Ing. Jan Reichl (doktorand)

e-mail: zobrazit e-mail
 

studium

školitel:Ing. Petr Tichavský, CSc.
zahájení studia:01.10.2016
forma studia:prezenční
téma disertační práce:Tenzorové rozklady, teorie a aplikace
popis:Pojem tenzor zde chápeme jako vícerozměrovou datovou struktury pravoúhlého tvaru. Například sekvence matic stejného tvaru je tenzor řádu 3. Takové datové struktury se vyskytují v praxi přirozeně, jako například pravděpodobnostní rozložení N diskrétních náhodných veličin je tenzor řádu N, nebo jsou konstruovány uměle za účelem separace signálů z jejich směsi. Tenzorové rozklady jako je kanonický rozklad, Tuckerův rozklad, nebo blokový rozklad lze využít v mnoha aplikacích pro klastrování, detekci, slepou separaci, a také hrají důležitou roli v matematické teorii složitosti algebraických operaci, jako je např. maticové násobení. Je zde mnoho ještě nevyřešených problémů a otázek. Téma disertace zahrnuje vývoj nových metod rozkladu tenzorů a jejich aplikace.

za obsah této stránky zodpovídá: Radek Fučík | naposledy změněno: 15.8.2011
Trojanova 13, 120 00 Praha 2, tel. 224 358 540, pevná linka 224 923 098, fax 234 358 643
České vysoké učení technické v Praze | Fakulta jaderná a fyzikálně inženýrská | Katedra matematiky