prof. RNDr. Jan Ámos Víšek, CSc. (externí spolupracovník)

www: http://ies.fsv.cuni.cz/cs/staff/visek
instituce: FSV UK
 
rozvrh
předmět kód vyučující zs ls zs kr. ls kr.
Regresní analýza dat01REGA Víšek 2+0 zk - - 2 -
Předmět:Regresní analýza dat01REGAprof.RNDr. Víšek Jan Ámos CSc.2+0 ZK-2-
Anotace:Klasická a robustní regresní analýza, odhady, diagnostika, časové řady, dynamický model.
Osnova:Lineární model, nejmenší čtverce, odhad minimalizující součet absolutních hodnot residuí. Nejlepší nestranný lineární odhad regresních koeficientů - podmínka ortogonality a sferikality (homoscedasticita), konsistence. Asymptotická normalita odhadu regresních koeficientů. Nejlepší nestranný odhad regresních koeficientů. Koeficient determinace, role interceptu, signifikance vysvětlujících veličin. Konfidenční intervaly, testování submodelu, Chowův test. Statistické knihovny (menu a key-orientované), možnosti, vstupy a výstupy, spolehlivost, interpretace výsledků. Whitův test na heteroskedasticitu, index plot. Testování normality, Theilova přepočítaná residua, test dobré shody, Kolmogorov-Smirnovův test, normal plot. Kolinearita, index podmíněnosti, Farrar-Glauberův test, redundance, hřebenová regrese, odhad s lineárními omezeními. AR, MA, AR(I)MA, podmínka invertibility a stacionarity. Vyhlazování (lineárního) trendu pomocí křivek, klouzavých průměrů a exponenciál. Sezónní a cyklická složka, testy náhodnosti. Eficientní odhad regresních koeficientů pro AR(1), MA(1), nebo AR(2), MA(2) disturbance (Prais-Winsten, Cochrane-Orcutt). Robustní regrese - M-odhady, kvalitativní a kvantitativní robustnost, influenční funkce, vlivné body (outliers, leverage points). Nejmenší medián čtverců residuí (the least median of squares), minimalizace usekaného součtu čtverců residuí a minimalizace součtu usekaných čtverců residuí (the trimmed least squares and the least trimmed squares), vážené nejmenší čtverce a nejmenší vážené čtverce (the weighted least squares and the least weighted squares), algoritmy, aplikace. Filosofické úvahy o matematickém modelování.
Osnova cvičení:
Cíle:Znalosti:
Navázat na statistickou výuku a nabídnout jeden z nejmocnějších nástrojů modelování dat. Seznámit studenty s teoretickým zázemím i praktickým použitím. Otevřít jim pohled statistika a ekonometra, klasický a robustní přístup.

Schopnosti:
Samostatná aplikace regresních metod na empirická data.
Požadavky:
Rozsah práce:
Kličová slova:Regresní model, průřezová a panelová data, klasické a robustní odhady.
Literatura:Povinná literatura:
[1] Statistická analýza dat. Vydavatelství Českého vysokého učení technického v Praze,1997. (187 stran, ISBN 80-01-01735-4)

Doporučená literatura:
[2] Hardle, W., Applied Nonparametric Regression (1990), ISBN 0-521-42950-1

Zobecněné lineární modely a aplikace01ZLIM Hobza, Víšek - - 2+1 zk - 3
Předmět:Zobecněné lineární modely a aplikace01ZLIMIng. Hobza Tomáš Ph.D.2+1 ZK-3-
Anotace:V tomto předmětu se budeme zabývat řadou statistický modelů, které zobecňují klasický lineární model s normálně rozdělenou sledovanou proměnnou. Přednáška se skládá z teorie zobecněných lineárních modelů (ZLM), popisu algoritmů používaných pro odhadování parametrů ZLM a praktických návodů jak určit, který algoritmus použít pro analýzu daného souboru dat.
Osnova:1. Zobecněné lineární modely: exponenciální rodina, podmínky regularity, skórová funkce.
2. Odhadování parametrů modelů: maximálně věrohodné odhady, numerické metody výpočtu: metoda Newton-Raphson, metoda Fisher-scoring.
3. Testování modelů: asymptotické rozdělení skórové funkce a maximálně věrohodných odhadů, porovnávání modelů, analýza reziduí.
4. Analýza kovariance (ANCOVA): základy maticové algebry, obecný model analýzy kovariance, ANCOVA s jedním faktorem.
5. Modely pro binární data: rovnoměrný model, logistický model, normální model, Gumbelův model.
6. Poissonovská regrese: Poissonovo rozdělení, jednorozměrná a vícerozměrná poissonovská regrese, testy a rezidua, Poissonův model pro odhadování v malých oblastech.
7. Vícerozměrná logistická regrese: vícerozměrný logit model, testování o odhadech parametrů, rezidua, logit model oblasti.
Osnova cvičení:1. Odhadování parametrů modelů, maximálně věrohodné odhady, numerické metody výpočtu, metoda Newton-Raphson, metoda Fisher-scoring.
2. Testování modelů, porovnávání modelů, analýza reziduí.
3. Analýza kovariance (ANCOVA).
4. Logistická regrese.
5. Poissonovská regrese.
6. Vícerozměrná logistická regrese.
Cíle:Znalosti:
Zobecněněné lineární statistické modely a metody pro odhadování jejich parametrů.

Schopnosti:
Aplikovat teoreticky probrané metody na konkrétní praktické problémy analýzy dat, včetně použití těchto metod na počítači v prostředí MATLAB případně R.
Požadavky:Základní kurzy matematické analýzy a pravděpodobnosti (dle přednášek na FJFI ČVUT v Praze 01MAB3, 01MAB4 a 01PRST).
Rozsah práce:
Kličová slova:Zobecněný lineární model, skórová funkce, analýza kovariance, logistická regrese, poissonovská regrese, rezidua.
Literatura:Povinná literatura:
[1] A.J. Dobson: An Introduction to Generalized Linear Models. London: Chapman and Hall, 1990.

Doporučená literatura:
[2] J.K. Lindsey: Applying Generalized Linear Models. Springer Verlag, 1998.


za obsah této stránky zodpovídá: Radek Fučík | naposledy změněno: 7.8.2011
Trojanova 13, 120 00 Praha 2, tel. 224 358 540, pevná linka 224 923 098, fax 234 358 643
České vysoké učení technické v Praze | Fakulta jaderná a fyzikálně inženýrská | Katedra matematiky