnosti stavů a akcí a následně hodnotí, jak se mu líbí, pomocí školních známek.
Tím uživatel vlastně nepřímo mění hodnoty parametrů, jelikož na základě zpětné vazby se ladí
parametry hlavní uzavřené smyčky.

Pro testování teorie meta uzavřené smyčky byla vyvinuta webová aplikace naprogramovaná
v Pythonu, která uživatelům nabízí možnost aktivně ovlivnit výsledky uzavřené smyčky a tuto
teorii tak vyzkoušet. http://nebula.utia.cas.cz/

Klíčová slova: Adaptivní, agent, Bayesovské pravidlo, rozhodování, preference

Full paper: M. Kárný and T. Siváková, Model-Based Preference Quantification, Auto-
matica vol.156, 111185, 2023. DOI: 10.1016/j.automatica.2023.111185.
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Abstract. We investigate state transfer on a hypercube by means of a discrete-time quantum
walk where the sender and the receiver vertices are marked by a loops with optimally chosen
weight. First, we analyze search for a single marked vertex, which can be used for state transfer
between arbitrary vertices by switching the weighted loop from the sender to the receiver after
one run-time. Next, state transfer between antipodal vertices is considered. We show that one
can tune the weight of the loop to achieve state transfer with high fidelity in shorter run-time
in comparison to the state transfer with a switch. Finally, we investigate state transfer between
vertices of arbitrary distance. It is shown that when the distance between the sender and the
receiver is at least 2, the results derived for the antipodes are well applicable. If the sender and
the receiver are direct neighbours the evolution follows a slightly different course. Nevertheless,
state transfer with high fidelity is achieved in the same run-time.

Keywords: quantum walk, search algorithm, state transfer algorithm, hypercube

Abstrakt. Zkoumáme přenos stavu na hypekrychly dosaženého pomocí kvantové procházky v
diskrétním čase, kde na vrcholech odesílatele a příjemce je umístěna smyčka s optimálně zvolenou
váhou. Nejprve analyzujeme vyhledávání jednoho označeného vrcholu, které může být použito
pro přenos stavu mezi libovolnými vrcholy, když přepneme váženou smyčku z odesílatele na
příjemce po jednom běhu vyhledávání. Dále uvažujeme přenos stavu mezi protějšími vrcholy.
Ukážeme, že lze zvolit váhu smyčky, tak aby byl dosažen přenos stavu s vysokou pravděpodob-
ností přenosu v kratším čase v porovnání s přenosem stavu s přepnutím. Nakonec zkoumáme
přenos stavu mezi vrcholy libovolné vzdálenosti. Ukážeme, že když vzdálenost mezi odesílatelem
a příjemcem je alespoň 2, můžeme aplikovat výsledky odvozené pro protilehlé vrcholy. Pokud
odesílatel a příjemce jsou sousedé, evoluce probíhá trochu jinak, ale přenos stavu s vysokou
pravděpodobností přenosu je dosažen ve stejném čase.

Klíčová slova: kvantová procházka, vyhledávací algoritmus, algoritmus na přesnos stavu, hyper-
krychle

Plná verze: Quantum walk state transfer on a hypercube, Martin Štefaňák and Stanislav
Skoupý, (2023), Phys. Scr. 98 104003
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Abstract. In the following text we would like to introduce motivation and first results of
investigating new families of orthogonal polynomials which are connected to the solutions of the
Heun equation. We are especially interested in the so-called level N solutions. Devices which
are frequently used in the following text are the Jacobi elliptic functions (sn(z), cn(z),dn(z))
and the four theta functions (H(z), H1(z),Θ(z),Θ1(z)).

Keywords: Heun equation, Jacobi matrix and operator, orthogonal polynomials

Abstrakt. V tomto příspěvku bychom rádi představili motivaci a několik prvních výsledků na-
lézání nových rodin ortogonálních polynomů, které jsou spojeny s řešením Heunovy diferenciální
rovnice. Speciálně nás zajímají tzv. řešení N -té úrovně. Často používaným nástrojem jsou tzv.
Jacobiho eliptické funkce (sn(z), cn(z), dn(z)) a čtyři theta funkce (H(z), H1(z),Θ(z),Θ1(z)).

Klíčová slova: Heunova diferenciální rovnice, Jacobiho matice a operátor, ortogonální polynomy

1 Motivation and preliminaries
In 1960, Leonard Carlitz introduced six new families of orthogonal polynomials in [4].
Let us ilustrate our motivation on the particular example of the family {fn(x)}∞n=0 (we
assume the Carlitz notation). These polynomials are given by the three-terms recurrence

fn+1(x) =
(
x+ (k2 + 1)(2n+ 1)2

)
fn(x)− k2(2n− 1)(2n)2(2n+ 1)fn+1(x),

f0(x) = 1, f1(x) = x+ k2 + 1, (1)

with k ∈ (0, 1). Carlitz has shown that the corresponding measure of orthogonality is

µf =
∞∑
n=1

w(f)
n δ

x
(f)
n
,

with

x(f)
n =

(2n+ 1)2π2

16K2
− 1

4
+

5

4
k2, w(f)

n =
(2n+ 1)π2

kK2

qn+ 1
2

1− q2n+1
. (2)

∗This work has been kindly supported by the GAČR EXPRO grant No. 20-17749X.
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Numbers K and q are commonly used constants in the theory of the Jacobi elliptic
functions, see [7]. L. Carlitz derived the measure thanks to the good knowledge of these
functions. In my doctoral thesis we desire to derive and especially extend results from
[4] in, daresay, more general way.

To introduce the connection between our topic and the family {fn(x)}∞n=0, we need
to summarize some facts about the Heun equation, orthogonal polynomials and the link
between them.

1.1 The Heun equation and the level N solutions

The second order differential equation

F ′′(w) +

(
γ

w
− δ

1− w
− εk2

1− k2w

)
F ′(w) +

s+ αβk2w

w(1− w)(1− k2w)
F (w) = 0, (3)

where k ∈ (0, 1) with additional condition

α + β + 1 = γ + δ + ε. (4)

is called the Heun equation. Solution F in the neighbourhood of 0 with F (0) = 0 and
F ′(0) = 1 exists and is called the Heun function. The Heun function will be denoted by

Hn(k2, s;α, β, γ, δ;w).

Note the useful transformation of equation (3) provided by substitution for w = sn2(z)
and setting v(z) = F (w)

v′′(z) +

(
(2γ − 1)

cn(z)dn(z)

sn(z)
− (2δ − 1)

sn(z)dn(z)

cn(z)
− (2ε− 1)k2 sn(z)cn(z)

dn(z)

)
v′(z) (5)

+4(s+ αβk2sn2(z))v(z) = 0.

Meromorphic solutions of (5) are of interest. Valent states in [10] that the necessary
conditions for meromorphy are

γ =
1

2
−m1, δ =

1

2
−m2, ε =

1

2
−m3, M := m1 +m2 +m3

and

α = −1

2
(m0 +M), β =

1

2
(m0 −M + 1), N := m0 +M

for (m0,m1,m2,m3) ∈ Z4. Valent also refers in [10] that these conditions are sufficient
for the meromorphy as well. Equation (5) then takes the form

v′′(z) + 2

(
−m1

cn(z)dn(z)

sn(z)
+m2

sn(z)dn(z)

cn(z)
+m3k

2 sn(z)cn(z)

dn(z)

)
v′(z) (6)

+(4s+N(N − 2m0 − 1)k2sn2(z))v(z) = 0.

In the case that (m0,m1,m2,m3) ∈ N4
0, we call the respective solutions level N-solutions

of the Heun equation (6).
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1.2 The Jacobi matrix and orthogonal polynomials

The Jacobi matrix is a semi-infinite tridiagonal matrix of the form

J =


β0 α0 0 0 0 . . .
α0 β1 α1 0 0 . . .
0 α1 β2 α2 0 . . .
0 0 α2 β3 α3 . . .
...

...
...

...
... . . .

 . (7)

C∞ denotes a linear space of semi-infinite column vectors with components indexed
by N0 and C∞,∞ denotes the linear space of semi-infinite matrices with entries indexed
by N0. Hilbert space `2 may be seen as the vector subspace of C∞.

Every band matrix (in particular, every tridiagonal matrix) A ∈ C∞,∞ becomes nat-
urally a linear operator on C∞.

Denote P(x) := (1, P1(x), . . . , Pn(x), . . . )T . Then the formal eigenvector equation

JP(x) = xP(x)

defines an orthogonal polynomials sequence (OPS) {Pn(x)}. The above equation can be
rewritten as

P0(x) = 1,

α0P1(x) + (β0 − x)P0(x) = 0, (8)
αnPn+1(x) + (βn − x)Pn(x) + αn−1Pn−1(x) = 0, for n ≥ 1.

Matrix J can be treated as an operator J̇ on `2 defined by

Dom(J̇) = span{en}∞n=0, J̇f = J f, for f ∈ Dom(J̇). (9)

Clearly, operator J̇ is symmetric. Thus it has at least one self-adjoint extension. One of
them can be defined as

Dom(J) =
{
f ∈ `2;J f ∈ `2

}
, Jf = J f, for f ∈ Dom(J). (10)

Operator J is maximal in sense of inclusion of the domain. Moreover

J = J̇∗.

If it happens that the moment problem for polynomials {Pn(x)}∞n=0 is determinate (see
[1]), J is the only self-adjoint extension of J̇ and hence J̇ is essentially self-adjoint.

In the case that αn > 0, we can define polynomials {pn(x)}∞n=0 by

pn(x) =

(
n−1∏
k=0

αk

)
Pn(x). (11)

Polynomials pn(x) are orthogonal, monic and they satisfy the three-terms recurrence

pn+1(x) = (x− βn)pn(x)− α2
n−1pn−1(x). (12)
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1.3 The Heun function vs. orthogonal polynomials

The following results come from [10]. Set coefficients of J

αn :=
√
λnνn+1, βn := λn + νn + γn (13)

with

λn = k2(n+ α)(n+ β), (14)
νn = n(n+ γ − 1), (15)
γn = (1− k2)δn. (16)

Numbers α, β, γ and δ are coefficients of the Heun equation (3). Next, define

F (w) :=
∞∑
n=0

(−1)n
√
λ0λ1 . . . λn−1

ν1ν2 . . . νn
Pn(s+ αβk2)wn. (17)

Then

F (w) = Hn(k2, s;α, β, γ, δ;w).

Moreover, with these settings, the corresponding moment problem is determinate, thus
operator J̇ defined by this matrix is essa. Using polynomials pn(x) instead of Pn(x) in
(17) yields

Hn(k2, s;α, β, γ, δ;w) =
∞∑
n=0

(−1)n

ν1ν2 . . . νn
pn(s+ αβk2)wn. (18)

1.4 The first comeback to the motivation

Let us focus on the special case of equation (6) with m0 = m1 = m2 = m3 = 0. It
corresponds to the Heun coefficients (α, β, γ, δ, ε) =

(
0, 1

2
, 1

2
, 1

2
, 1

2

)
and reads

v′′(z) + 4sv(z) = 0.

By solving this trivial equation one gets

Hn

(
k2, s; 0,

1

2
,
1

2
,
1

2
;w

)
= cos

(
2
√
s sn−1(

√
w)
)
. (19)

It is readily seen that (19) is the level 0 solution of the Heun equation.
On the other hand, comparing coefficients of the three-terms recurrence in (1) with

those in (12) yields that

pn(x+ αβk2) =
(−1)n

4n
fn(−4x− 1− k2), n ∈ N0 (20)

for three admissible choices of parameters

(α, β, γ, δ, ε) ∈
{(

1

2
, 1,

3

2
,
1

2
,
1

2

)
,

(
1,

3

2
,
1

2
,
3

2
,
3

2

)
,

(
1

2
,
3

2
, 1, 1, 1

)}
.
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None of these corresponds to the level 0 solution of the Heun equation which was derived
above. However, according to [9] the following identities hold true.

d

dw
Hn
(
k2, s; 0, β, γ, δ;w

)
= − s

γ
Hn
(
k2, s− γ − δ − k2(γ + ε); 2, β + 1, γ + 1, δ + 1;w

)

Hn(k2, s;α, β, γ, δ;w) = (1− w)1−δ(1− k2w)1−ε×
× Hn

(
k2, s+ γ(δ − 1 + k2(ε− 1));−α + γ + 1,−β + γ + 1, γ, 2− δ;w

)
.

Applying these two identities to the level 0 solution yields

Hn

(
k2, s− 1

4
− k2

4
;
1

2
, 1,

3

2
,
1

2
;w

)
=

sin (2
√
s sn−1(

√
w))

2
√
s
√
w

.

In a view of (18) and (20) one has

Hn

(
k2, s− 1

4
− k2

4
;
1

2
, 1,

3

2
,
1

2
;w

)
=
∞∑
n=0

f(−4s)

(2n+ 1)!
wn.

Thus,

∞∑
n=0

f(−x)

(2n+ 1)!
wn =

sin (
√
x sn−1(

√
w))√

x
√
w

, (21)

with x = 4s. It means that we have a generating function for polynomials {fn(x)}∞n=0.
Note that sn−1 is an analytic function within the unit circle. Hence, the only singularity
of the right hand side of equation (21) is w = 0. For our purposes, which are described
below, this is an inconvenient form.

2 The measure of orthogonality

In the following section we will introduce the main idea and methods to obtain the
measure of orthogonality of orthogonal polynomials in the case we are aware of their
generating function. Then we show application of this process on polynomials {fn(x)}∞n=0.

2.1 The idea and methods

Collection of the following facts is mainly taken from [1] and [5].
Let µ denote the measure of orthogonality for orthogonal polynomials {Pn(x)}∞n=0

corresponding to the Jacobi operator J (the unique self-adjoint extension of operator J̇).
Then

supp(µ) = spec(J).
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Thus we need to determine the spectrum of the operator J . We know that the spectrum
of our Jacobi operators, determined by coefficients (13) and (14), is discrete due to [6].
Thus we know, that measure µ is of the form

µ =
∞∑
n=0

wnδxn , (22)

with δxn being the Dirac measure centered in xn.
We know that OG polynomials {Pn(x)}∞n=0 satisfy the formal eigenvalue equation

JP(x) = xP(x).

If it happens that P(x) ∈ `2, x is an eigenvalue of J with the eigenvector P(x). Assume
that

Pn(x) =
u(x)

nq
+ o

(
1

n

)
, q ∈ (0, 1). (23)

Then {Pn(x)}∞n=0 ∈ `2 only if u(x) = 0. This condition determines the spectrum of J . A
device to obtain asymptotic behavior is called the Darboux method.

Theorem 1. Let f be a function with some isolated singularity not located in the origin
of complex plane. Denote the distance of the singularity nearest to the origin by r. Let
g be another function that obeys

1. g is holomorphic in 0 < |t| < r,

2. f − g is continuous in 0 < |t| ≤ r,

3. the coefficients bn in Laurent expansion

g(t) =
∞∑

n=−∞

bnt
n

have know asymptotic behavior.

Let

f(t) =
∞∑

n=−∞

ant
n.

Then

an = bn + o
(
r−n
)
.

It remains to identify jumps wn in (22). There exists a unique resolution of identity
{Eλ}λ∈R such that J =

∫
R λdEλ. The orthogonal measure µ can be expressed as µ(·) =

〈e0, E(·)e0〉. Then we can define the Weyl m-function corresponding to the operator J
by

mJ(x) :=

∫
R

dµ(s)

s− x
,
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which is the Borel transformation of the measure µ. It means that if we determine the
LHS of the above equation somehow, we would be able to reconstruct the measure µ.
According to the Markov theorem, see [3], one has

mJ(x) = lim
n→∞

p
(1)
n−1(x)

pn(x)
, (24)

with p
(1)
n (x) being associated polynomials. The Weyl m-function is meromorphic, thus

there exist entire functions f, g such that mJ(x) = f(x)
g(x)

. Jumps wn then can be obtained
as

wn =
f(xn)

g′(xn)
. (25)

The last thing we need to get is sequence
{
p

(1)
n (x)

}∞
n=0

.

Assume that matrix J (1) arises from matrix J by deleting the first row and the first
column of J . This matrix is again a Jacobi matrix. So we can define another orthogonal
polynomials

{
P

(1)
n (x)

}∞
n=0

and monic orthogonal polynomials
{
p

(1)
n (x)

}∞
n=0

corresponding

to the matrix J (1). For the monic polynomials we have

p
(1)
n+1(x) = (x− βn+1)p(1)

n (x)− α2
np

(1)
n−1(x). (26)

Polynomials
{
p

(1)
n (x)

}∞
n=0

obey

Hn(1)(k2, s;α, β, γ, δ;w) =
∞∑
n=0

(−1)n

ν2ν3 . . . νn+1

p(1)
n (s+ (α + 1)(β + 1)k2 − δk2)wn, (27)

with Hn(1)(k2, s;α, β, γ, δ;w) beign given by

G(w) = wHn(1)(k2, s;α, β, γ, δ;w) (28)

with G(w) being the solution to the non-homogenous Heun equation

G′′(w) +

(
γ

w
− δ

1− w
− εk2

1− k2w

)
G′(w) +

s+ αβk2w + (γ + ε)k2

w(1− w)(1− k2w)
G(w) (29)

=
γ

w(1− w)(1− k2w)
,

which is analytic in |w| < 1 and with initial data G(0) = 0 and G′(0) = 1.
Substitution for w = sn2(z) and setting v(z) := G(w) yield

v′′(z) +

(
(2γ − 1)

cn(z)dn(z)

sn(z)
− (2δ − 1)

sn(z)dn(z)

cn(z)
− (2ε− 1)

sn(z)cn(z)

dn(z)

)
v′(z)+ (30)

+4
(
s+ (γ + ε)k2 + αβk2sn2(z)

)
v(z) = 4γ,

with initial data v(0) = v′(0) = 0 and v′′(0) = 2.
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Assume that v1(z) and v2(z) are two linearly independent solutions to the homogenous
Heun equation (30). The the solution v(z) to the inhomogenous Heun solution (30)
according to [?] reads

v(z) = C

∫ z

0

v1(z)v2(t)− v1(t)v2(z)

sn1−2γ(t)cn1−2δ(t)dn1−2ε(t)
dt (31)

with C being a constant independent on z which need to be set in correspondence with
the initial data.

2.2 The second comeback to the motivation

As claimed before, expression (21) is inconvenient for our purpose. In particular, it is
not in a suitable form for using the Darboux method. Derivative of the both sides of
equation (21) yields

∞∑
n=0

f(−x)

(2n)!
=

cos (
√
x sn−1(

√
w))

√
1− w

√
1− k2w

. (32)

Recall that x = 4s. The RHS of the preceding equation is suitable for using the Darboux
method, since the nearest singularity to the origin is w = 1, and is the generating function
for polynomials {fn(x)}∞n=0 at the same time. Note that

Hn

(
k2, s− 1

4
− k2

4
; 1,

3

2
,
1

2
,
3

2
;w

)
=

cos (
√
x sn−1(

√
w))

√
1− w

√
1− k2w

. (33)

This result could be again obtained by symmetries of the Heun equation, see [9]. Using
the Darboux method on equation (32) yields asymptotic behavior

fn(−x)

(2n)!
=

cos(
√
xK)√

1− k2
(−1)n

(
−1/2

n

)
+ o(1)

∼ (−1)n√
πn

cos(
√
xK)√

1− k2
+ o(1), n→∞.

Therefore eigenvalues of the corresponding Jacobi operator read

sn =
(2n+ 1)2π2

16K2
− 1

4
+

5

4
k2. (34)

From (33) one has

Hn(1)

(
k2, s; 1,

3

2
,
1

2
,
3

2
;w

)
=

sn−1
√
w√

s+ 1
4

+ 9
4
k2w
√

1− w
√

1− k2w
×

×
∫ 1

0

sin

(
2

√
s+

1

4
+

9

4
k2(1− τ)

√
w

)
cn(τz)dn(τz)dτ.
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Let us denote

X(s) :=
K√

s+ 1
4

+ 9
4
k2
√

1− k2

∫ 1

0

sin

(
2K

√
s+

1

4
+

9

4
k2(1− τ)

)
cn(Kτ)dn(Kτ)dτ.

Thus

p
(1)
n−1(s)

pn(s)
∼ −2

√
1− k2X

(
s− 7

2
k2
)

cos
(
K
√

4s+ 1− 5k2
)√ n

n− 1
, for n→∞.

It means

mJ(s) = lim
n→∞

p
(1)
n−1(s)

pn(s)
= −2

√
1− k2X

(
s− 7

2
k2
)

cos
(
K
√

4s+ 1− 5k2
) . (35)

Recall that wn are given by (25) with

g(s) = cos
(
K
√

4s+ 1− 5k2
)
, g′(s) = −

2K sin
(
K
√

4s+ 1− 5k2
)

√
4s+ 1− 5k2

and

f(s) =
−2K√

s+ 1
4
− 5

4
k2

∫ 1

0

sin

(
2K

√
s+

1

4
− 5

4
k2(1− t)

)
cn(Kt)dn(Kt)dt.

After a routine manipulation one arrives to

wn =
(2n+ 1)π2

K2k

qn+ 1
2

1− q2n+1
. (36)

We can see that (34) and (36) agree with (2).

3 Interim results
We desire to exhaust all options of new families of orthogonal polynomials constructed
from the level one solution. Our starting point will be the following theorem from [10] in
which G. Valent claims how do those solutions look like.

Theorem 2. The level 1 solutions of equation (6) have the following forms with Z(ω) =
Θ′(ω)
Θ(ω)

.

m0 = 1 m1 = 1 m2 = 1 m3 = 1

solution y1(z) = ezZ(ω)H(z−ω)
Θ(z)

y2(z) = ezZ(ω) Θ(z−ω)
Θ(z)

y3(z) = ezZ(ω) Θ1(z−ω)
Θ(z)

y4(z) = ezZ(ω)H1(z−ω)
Θ(z)

condition dn2(ω) = 4s− k2 dn2(ω) = 4s+ 1 dn2(ω) = 4s+ 1− k2 dn2(ω) = 4s+ 1− k2
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From now on, the Heun equation will be represented by vectors

(s;α, β, γ, δ, ε) ∈ C6.

Talking about the solutions of the Heun equation y, if the dependence on z is emphasized,
i.e. y(z), the solution is meant after the transformation w = sn2(z) of the Heun equation.
Assume the Heun equation (s;α, β, γ, δ, ε) with a solution y(z) and function u(z). In the
left column of the below chart we set a relationship between y(z) and u(z). In the right
column there is a new Heun equation for which u(z) is a solution.

y(z) = cn2(1−δ)(z)u(z) (s+ γ(δ − 1);α− δ + 1, β − δ + 1, γ, 2− δ, ε)
y(z) = dn2(1−ε)(z)u(z) (s+ k2γ(ε− 1);−α + γ + δ,−β + γ + δ, γ, δ, 2− ε)
y(z) = sn2(1−γ)(z)u(z) (s+ (γ − 1)(δ + k2ε); β − γ + 1, α− γ + 1, 2− γ, δ, ε)

For the later purposes let us define (non-linear) operators T1, T2, T3 : C6 → C6 :
(s;α, β, γ, δ, ε) → (s̃; α̃, β̃, γ̃, δ̃, ε̃) where output corresponds to the vector in the first,
respectively the second, respectively the third row of the above chart.

Having the level 1 solutions y1, y2, y3 and y4 and transformations T1, T2 and T3, a
natural question arises: How many new families we can obtain?

Denote G := {id, T1, T2, T3, T1T2, T2T3, T1T3, T1T2T3}.

Proposition 3. SetG together with composition of the mappings and an inverse mapping
forms an Abelian group of the eighth order.

Proof. By the direct computation one obtains

T 2
i = id, i ∈ {1, 2, 3}; (37)

TiTj = TjTi, i, j ∈ {1, 2, 3}. (38)

Equation (38) yields

TiTjTk = Tπ(i)Tπ(j)Tπ(k), i, j, k ∈ {1, 2, 3}, π ∈ S3. (39)

It is readily seen that for any A ∈ G, A−1 = A. Thus the inversion applied on elements
of G does not yield any other transformations. Similarly, for any A,B ∈ G, AB ∈ G.
Thus, the composition does not provide any new transformations as well.

And so the answer is, that there are no more then 32 new families of orthogonal
polynomials which can be constructed from the level 1 solution of the Heun equation.
Assume two families {pn(x)}, {p̃n(x)} with coefficients αn, βn, resp. α̃n, β̃n.

• If αn = α̃n and βn − β̃n = const., then families {pn(x)} and {p̃n(x)} coincides.

• If α0 = β0, then pn(x) = xqn(x) with family {qn(x)} given by

qn+1(x) = (x− βn+1)qn(x)− α2
nqn−1(x), n ∈ N, q−1(x) = 0, q0(x) = 1. (40)



Orthogonal Polynomials Generated from Solutions of the Heun Equation 125

Using the above items allows decrease the number of new families to 12. For the
brevity we don’t list all 32 potentially new families. It follows from the specific forms for
different families. We do not list them for brevity.

Let us ilustrate results about the measure of orthogonality on the example of one par-
ticular family. According to theorem 2, function y1(z) is a solution to the Heun equation
(s;−1

2
, 1, 1

2
, 1

2
, 1

2
). Using transformation T3T1 one gets the Heun equation

(
s− 2− 3k2

4
; 2, 3

2
, 5

2
, 3

2
, 1

2

)
with the solution

y(z) = ezZ(ω) Θ(z − ω)

sn3(z)H1(z)
, 4s+ 1 = dn2(ω).

It is easy to see that y(−z) is the solution of the same Heun equation and that y(z)
and y(−z) are linearly independent. Thus, the respective Heun function, the generating
function for orthogonal polynomials {pn(x)}∞n=0, can be written as a linear combination
of these two solutions. After a rutine manipulation with the Jacobi elliptic functions and
theta functions we have

Hn

(
k2, s− 1

4
; 0,

3

2
,
1

2
,
3

2
, sn2(z)

)
=

Θ(0)

2H(ω)Θ(z)cn(z)

(
e−zZ(ω)H(z + ω)− ezZ(ω)H(z − ω)

)
.

Repeating the same procedure as in the case of the family {fn(x)}∞n=0, one gets

pn(x)

(2n+ 2)!
= − 1

4nk2
√
πn

sinh(KZ(ω))

sn(ω)cn(ω)
+O

(
1

n4n

)
, n→∞.

After an analysis of zeros of the function sinh(KZ(ω))
sn(ω)cn(ω)

one arrives to the following con-
ditions for eigenvalues of the corresponding Jacobi operator J

4xn = dn2(ωn), ωn = ivn, for vn ∈ R,
KH1(vn)

H1(vn)
+
πvn
2K ′

= 2nπ.

For the Weyl m-function of the Jacobi operator J one has

mJ(x) = lim
n→∞

p
(1)
n−1(x)

qn(x)
= −2k2

15

sn(ω)cn(ω)Y(Ω;K)

sinh(KZ(ω)
,

with

Y(Ω; z) =
C(Ω)

sn5(z)

∫ z

0

(y1(z)y1(−t) + y1(t)y1(−z))sn(t)cn(t)dt,

here C(Ω) is, for now, not further specified constant depending on Ω and 4x = dn(Ω).
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Abstract. In the root system C2, there are four classical Weyl-group-invariant lattices: the
root lattice, the coroot lattice, the weight lattice and the coweight lattice. All four can be used
to construct a generalized affine Weyl group via their semidirect product with the Weyl group
of the root system in question. Generalized affine Weyl groups admit four classes of functions
invariant with respect to their action on their arguments, called orbit functions. Discretizing
the domain of the orbit functions and restricting to the fundamental domain of the action of the
generalized affine Weyl group, one can find orthogonality relations which can serve as the basis
of Fourier-type analysis of discrete functions.

Keywords: root system C2, orbit function, Weyl group, invariant lattice

Abstrakt. V kořenovém systému C2 existují čtyři klasické mříže invariantní vůči Weylově
grupě: kořenová mříž, mříž duálních kořenů, váhová mříž a mříž duálních vah. Všechny čtyři
mohou být použity ke konstrukci zobecněné afinní Weylovy grupy pomocí polopřímého součinu
s Weylovou grupou příslušnou tomuto kořenovému systému. Zobecněné afinní Weylovy grupy
připouštějí čtyři třídy funkcí invariantních vůči jejich akcím na jejich argumenty, zvané orbitové
funkce. Diskretizací a omezením na fundamentální oblast akce zobecněné afinní Weylovy grupy
lze dokázat ortogonalitu orbitových funkcí, která může sloužit jako základ Fourierovy analýzy
diskrétních funkcí.

Klíčová slova: kořenový systém C2, orbitová funkce, Weylova grupa, invariantní mříž

1 Introduction

The purpose of this article is to give an exhaustive description of orthogonality relations
of discretized orbit functions arising from the four classical Weyl-group-invariant lattices
constructed from the root system C2 [6]. Orbit functions are complex functions labelled
by two-dimensional real vectors whose arguments are also elements of R2. They take form

∗This work was supported by the Grant Agency of the Czech Technical University in Prague, grant
No. SGS22/178/OHK4/3T/14.
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of (anti)-symmetrized sums of exponents of scalar products of their labels and arguments
over the Weyl group of the corresponding root system [3, 4, 7, 8]. The invariance of orbit
functions with respect to translations and the action of the Weyl group allows us to
restrict the study of orbit functions to the fundamental domain of the corresponding
generalized affine Weyl group. A finite fragment of a rescaled lattice situated inside the
fundamental domain serves as the set of sampling points on which the orbit functions are
discretized. The finite-dimensional vector space of complex functions on this fragment
admits an orthogonal basis of orbit functions, labelled by elements of a different Weyl-
group-invariant lattice [1, 3–5].

This article is organized as follows: in Section 2, the necessary facts concerning the
root system C2 are recalled. Section 3 contains the description of the four classical Weyl-
group-invariant lattices: the root lattice, the coroot lattice, the weight lattice and the
coweight lattice. In Section 4, the generalized affine Weyl groups are defined and their
fundamental domains are depicted explicitly. The following section is dedicated to the
definition and properties of orbit functions and the construction of the sampling and label
grids stemming from different lattices. Section 6 is divided into four subsections, each
discussing related cases of discrete orthogonality. Comments and follow-up discussion are
contained in the conclusion.

2 Root system C2

The root system C2, which will be denoted Π in this article, is a crystallographic root
system in R2 determined by its Cartan matrix

C =

(
2 −1
−2 2

)
. (1)

The elements of C are defined as

Cij =
2(αi, αj)

(αj, αj)
i, j ∈ {1, 2} (2)

where α1, α2 are the so-called simple roots [6]. This matrix uniquely determines the ratio
of the squared lengths of α1 and α2 and the angle between them, so to determine Π
uniquely, we adopt the additional convention for the length of the long root

(α2, α2) = 2, (3)

so we arrive to the conclusion that

||α1|| = 1, ||α2|| =
√

2 (4)

and that the angle between α1 and α2 is equal to 3
4
π.

Π is by definition invariant with respect to its corresponding Weyl group W , which
is generated by the reflections rα where α is any element of Π. The reflection rα is the
linear map

rα · x = x− 2(x, α)

(α, α)
α (5)



Discrete Orthogonality of Orbit Functions in C2 129

where x ∈ R2. For future convenience, denote r1,2 := rα1,2 . Using the fact that r1, r2
generate the Weyl group [6], we determine that |W | = 8. The entire Π is obtained from
{α1, α2} by the action of W . Finally, let us remark that

2(α, β)

(β, β)
∈ Z for all α, β ∈ Π. (6)

3 W -invariant lattices of C2

Given α ∈ Π, we define the coroot α∨ by

α∨ :=
2α

(α, α)
(7)

for all α ∈ Π. The vectors α∨1 , α∨2 are called the simple coroots. The fundamental weights
are defined by the relation

(α∨i , ωj) = δij i, j = 1, 2. (8)

Analogously, the fundamental coweights are defined by

(ω∨j , αj) = δij i, j = 1, 2. (9)

We see that the coroots as well as the fundamental weights and fundamental coweights
all form a basis of R2. Expressing these vectors in terms of the simple roots α1, α2 using
the equations (7), (8) and (9), we obtain:

α∨1 = 2α1, ω1 = α1 +
1

2
α2, ω∨1 = 2α1 + α2, (10)

α∨2 = α2, ω2 = α1 + α2, ω∨2 = α1 + α2, (11)

as depicted in Figure 1.
The root lattice is defined as the Z-span of the simple roots:

Q = Zα1 + Zα2, (12)

the coroots give rise to the coroot lattice Q∨ which is defined as

Q∨ = Zα∨1 + Zα∨2 , (13)

the weights generate the weight lattice P

P = Zω1 + Zω2, (14)

and the coweights span the coweight lattice P∨

P∨ = Zω∨1 + Zω∨2 . (15)

A lattice A ⊆ R2 is W -invariant, if

w · A ⊆ A for all w ∈ W. (16)
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α1

ω∨1
ω2 = ω∨2

α2 = α∨2

ω1

α∨1

Figure 1: The root system C2 with its coroots, fundamental weights and fundamental
coweights. The roots have arrow tips and coroots not belonging to C2 have circle tips.
The fundamental weight ω1 has a square tip.

We can check using the crystallographic condition (6) that Q and Q∨ are both W -
invariant. Given a lattice A ⊆ R2, we define its dual lattice [6] A⊥ by the requirement

A⊥ =
{
v ∈ R2 | (v, a) ∈ Z, ∀a ∈ A

}
. (17)

Equations (8) and (9) give us P = (Q∨)⊥ and P∨ = Q⊥, respectively. If a lattice A is W -
invariant, then its dual A⊥ is W -invariant as well, hence both P and P∨ are W -invariant.
Furthermore, let us note that (6) gives us the inclusion Q ⊆ P which also dualizes to
Q∨ ⊆ P∨. The inclusions Q∨ ⊆ Q and P∨ ⊆ P are obvious from the definitions (7) and
(9). Finally, the explicit forms of the vectors give us Q = P∨ and 2P = Q∨. Summarizing
our results for the root system C2, we have:

2P = Q∨ ⊆ Q = P∨ ⊆ P. (18)

4 Fundamental domains of group actions
Let us consider the group G acting on R2 generated by all reflections rα, α ∈ Π and all
shifts T (a) where a ∈ A is an element of some W -invariant lattice A. The subgroup
generated solely by the shifts is isomorphic to the lattice A and the subgroup generated
by rα, α ∈ Π is W . Since wT (a) = T (w · a)w, we have G = AW , a similar calculation
shows that wT (a)w−1 = T (w · a), so A is normal in G and clearly W ∩ A = {idR2},
hence G = AoW . Any group of transformations of R2 obtained in this manner is called
the generalized affine Weyl group. The fundamental domain of a generalized affine Weyl
group is a subset FA of R2 such that

1. (AoW )FA = R2
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2. FA contains at most one point from every orbit of AoW .

The fundamental domains of the generalized affine Weyl groups using the lattices
Q,Q∨, P and P∨ can be found in the following manner: realize that a convenient set of
representants of R2/A is formed by the set SA = {a1v1 + a2v2 | a1, a2 ∈ I} ∪ {0}. The
vectors v1,2 are α1,2 for Q, α∨1,2 for Q∨, ω1,2 for P , ω∨1,2 for P∨ and I is the interval (0, 1] for
the lattices Q,Q∨ and [0, 1) for the lattices P, P∨. At this point, it suffices to find a set
FA such that there exist w ∈ W,a ∈ A and y ∈ FA satisfying the equation x = w · y + a
for every x ∈ SA. The results are

FA =
{
yA1 q

A
1 ω1 + yA2 q

A
2 ω2 | yA0 + yA1 + yA1 = 1

}
, (19)

where

qA1 =

{
1 A = Q,Q∨, P∨

1
2

A = P
qA2 =

{
1 A = Q∨

1
2

A = Q,P, P∨.
(20)

The fundamental domains FA are depicted in Figure 2. The counting functions

εA(s) : FA → N, εA(s) = |W · s| ; (21)

hMA (λ) : MFA → N, hMA (λ) =

∣∣∣∣Stab

(
λ

M

)∣∣∣∣ ; (22)

where the action ofW is considered on the torus R2/A, play a crucial role in the following
sections. The values of εA for the classical invariant lattices are as follows:

εQ(s) =


8 s ∈ int(FQ)

4 s ∈ ∂FQ \ {0, ω1,
1
2
ω2, }

2 s = 1
2
ω2

1 s ∈ {0, ω1}

εQ∨(s) =


8 s ∈ int(FQ∨)

4 s ∈ ∂FQ∨ \ {0, ω1, ω2}
2 s = ω1

1 s ∈ {0, ω2}

(23)

εP (s) =


8 s ∈ int(FP )

4 s ∈ ∂FP \ {0, 12ω1,
1
2
ω2}

2 s = 1
2
ω1

1 s ∈
{

0, 1
2
ω2

} εP∨(s) = εQ(s) s ∈ FP∨ = FQ, (24)

where int(·) denotes the interior of a set and ∂(·) denotes its boundary. These values are
obtained by using all w ∈ W on the fundamental domain, shifting the result to SA and
counting the occurrences of each point. The numbers hMA are obtained using the values
of εA and the orbit-stabilizer theorem.

5 Orbit functions

Orbit functions are complex functions respecting the symmetries of the generalized affine
Weyl group. First, note that there are four possible homomorphisms of W into the
multiplicative cyclic group Z2 = {−1, 1}, given by
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0

1
2
ω2

2
ω1

1
FQ = FP∨

0

ω2

1

ω1

2
FQ∨

0

1
2
ω2

1

1
2
ω1

2FP

Figure 2: Fundamental domains of generalized affine Weyl groups of the root system C2.
The values of the function εA in the corner points are given by the numbers in the boxes.

1(ri) = 1, σe(ri) = −1, σs(ri) =

{
−1 i = 1

1 i = 2
, σl(ri) =

{
1 i = 1

−1 i = 2
, (25)

as proven in [9].
The orbit function ϕσb : R2 → C, where σ is any of the multiplicative homomorphisms

from (25) and b ∈ R2 is its label, is defined as

ϕσb (x) =
∑
w∈W

σ(w)e2πi(w·b,x) (26)

for any x ∈ R2. The functions ϕ1b are called C-functions, the functions ϕσeb are called
S-functions and the functions ϕσsb and ϕσ

l

b are called Ss−functions and Sl−functions
respectively [3, 4].

Let us summarize their pertinent properties:

ϕσb (w · x) = σ(w)ϕσb (x), (27)
ϕσw·b(x) = σ(w)ϕσb (x), (28)

for any w ∈ W and b, x ∈ R2. If B is a W -invariant lattice, then for any b ∈ B, b⊥ ∈ B⊥
and x ∈ R2 it holds that

ϕσb (x+ b⊥) = ϕσb (x), (29)

from which it follows that ϕσb is well-defined on R2/B⊥. If A is a W -invariant lattice,
then for any M ∈ N, a ∈ A, b ∈ B and a⊥ ∈ A⊥ it holds that

ϕσb+Ma⊥

(
1

M
a

)
= ϕσb

(
a⊥
)
, (30)

so we can regard orbit functions as complex functions on B/MA⊥× 1
M
A/B⊥ if the relation

A⊥ ⊆ B ⇔ B⊥ ⊆ A (31)

holds.
Define the sets F σ

A ⊆ FA as follows:

F σ
A =

{
yA,σ1 qA1 ω1 + yA,σ2 qA2 ω2 | yA,σ0 + yA,σ1 + yA,σ1 = 1

}
, (32)
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where q1,2 are given by (20). The numbers yA,σi have the following properties: yA,1i ≥ 0

for i = 0, 1, 2; yA,σ
e

i > 0 for i = 0, 1, 2 and

yA,σ
s

0

{
≥ 0 A = Q∨, P

> 0 A = Q,P∨
yA,σ

s

1 > 0 for all A, yA,σ
s

2 ≥ 0 for all A; (33)

yA,σ
l

0

{
≥ 0 A = Q,P∨

> 0 A = Q∨, P
yA,σ

l

1 ≥ 0 for all A, yA,σ
l

2 > 0 for all A. (34)

One can check on a case-by-case basis that the sets F σ
A were chosen so that for every

y ∈ 1
M
A∩
(
FB⊥ \ F σ

B⊥

)
there exist b⊥ ∈ B⊥, r ∈ W such that σ(r) = −1 and y = r ·y+b⊥,

which implies ϕσb (y) = 0 for all b ∈ B. Similarly, for all b ∈ B ∩
(
MFA⊥ \MF σ

A⊥

)
there

exist a⊥ ∈ A⊥, r ∈ W such that σ(r) = −1 and b = r · b + Ma⊥, hence ϕσb
(

1
M
a
)

= 0 for
every a ∈ A.

We define the set of sampled points as

F σ,M
B,A =

1

M
A ∩ F σ

B⊥ (35)

and the set of labels as
Λσ,M
B,A = B ∩MF σ

A⊥ . (36)

The sets F σ,M
B,A and Λσ,M

B,A are the minimal sets of points and labels respectively in which
the corresponding orbit function is non-zero. Moreover, due to the symmetry relations
(27) and (29), the values of ϕσb on the entire lattice 1

M
A can be reconstructed from the

values on F σ,M
B,A .

The relationships between the lattices Q,Q∨, P and P∨ given by (18) and the require-
ment (31) only allow six different pairs of lattices from which to construct respective label
and point sets. These are: (P,Q∨), (Q∨, P ), (Q,P∨), (P, P∨), (P∨, P ) and (P, P ) where
the first position in the pair determines the elements of the set of labels and the second
determines the elements of the set of sampled points.

6 Orthogonality relations

We introduce the scalar product of discrete functions f, g on the point set F σ,M
B,A by

〈f, g〉σ,MB,A =
∑

s∈Fσ,MB,A

εB⊥(s)f(s)g(s), (37)

where the number εB⊥ is defined by (21).

6.1 The cases (P,Q∨) and (Q∨, P )

The case (P,Q∨) has already been discussed in [1]. It turns out that that the grids F σ,M
P,Q∨

and Λσ,M
P,Q∨ have the same cardinality and that

〈ϕλ, ϕν〉σ,MP,Q∨ = 8M2hMP (λ)δλ,ν (38)



134 V. Teska

for any λ, ν ∈ Λσ,M
P,Q∨ , hence the set of orbit functions indexed by elements of Λσ,M

P,Q∨ forms
an orthogonal basis of the space of complex functions on F σ,M

P,Q∨ .
Let us turn our attention to the dual case (Q∨, P ). The relation (18) tells us that

there is a one-to-one correspondence between the sets Λσ,M
Q∨,P , Λσ,M

P,Q∨ and another one-to-
one correspondence between F σ,M

Q∨,P and F σ,M
P,Q∨ . If

2

M
P/2P 3 s↔ s̃ ∈ 1

M
P/P, (39)

then εQ∨(s) = εP (s̃) and similarly for

P/MP 3 λ↔ λ̃ ∈ 2P/2MP (40)

it holds that hMP (λ) = hMQ∨(λ̃), hence it follows that

〈ϕλ̃, ϕν̃〉
σ,M
Q∨,P = 8M2hMP (λ̃)δλ̃,ν̃ , (41)

for any λ̃, ν̃ ∈ Λσ,M
Q∨,P , so the orbit functions indexed by Λσ,M

Q∨,P form an orthogonal basis
of the space of complex functions on F σ,M

Q∨,P .

6.2 The case (Q,P∨)

Since Q = P∨, so FQ = FP∨ , this case can also be thought of as having labels from Λσ,M
Q,Q

and points from F σ,M
Q,Q . Clearly, Λσ,M

Q,Q = MF σ,M
Q,Q , so the sets Λσ,M

Q,Q and F σ,M
Q,Q must contain

the same number of points. We can calculate the magnitudes of point sets to be

∣∣∣F 1,M
Q,Q

∣∣∣ =

{
M2

8
+ 3

4
M + 1 M even

M2

8
+ 1

2
M + 3

8
M odd

,
∣∣∣F σe,M

Q,Q

∣∣∣ =

{
M2

8
− 3

4
M + 1 M even

M2

8
− 1

2
M + 3

8
M odd

, (42)

∣∣∣F σs,M
Q,Q

∣∣∣ =

{
M2

8
− 1

4
M M even

M2

8
− 1

8
M odd

,
∣∣∣F σl,M

Q,Q

∣∣∣ =

{
M2

8
+ 1

4
M M even

M2

8
− 1

8
M odd

. (43)

The proof of orthogonality is done in a similar manner as in [1] and [3]. The result

〈ϕλ, ϕν〉σ,MQ,P∨ = 8M2hMQ (λ)δλ,ν , (44)

for any λ, ν ∈ Λσ,M
Q,P∨ proves that the orbit functions indexed by elements of Λσ,M

Q,P∨ con-
stitute an orthogonal basis of the vector space of complex functions on F σ,M

Q,P∨ . The point
grid for M = 5 is shown in Figure 3.

6.3 The cases (P, P∨) and (P∨, P )

The case Λσ,M
P,P∨ has already been studied in [4] and [3]. The resulting orthogonality

relations are
〈ϕλ, ϕν〉σ,MP,P∨ = 16M2hMQ (λ)δλ,ν , (45)
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α1

ω∨1ω∨2α2

Figure 3: The point grids in the case (Q,P∨) for M = 5. The grey triangle is the
fundamental domain of the group P∨ oW . The 25 black dots are the representants of
the classes in 1

5
P∨/P∨. All the points lying in the grey triangle are distinct elements

of F 1,5
P∨,P∨ . The singular point in the interior of the grey triangle is the one element of

F σe,5
P∨,P∨ . The points crossed with + are the elements of F σs,5

P∨,P∨ and the points crossed with
× are the elements of F σl,5

P∨,P∨ . The borders of the set SP∨ are the lines ending with the
arrows of the vectors ω∨1 and ω∨2 along with the opposing dashed lines; each dashed line
is equivalent with the opposing non-dashed side. The triangles meeting in the origin are
obtained by the action of W on the fundamental domain FP∨ . The dotted lines denote
the borders of these triangles shifted to SP∨ , i.e. the images of FP∨ under the action of
W on R2/P∨. An analogous image of the label grid can be obtained by rescaling the gray
triangle by the factor 5.

for λ, ν ∈ Λσ,M
P,P∨ . It holds that

∣∣∣F σ,M
P,P∨

∣∣∣ =
∣∣∣Λσ,M

P,P∨

∣∣∣, so the orbit functions labelled by

elements of Λσ,M
P,P∨ form an orthogonal basis of the space of complex functions on F σ,M

P,P∨ .
This time, the dual case (P, P∨) cannot be obtained from the previous one by simple

multiplication, still we have

∣∣∣F σ,M
P,P∨

∣∣∣ =
∣∣∣Λσ,M

P∨,P

∣∣∣ and
∣∣∣Λσ,M

P,P∨

∣∣∣ =
∣∣∣F σ,M

P∨,P

∣∣∣ , (46)

so the cardinalities of the label set and point set are equal.
One can arrive to a completely analogous orthogonality relation

〈ϕλ, ϕν〉σ,MP∨,P = 16M2hMQ∨(λ)δλ,ν (47)

for any λ, ν ∈ Λσ,M
P∨,P by rescaling and switching the roles of the grids and following the

procedure outlined in [4] and [3].
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6.4 The case (P, P )

Note that this case is self-dual in the sense that the labelling and point lattices are equal.
Clearly, it holds that

∣∣∣F σ,M
P,P

∣∣∣ =
∣∣∣Λσ,M

P,P

∣∣∣ and the orthogonality relation

〈ϕλ, ϕν〉σ,MP ,P = 32M2hMQ∨(λ)δλ,ν (48)

holds for any λ, ν ∈ Λσ,M
P,P , as was shown in [5].

7 Conclusion

We have given an overview of all the possible constructions of orthogonal sets of orbit
functions in the root system C2 using the lattices P,Q, P∨ and Q∨. Three cases out of the
total six have already been examined and the orthogonality of orbit functions is known.

Out of the remaining three cases in C2, Λσ,M
Q∨,P degenerates into a simple rescaling of

its dual case which has already been studied in [1]. Another case which has not been
studied is Λσ,M

P∨,P which is the dual of an already examined case [3, 4]. The orthogonality
relation can be found using a completely analogous procedure. The final unstudied case
is Λσ,M

Q,P∨ , in which we were able to show the equal cardinality of the label and point sets
and consequently find a discrete orthogonality relation for the orbit functions.

Given every possible combination of the label and point lattice, we have arrived at
the orthogonality relation of the form

〈ϕσλ, ϕσν 〉
σ,M
B,A = 8M2hMA⊥(λ)

∣∣A/B⊥∣∣ δλ,ν . (49)

The focus of our research at the moment is to prove that a relation of this type holds
for any irreducible crystallographic root system along with equal cardinalities of the
point and label sets. These orthogonality relations can be used as building blocks for
Fourier-type transformations of functions on various n-dimensional grids which could be
interesting from a computational perspective. Moreover, the theory of orbit functions
has application in physics, for example, in modelling of the properties of graphene [2].
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Abstract. This paper focuses on processing the data gained from human body motion sensors
followed by the recognition of patients who are suffering from a neurological disease that leads
to musculoskeletal system disorder. The frequency spectrum acquired from the processed signal
generated by human movement is then used to get the power spectral features for each patient.
These features are then used for binary classification to recognize if the patient is healthy or has
a locomotion problem.
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Abstrakt. Tento článek je zaměřen na zpracování dat získaných ze senzoru pochybu umístěných
na lidském těle. Zároveň lékař určil diagnózu neurologického onemocnění, které vede k poruchám
pohybového aparátu. Ze zpracovaného signálu bylo získáno frekvenční spektrum pochybu člověka
a využito ke konstrukci spektrálních charakteristik každého pacienta. Tyto charakteristiky byly
použité pro klasifikaci do dvou tříd a k rozpoznání zda pacient je zdrav nebo má problémy z
pohybem.

Klíčová slova: Frekvenční spektrum, klasifikátor, frekvenční charakteristiky, biomedicínská di-
agnóza, nemoci pohybového aparátu.

1 Introduction

1.1 Neurological diseases and Musculoskeletal disorders

The musculoskeletal system also known as the locomotor system is one of the human
body systems which grants movement and stability to the human body. The elements
of the system participate in nervous regulation of locomotion, facial expressions, main-
tenance of posture, and other processes and functions such as cushioning shocks and
concussion, and protecting vital organs or metabolism. [11]. Unfortunately, there are
diseases and disorders that harmfully act on the musculoskeletal system. Usually, these
diseases are difficult to diagnose due to the fact that the musculoskeletal system is in
close relation with the other human body systems [16]. In this paper, the focus was
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shifted to musculoskeletal disorders which were caused by neurological disorders, since
they are common companions for locomotion problems. Neurological disorders result in
structural, biochemical, or electrical abnormalities in the human nervous system. Usu-
ally, problems arise in the brain or spinal cord with typical symptoms such as paralysis,
muscle weakness, and poor coordination [8]. An example of such a disease that affects
the motor system is Parkinson’s disease. Symptoms of locomotion problems occur due
to the dying of nerve cells in the region of midbrain [2].

1.2 Diagnosis and experiment aim

The most common way of diagnostics of musculoskeletal and neurological disorders is
the analysis of balance problems by testing the gait since these disorders proved to be
a ground for an abnormal gait [1]. The problems with human locomotion stability rise
dramatically with age. It can be challenging to detect abnormalities in gait by reason of
the fact that there are no accepted standards for detecting abnormalities amongst young
and old generations [12]. A further problem, regardless of the existing of diagnosis method
problem, is the manual analysis of the data. The core of this problem is based not only on
being time-consuming and expensive but significantly on being dependent on the doctor’s
experience as well. However, different research shows that machine learning techniques
can be effective in the automatization of gait analysis for diagnosing musculoskeletal and
neurological disorders [17]. In contrast to other approaches, this paper is targeted at
classifying the power spectrum features extracted from the frequency spectrum. The
frequency spectrum is the result of the signal processing captured from the motion sensor
applied to the patient. Furthermore, the data used for the experiment contains not only
a gait test. The patients were asked to perform gait and stance tests that are included
in a scale for the assessment and rating of ataxia (SARA) [10] with the motion sensor.
The gait test required the patient to walk parallel to a wall and then turn around in
the opposite direction of gait and to walk in tandem (heels to toes) without support.
The stance test required the patient to stand in a natural position with feet together
in parallel, after in tandem with open eyes. These test clearly defines the ability of the
patient to keep the body balance. The dataset contains signals captured from 51 patients
(Table 1).

The signal from the sensor consists of nine channels. These channels represent the
relative change of acceleration, gyroscope, and angle in a three-dimensional space. The
sensor is set to capture a signal with a sampling period of 0.02 s. The aim of this experi-
ment is to develop a novel method of recognition of patients with possible musculoskeletal
disorders caused by neurological diseases with the help of the power spectrum features
extracted from the frequency spectrum of the motion sensor signal.

2 Signal processing and feature extraction

2.1 Noise reduction and segmentation

It is an inefficient approach to work with the raw signal from the sensor. In most cases,
the raw signal is very noisy and has a lot of useless information (Figure 1a) which will
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Table 1: Data cardinality.

Disease Patients Gait tests Stance tests
Vestibular Sindrome 1 3 4

Tumor 1 3 4
Stroke 13 35 47

Spastic Paraparesis 1 0 4
Parkinsonism 2 3 4

NPH 1 2 3
Myelopathy 2 1 3

MS 2 6 8
Healthy 16 42 60

Cerebellar Dysfunction 2 4 6
ALS 1 1 4

Polyneuropathy 9 15 19

increase the computational cost and decrease the final accuracy of classification methods.
Another important step is to define which features will be extracted from the signal and
in what form they will be represented. Accordingly, it is very important to reprocess the
raw signal to get significantly better results.

As described in the previous section, the sampling period of the sensor is Ts = 0.02 s,
which gives us the signal frequency fs = 1

Ts
= 50 Hz. Let us assume that the number

of samples in one record is N ∈ N. Thus, the k-th element is xk ∈ R. The sample is
defined as {xk}N−1k=0 . In order to make the signal sample smoother the Savitzky-Golay
filter [6] is applied. Hereafter, the filtered result is subtracted from the original sample.
The frequency response of the smoothed signal is then cut off with the low-pass filter,
which passes the signal with a frequency lower than a selected cutoff frequency and at-
tenuates signals with frequencies higher than the cutoff frequency. This was achieved by
generating the Hilbert envelope [18] of the smoothed signal and dividing the smoothed
signal by envelope. The final step is to get filtered and normalized data to [−1, 1]. Solid
line on the Figure 1b.

(a) Raw signal. (b) Filtered signal.

Figure 1: Signal preprocessing steps. Signal cutoff to 300 samples.
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Smoothed and filtered signals now can be divided into segments. This step is required
for getting power spectrum features in further steps. The signal will be segmented into
the window system, where w ∈ N is a window length. Then the k-th element of the j-th
segment is defined as {xk+jw}w−1k=0 . The total number of segments is M = bN

w
c ∈ N and

the remaining data are neglected.

2.2 Segment preprocessing

Any segment is presented as a fixed length vector (ξ0, . . . , ξw−1). The goal to achieve in
this part is to calculate the power spectrum of the given segment. The power spectrum
of a segment is (P0, . . . , Pw−1) where Pk = |Ψk|2 and Ψk is k-th component of Fourier
image obtained by Discrete Fourier Transform (DFT) [9]

Ψk =
w−1∑
n=0

ξn · exp

(
−j2πkn

w

)
For better time and calculation performance we can use w = 2m,m ∈ N. Thereby, the
Fast Fourier Transform (FFT) [9] can be used instead. When previous calculations were
done, the j-th segment is presented as ~dj = (P1, . . . , Pw

2
−1), since the magnitude of the

Fourier Transform is symmetric, only w
2
−1 elements are taken (Figure 2a). In this study,

we use segment length w = 100.

2.3 Final feature reprepsentation

When all segments are processed, the power spectrum of a signal sample is

~h =
1

M

M∑
j=1

~dj,

which is a component-wise arithmetic mean of segment powers (Figure 2b). A group of
patients was investigated using various tests (gait, stance) and the pattern is a result of
a single test on a given patient. Therefore, one patient can generate several patterns per
test type. The sensor generates nine time series but we use only three channels from the
gyroscope. The final pattern consists of three powers spectra (c = 3) as vector (~hx,~hy,~hz).

3 Classification methods

3.1 Dimensionality reduction

For the experiment, the first four elements of each spectrum were cut off, since they
do not contain any useful information as visualized in the Figure 2b. Additionally, the
spectrum with corrupted data, which is at the bottom of the same Figure, was removed as
well. The power spectrum feature of the patient which was used for further classification
in this experiment consists of contamination of the power spectrum from three channels
which are the three dimensions of the accelerometer. Since the segment length is w

2
− 1

and the first four elements were cut, the patient feature is the vector of length L =
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(a) FFT application for w = 100. (b) Vizualization of all segments for w = 100.

Figure 2: Segment processing.

((w
2
− 1) − 4) · c = 45 × 3 = 135. In order to reduce the dimensionality of the problem

Principal Components Analysis [14] were used. Each patient feature vector size was
reduced from 135 to 39 since this number of features gave the best result after multiple
attempts with different parameters during classification. Figure 3 shows the explained
variance ratio of each component.

Figure 3: Explained variance ratio.

3.2 Multilayer Perceptron

The first method for the classification problem in this experiment was a multilayer per-
ceptron classifier. The approach is based on supervised learning of an artificial neural
network (ANN). The training dataset is processed by ANN to build a function that maps
new data on expected output values. Accordingly, each patient’s feature was labeled with
0 - unhealthy and 1 - health. Thus, during the training on the dataset, it will be possible
to distinguish which category belongs to the patient. The structure of the ANN used for
the purposes of this experiment is the following:

• Input layer of size 39

• Four hidden layers of size (32,32,16,8)
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• Output binary layer with a simple neuron

The ANN model is trained through the backpropagation. It performs a backward pass
to adjust the ANN’s weights and biases to minimize mean squared error [3]. Adaptive
Moment Estimation (Adam) was taken as the optimization algorithm for the backpropa-
gation. The advantage of the Adam algorithm is that it computes adaptive learning rates
for each parameter in contrast to stochastic gradient descent which does not change the
learning rate during training [4]. Another important feature of the ANN is the activa-
tion function which is responsible for calculating the sum of the product of weights and
inputs with bias defining the neuron output in a range of values. For this experiment,
the Rectifier Linear Unit (ReLU) was selected. The main advantage of the ReLU is that
it is capable of resolving the vanishing gradients problem [19]. Corresponding formula is

relu(x) = max(0, x)

3.3 Support Vector Machine

Support Vector Machine (SVM) is another classification method that was used in this
experiment for the classification task. The main principle of the SVM is to find a hy-
perplane that will be maximally distant from the data points from different clusters and
at the same time will separate data into different clusters [15]. For high-dimensional
space problems, SVM can be extended with a kernel function. The kernel function is a
mathematical function that maps data from one feature space into another, thus allowing
linear classifiers to deal with nonlinear tasks. For the experiment, the choice was made
in favor of the radial basis function kernel (RFB) [7]. The formula of this kernel is

K(x, x′) = exp(−γ||x− x′||2)

where γ is a parameter for similarity measuring between two points and equals to 1
2σ2 ,

with σ as a free parameter and ||x − x′||2 as squared Euclidean distance between two
feature vectors. The best result was achieved with γ = 0.841.

4 Results

The whole experiment was made with the Python programming language. For the data
preprocessing was used SciPy library [13] and for Classification methods Scikit-learn
library [5]. Trained classifiers were tested with cross-validation. Available data was
separated into two sets. One set was used for training and another for testing. Since
there was lack of data to train, 85% of data was applied for training and the remaining
15% for testing. The accuracy of the ANN classifier is 0.789, with the following confusion
matrix

[
22 3
5 8

]
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with sensitivity to unhealthy 22
27

= 0.814 and to healthy 8
11

= 0.727. Need to mention,
that the RBF kernel in the Scikit-learn library has another parameter that changes the
rate between wrong classification and decision hyperplane simplicity and it was set to
c = 1.299. The SVM classifier ended up with a better result. The accuracy is 0.842. The
confusion matrix looks as follows

[
24 1
5 8

]
from which we have sensitivities 24

29
= 0.827 and 8

9
= 0.888 for unhealthy and health

accordingly. The SVM classifier resulted better in the classification of unhealthy patients.

5 Conclusion

This paper reveals the fact that power spectrum features extracted from the motion sensor
signal can be used for diagnosing a neurological disease that affects the musculoskeletal
system. Such neurological diseases can affect human body balance and cause locomotion
problems that are distinctive from healthy human body signals. The difference between
healthy and unhealthy patients can be considered as an abnormality. As discovered
during the experiment, such abnormalities can be classified by different classification
algorithms. Two different methods for classification were tested in this study. The SVM
classifier had a slightly better result than the ANN classifier. However, there are a lot of
different ways to configure the ANN classifier which can improve the final result. On the
other hand, signal preprocessing parameters like window length or number of components
can be configured as well and that can lead to overall better results in classification for
any method. Nevertheless, the main goal of the experiment was to show that power
spectrum features can be used for detecting abnormalities in human locomotion, and it
was achieved.
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Abstract. The study of reaction-diffusion systems has been crucial in various scientific disci-
plines due to their ability to explain natural occurrences like pattern formation, wave propaga-
tion, and oscillations. The Burger’s type equation, a nonlinear partial differential equation that
combines diffusion and advection terms, has become a prominent tool for modeling reaction-
diffusion pattern formation. Its strength lies in its capability to illustrate complex patterns,
making it applicable to diverse fields like population dynamics, fluid dynamics, and chemical re-
actions. Additionally, it has enhanced our understanding of pattern formation in the context of
non-equilibrium thermodynamics. In this paper, we explore the Burger’s type equation’s role in
modeling reaction-diffusion patterns, discussing its fundamental principles, connections to Tur-
ing models and reaction-diffusion systems, and its contributions to pattern formation studies.
We will also delve into numerical methods for solving these equations and obtaining solutions.
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1 Introduction

Reaction-diffusion systems have been an important area of research in many scientific
fields including mathematics, physics, chemistry, and biology. The study of these systems
has been largely motivated by their ability to describe a variety of natural phenomena,
such as pattern formation, wave propagation, and oscillations. One of the most widely
studied models of pattern formation is the Turing model, which is based on a set of partial
differential equations that describe the dynamics of interacting chemicals. However, this
model has limitations in its ability to capture complex patterns that are often observed in
natural systems. In recent years, the Burger’s type equation has emerged as a promising
model for studying reaction-diffusion pattern formation. This equation is a nonlinear
partial differential equation that incorporates both diffusion and advection terms, which
allows for the description of a wider range of phenomena than the Turing model. The
Burger’s type equation has been used to study a variety of systems, including population
dynamics, fluid dynamics, and chemical reactions. One of the main advantages of the
Burger’s type equation is its ability to describe the formation of complex patterns that
are not captured by simpler models. In particular, it has been shown to be capable of
describing the formation of traveling waves, spatiotemporal chaos, and other patterns that
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arise in many natural systems. This has led to significant interest in the use of the Burger’s
type equation as a tool for understanding pattern formation in a variety of scientific fields.
The Burger’s type equation has also been used in conjunction with the principles of non-
equilibrium thermodynamics, which provides a framework for understanding the behavior
of systems that are far from equilibrium. This has led to new insights into the relationship
between pattern formation and the principles of non-equilibrium thermodynamics.

In this paper, we will explore the use of the Burger-type equation as a model for
reaction-diffusion pattern formation. Focusing on the Brusselator model, we will exam-
ine the fundamental principles of this equation, its relationships with Turing models, and
its utilization in pattern formation studies. Furthermore, we will review the connection
between this equation and the principles of non-equilibrium thermodynamics, offering
a novel perspective on its relationship with pattern formation. This study aims to con-
tribute to a better understanding of pattern formation across various scientific disciplines.
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Abstract. Consolidated granular materials exhibit intriguing characteristics in their elastic
response, including slow dynamic behavior and hysteresis. This hysteresis, which manifests as
distinct elastic properties during loading and unloading, is evident in both quasi-static exper-
iments, where slow loading and unloading cycles are employed, and dynamic acousto-elastic
testing, where rapid perturbations are induced using propagating or standing waves.

The underlying cause of this hysteresis in the elasticity of consolidated granular materials
continues to be a subject of active debate. In our study, we attribute this hysteresis to the
influence of slow dynamics, which simultaneously introduces elastic anisotropy due to nonlinear
effects, particularly affecting waves polarized and propagating parallel to the applied load. We
explain this slow dynamics through the concept of non-equilibrium strain, which gradually ac-
cumulates within the material under the influence of induced strain and slowly dissipates as the
applied strain diminishes.

The experimental investigations, conducted on sandstone samples, span an extensive range
of strain levels, encompassing five orders of magnitude. This range extends from the dynamic
regime, where strain levels are on the order of 10−7 due to excitation of the first compressional
mode, to strain levels of 10−2 induced by uniaxial compression using a tensile testing machine.
To monitor variations in velocity, we employ high-frequency longitudinal and shear wave trans-
ducers, utilizing pulses with various polarizations propagating in the transverse direction. Our
findings provide compelling evidence that the proposed model effectively accounts for the ob-
served behavior across this entire strain spectrum.

Keywords: acoustoelastic testing, consolidated granular materials, elastic hysteresis, nonlinear
elasticity

Abstrakt. Konsolidované granulované materiály vykazují charakteristické elastické chování
včetně slow dynamics a hystereze. Tato hystereze, která se projevuje odlišnými elastickými pa-
rametry při zatěžování a odlehčování, je patrná jak při kvazistatických experimentech, kdy se
provádějí pomalé cykly zatěžování a odlehčování, tak při dynamickém akusticko-elastickém tes-
tování, kdy se rychlé perturbace vyvolávají pomocí šířících se nebo stojatých vln.
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Příčina hystereze v elasticitě konsolidovaných granulovaných materiálů je stále předmětem
diskusí. V naší práci přisuzujeme tuto hysterezi vlivu slow dynamics, který současně vyvolává
elastickou anizotropii v důsledku nelineárních efektů, zejména ovlivňujících vlny polarizované a
šířící se rovnoběžně s působícím zatížením. Slow dynamics vysvětlujeme pomocí konceptu nerov-
novážné deformace, která se postupně hromadí v materiálu pod vlivem indukované deformace a
pomalu se vytrácí po té, co se aplikovaná deformace zmenšuje.

Experimenty provedené na pískovcových vzorcích pokrývají rozsah pěti řádů deformací, od
dynamického zatěžování, kde se úrovně deformace pohybují v řádu 10−7 v důsledku excitace
prvního podélného módu, po deformace 10−2 vyvolané jednoosým stlačením pomocí systému pro
tahové zkoušky. Ke sledování změn rychlosti jsou použity vysokofrekvenční snímače podélných
a smykových vln, které vysílají pulzy s různou polarizací šířící se v příčném směru. Výsledky
potvrzují, že navržený model vysvětluje pozorované chování v celém spektru deformace.

Klíčová slova: akustoelastické testování, elastická hystereze, konsolidované granulované mater-
iály, nelineární elasticita

Full paper: R. Zeman, J. Kober, M. Scalerandi, Non-equilibrium Strain and Elastic
Hysteresis in Static and Dynamic experiments in sandstones. To be published in the
Conference Proceedings of Forum Acusticum 2023.
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Abstract. This paper addresses the critical need for reliable and efficient data storage in
the context of a high-energy physics experiment called AMBER. The experiment generates
massive data rates of up to 10 GB/s, requiring the optimization of data archiving and retrieval
systems. The study investigates single-disk performance, including random and sequential reads,
highlighting the impact of parallel access and disk geometry. A comparison with solid-state drives
(SSD) reveals important differences. The paper then introduces the concept of redundant arrays
of independent disks (RAID) and assesses various RAID configurations, considering factors such
as reliability, data rates, and capacity. Probability analysis is used to evaluate the success of
RAID rebuilding in the event of disk failure. In addition, an innovative approach of alternating
disk access is proposed to ensure uninterrupted performance in case of disk failures. Finally, the
study identifies the most suitable RAID configuration for the high energy physics experiment
requirements. The results contribute to the design of high-performance storage solutions for
data-intensive scientific experiments, balancing performance, redundancy, and capacity.

Keywords: data storage, RAID configurations, parallel data access, disk geometry

Abstrakt. Tento článek se zabývá potřebou spolehlivého a efektivního ukládání dat v kon-
textu experimentu fyziky vysokých energií nazývaného AMBER. Experiment generuje obrovské
množtsví dat dosahující až 10 GB/s, což vyžaduje optimalizaci systémů pro archivaci a odečítání
dat. Tato studie zkoumá výkon jednoho disku, včetně náhodného a sekvenčního čtení, a zdůraz-
ňuje vliv paralelního přístupu a geometrie disku. Srovnání se solid-state disky (SSD) odhaluje
důležité rozdíly. Článek se dále zabývá konceptem redundantních polí nezávislých disků (RAID)
a hodnotí jejich různé konfigurace zohledňující faktory jako spolehlivost, přenosovou rychlost a
kapacitu. Pravděpodobnostní analýza je použita k posouzení úspěšnosti obnovy pole RAID v
případě selhání disku. Kromě toho je navržen inovativní přístup střídavého přístupu k diskům,
aby byl zajištěn nepřetržitý provoz v případě selhání disku. Nakonec studie identifikuje nejvhod-
nější konfiguraci RAID pro potřeby experimentu v oblasti vysokoenergetické fyziky. Tyto zjištění
přispívají k návrhu výkonných úložných řešení pro datově náročné vědecké experimenty, která
zohledňují výkon, redundanci i kapacitu.

Klíčová slova: ukládání dat, RAID konfigurace, paralelní přístup k datům, geometrie disků

∗This work has been supported by the Grant Agency of the Czech Technical University in Prague,
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1 Introduction

Reliable storing and processing of large data quantities is an integral part of every ex-
periment in high-energy physics. Particle detectors comprising millions of data channels
produce excessive data rates and pose significant demands on computing infrastructure,
including data storage. To accommodate the need for reliable and fast data archival and
retrieval, complex systems of disk arrays are being used and exploited to their maximum
capabilities. The architecture, organization, and configuration of these systems play an
important role in reaching the best performance with available hardware.

The AMBER experiment located in the CERN laboratory is one such experiment
using a triggerless readout system with online data filtering. According to initial esti-
mations, the full-scale detector setup will produce the data rate reaching 10 GB/s of
sustainable data flow[7]. Storing and accessing these quantities in real-time requires
optimization on many levels – data organization on disks, access patterns, file system,
OS-level optimizations, etc. The disk storage will decouple the online computing system
that requires up to 100% uptime from the data reduction system that can tolerate one
or two days of downtime. The storage space will act as a temporary buffer, providing
clear separation between both systems.

Describing our test setup, the storage system relies on 10 readout host servers, each
equipped with an external storage chassis providing 24 disk bays. These chassis are
connected to their host computers via Broadcom MegaRAID SAS 9380-8e RAID con-
troller using fast 2 x 12Gb/s mini-SAS links providing sufficient throughput. The RAID
controller supports various configurations that are analyzed and evaluated later in this
paper. Installed drives are industry-grade spinning disks (MG07ACA14TE) manufac-
tured by Toshiba. This model uses the world’s first 9-disk design filled with helium. The
helium-sealed environment reduces aerodynamic drag and lowers the power consumption.
Each drive provides up to 14 TB of raw capacity using conventional magnetic recording.
Their primary specification aims at cloud storage, business-critical servers, and object
storage solutions. [6] In total, the fully-equipped single storage unit provides 336 TB
of raw data capacity. The AMBER experiment will employ at least eight such storage
systems providing more than 2 PB of disk capacity.

2 Single disk performance

A basic method of optimizing data processing tasks is to split data into smaller chunks
and process them in parallel. The same method can be used to optimize the performance
of storage systems. Let’s assume a perfectly partitionable task that can be easily paral-
lelized, and our goal is to measure only a single disk’s performance by utilizing multiple
workers to access the storage. Such a measurement gives us the characteristics of a single
device.

2.1 Random reading

Spinning hard drives have a high seek latency that is caused by the physical positioning
of the reading head moving to the requested location on the disk. Thus, HDD can serve
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Figure 1: Random reading of 1 million files
from HDD (lower is better)
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Figure 2: Sequential reading of 5GB data
file from HDD (lower is better)

only a single request at any given time. It can be assumed that the performance suffers
from frequent changes in head position. However, according to our measurements shown
in Figure 1, it is apparent that even for small random requests, there are significant
gains in parallel access with multiple threads. This characteristic can be explained by
optimizations performed by the operating system that can reorganize requests in the most
efficient way, so the head minimizes its movement distance.

2.2 Sequential reading

On the other hand, when sequentially reading large data chunks, the situation is com-
pletely different. Parallel access significantly decreases the performance, and the total
throughput is even lower than in single-threaded access. Figure 2 clearly illustrates
that parallel access does not perform a proper optimization, and the performance is
degraded. This is because the operating system interleaves IO requests coming from dif-
ferent threads, and the disk frequently repositions its head jumping from one position to
another.

The most efficient way to solve this problem at the application level is to allow no more
than one thread to access a single HDD device at any given time. Ideally, the application
should emit its IO requests from a dedicated thread responsible for serializing the accesses.
Other threads should use intra-process communication channels to acquire any resources
from this dedicated thread. An alternative solution is based on mutexes that lock the
resources only for one thread at a time. In this case, the granularity should be coarse
enough to mitigate the impact of head seek time.

2.3 Comparison with solid-state drives

Unlike traditional HDDs, solid-state drives (SSD) can benefit from parallel processing
regardless of sequential or random access. This is because their inner structure comprises
several independent chips and data lanes serving multiple data streams. Our measurement
(Figure 3) shows that parallel random reading has a significant impact on the overall
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Figure 4: Sequential reading of 50GB file
from SSD (lower is better)

performance scaling almost linearly with the number of threads. However, there is a
maximum throughput that limits the data rate for a higher number of threads (16 or
more). For sequential access to SSD, benefits can be considerably high when reading
large data files in a parallel manner. However, the plateau is observed earlier (see Figure
4).

2.4 Disk platter geometry

Spinning drives have another well-known issue caused by the geometry of rotating platters
[4]. The main problem is that the performance decreases as the disk gets full. We observed
such behavior in our past measurements, and we wanted to quantify the impact of this
issue on the final performance. The measurement consisted of writing and reading at
the maximum capacity of a single disk (14TB). During this test, a relation between data
rates and disk occupancy was measured.

Results show that reading or writing at the inner edge (fully occupied disk) decreases
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Figure 5: Sequential read from full HDD
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Figure 7: Sequential read from empty
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Figure 8: Sequential write from empty
HDD

the throughput to approx. 48 % of the maximum data rate as observed on the outer
region (empty disk). This issue is caused by the physical arrangement of data on the
disk. Data are usually stored in concentric circles called cylinders. These cylinders get
smaller as they approach the inner edge. Since the rotation speed is fixed (7200 rotations
per minute) and the data density is constant across the entire disk, these facts result in a
smaller capacity of inner cylinders and decreasing data rate towards the inner disk edge.

To verify our statement, we also created a small disk partition (1TB) on the outer
disk region and measured its performance. As can be seen in Figure 7 and Figure 8, the
resulting data rate remains constant during the entire measurement, and the effects of
disk geometry are negligible.

The outcome of these tests indicates that the performance of a single disk is not
constant, and data rates depend on the head position above the platters. To achieve
optimal results, one should create partitions and store data on the outer disk edge, where
the best performance can be reached. Moreover, HDD disks clearly demonstrate their
degradation as they get full. It is necessary to be aware of such quirks when designing
a performance-critical storage solution, and one must add an additional size margin in
order to avoid the full occupancy of disks.

3 Redundant array of independent disks

We measured the behavior of a single disk under different types of load. However, the
throughput of a single disk does not scale linearly with the number of threads. To
reach the desired data rate, it is necessary to coordinate access to multiple disks by
multiple processes. A commonly used method is based on a virtualization technology
called the redundant array of independent disks (or RAID in short). RAID is a data
virtualization system combining multiple physical disks into a single logical unit called a
volume. Thanks to this additional level of abstraction, volumes can provide extra features
such as improved performance, data redundancy, or resistance to disk failures. [1]

In general, several different RAID configurations are recognized. These configurations,
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called RAID levels, define how data is distributed across multiple drives. Properties of
individual levels significantly differ in terms of redundancy and performance. Different
schemes are referred to by numbers associated with the given level. We distinguish 7
standard RAID levels: [1]

• RAID 0 – striping – data are interleaved on all disks, no redundancy – disk failure
causes failure of the entire array,

• RAID 1 – mirroring – identical data are mirrored to all disks, remains operational
as long as at least one drive is functioning,

• RAID 2 – bit-level striping with dedicated Hamming-code parity,
• RAID 3 – byte-level striping with dedicated parity, each sequential byte is written

on a different drive, parity is stored on a dedicated disk,
• RAID 4 – block-level striping with dedicated parity, each file system block is

written on a different drive, parity is stored on a dedicated disk,
• RAID 5 – block-level striping with distributed parity, same as RAID 4, but parity

is split among drives,
• RAID 6 – block-level striping with double distributed parity, parity information

is distributed and stored twice (allowing double disk failure).
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Figure 9: Average read and write data rates of standard RAID configurations

Apart from the standard levels, so-called nested (hybrid) arrays exist. They usually
combine two or more RAID levels into a single volume. The most commonly used nested
arrays are the following: [3]

• RAID 00 – striping in two directions,
• RAID 10 – striping followed by mirroring,
• RAID 50 – block-level striping with distributed parity followed by simple striping,
• RAID 60 – block-level striping with double distributed parity followed by simple

striping, etc.
The performances of selected nested RAID setups are illustrated in Figure 10. Here,

we can notice that these configurations rely on more disks providing superior features,
which puts them in a better position than standard configurations.
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Choosing the optimal configuration for any given task depends strongly on the desired
requirements, e.g., minimal performance, redundancy, and capacity. Plus, individual
optimizations are required for every given use case, usually resulting in a trade-off between
multiple criteria. In our scenario of storing data generated by the high-energy physics
experiment, the final storage system should meet the following requirements:

• sustainable incoming data rate of 1 GB/s,
• sustainable outgoing data rate of 1 GB/s,
• resistance to a single disk failure,
• probability of successful rebuild at least 95%,
• maximization of the total capacity,
• 24 disk drives in total.
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Figure 10: Average read and write data rates of nested RAID configurations

Avoiding parallel access requires at least two volumes. So, it is clear that a single
volume can contain only 12 disks at maximum. Together with the requirement for the
input and output data rates, we obtain a lower cut for acceptable configurations. Basi-
cally, the majority of simple (non-nested) RAID arrays are excluded due to insufficient
throughput. In addition, the need for a failing disk resistance effectively eliminates all
RAID 0 and RAID 00 configurations that do not provide such a warranty. Eventually,
we obtain a limited set of allowed RAID configurations.

3.1 Probability of successful rebuilding

When considering the RAID storage reliability, one of the main concerns is the importance
of successful recovery in case of a failing disk. Each disk has a certain amount of broken
or corrupted memory cells that are usually caused by an imperfect manufacturing process
or wear down of the magnetic material. This metric is called a non-recoverable error rate.
Under nominal conditions, this number is negligible in comparison with the total disk
capacity and does not have any impact on the disk operation. Plus, the operating system
regularly scans drives for broken blocks and excludes them at the file system level.
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Figure 11: Probability of successful rebuilding of RAID array

However, the non-recoverable error rate can play a significant role when a RAID
array is being rebuilt after a broken disk has been replaced. For RAID configurations
with parity checks, all information on the remaining disks must be intact to be able
to recalculate the original data from parities and to fully reconstruct the broken disk.
Since the rebuilding procedure is a resource-intensive process, another disk is likely to
fail during this period, or the number of non-recoverable blocks can reach a critical limit.

Consequences strongly depend on the location of broken blocks. If such a block is
found in a critical section of the disk (partitioning table, master boot record, operating
system files, etc.), it can lead to a corrupted operating system or unreadable data files.
Therefore, we must carefully take this aspect into account. The derived formula for the
calculation of the probability of successful rebuild (assuming no read error happened) is
the following:

Psucc =

(
1− E

S

)C·(N−1)

where E is the non-recoverable error rate, S is the data size read for the given error rate,
C is the capacity of a single disk, N is the number of disks in RAID span.

Figure 11 shows how the probability of successful rebuilding decreases with bigger
RAID spans providing higher capacities. Obviously, there is an inflection point where a
trade-off between the probability of successful rebuilding and volume capacity is achieved.
This point is unique for different disk models, capacities, RAID configurations, etc. In
our requirements, we demand a success probability above 95% that efficiently eliminates
all remaining standard arrays and some nested ones that have a probability of success
below this threshold.

3.2 Alternating disk access

As described in the previous sections, when dealing with large data files, the best results
can be achieved with a single thread accessing the data. Because our use case requires
simultaneous reading and writing, a naive approach is to split the storage into two inde-
pendent volumes. The first volume would be used only for reading, and the second one
would be used only for writing. At some point, the volumes can be swapped, utilizing all
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Figure 12: Scheme of alternating access to 3 RAID volumes

disks equally.
However, in case of a single disk failure, the affected volume would be either degraded

or inaccessible at all (due to RAID rebuilding). This would result in simultaneous access
to the remaining volume, and the data rates would drop significantly. Such an inci-
dent is unacceptable and can have a massive impact on the performance of the physics
experiment, possibly causing some downtime.

Therefore, we propose to use 3 independent volumes instead of 2. Under the nominal
conditions, one volume is read, the second one is written, and the third volume is idle. The
writer thread writes to individual volumes in a round-robin manner and iterates through
them with half an hour cycle time, i.e., the writer moves to the next volume after 30
minutes. In addition, the writer locks the assigned volume, so there is no simultaneous
access from the reading thread. Whereas the reader cannot read from the locked space,
it can access the remaining two volumes. Preferably, it chooses the volume that has been
unlocked the most recently. In addition, we assume that the readout data rate is slightly
higher than the writing data rate on average; otherwise, the storage would overflow.
Considering all these aspects, the writer can safely move to the next volume that is not
being read by the reader.

Using the described approach, the transitioning between volumes is smooth for the
writer as well as for the reader, and parallel disk access does not occur, maximizing the
overall performance. Also, in case of a disk failure, the problem is reduced to the usage
of two volumes that can still perform at their maximum performance, not causing any
downtime to the experiment. As a consequence of using 3 volumes, all nested arrays with
more than 8 disks are not acceptable anymore. Therefore, the only remaining and the
most suitable RAID configuration is RAID 50 using 3 volumes per 2 spans per 4 disks
(3× 2× 4 configuration).

4 Conclusion

In this paper, we have identified the most optimal data storage solution for a high-
energy physics experiment. First, we described the characteristics of a single disk and
measured its performance under different types of load using various numbers of threads.
We learned that tasks using random read patterns could benefit from parallel access to
the disk, mainly due to the optimized head trajectory. When reading large data blocks
sequentially, we observed no benefits from accessing the data with multiple threads. On
the contrary, the use of many readers has a huge negative impact on the overall disk
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performance. The comparison of HDD and SSD disks pointed out that SSDs behave
differently. The use of several parallel readers increases the SSD performance regardless
of the reading mode (random or sequential).

In our next analysis, we assessed the disk throughput with respect to the disk geom-
etry. Our results show that the performance of the disk decreases with the increasing
occupancy; eventually, the throughput dropped down to 48% of its initial value in our test
scenario. Both operations, reading and writing, were affected in the same way roughly
by the same factor. We also confirmed our hypothesis by showing that partitions located
on the outer disk edge do not suffer from this deficiency.

This was followed by a detailed analysis of various RAID configurations. These tests
consisted of read and write measurements using different RAID levels. The first set
included only standardized configurations; later, the performance of nested RAID levels
was evaluated. We also described the probability of a successful rebuild of a RAID array
when a single disk fails. Surprisingly, this probability can drop below 95% when dealing
with spans containing five disks or more. Finally, we proposed an optimized strategy
based on alternate disk access, which optimizes the overall performance and increases the
reliability of the storage system.

After these thorough measurements, we defined a list of requirements that emerged
from our use case in the high-energy physics field. Because the data from these experi-
ments are mostly produced in large data chunks (usually 1 GB or larger), our approach
relied on minimizing the number of parallel accesses. In combination with the minimal re-
quested throughputs and other requirements, we gradually eliminated all non-conforming
options until there was only one solution left – RAID 50 – 3 volumes per 2 spans (RAID
0) per 4 disks (RAID 5).
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