prof. RNDr. Jan Ámos Víšek, CSc. (externí spolupracovník)

www: http://ies.fsv.cuni.cz/cs/staff/visek
instituce: FSV UK
 
rozvrh
předmět kód vyučující zs ls zs kr. ls kr.
Regresní analýza dat01REAN Franc, Víšek 2+2 z,zk - - 4 -
Předmět:Regresní analýza dat01REANIng. Franc Jiří Ph.D. / prof.RNDr. Víšek Jan Ámos CSc.----
Anotace:Klíčová slova:
Regresní model, průřezová a panelová data, klasické a robustní odhady.
Osnova:Lineární model, nejmenší čtverce, odhad minimalizující součet absolutních hodnot residuí. Nejlepší nestranný lineární odhad regresních koeficientů - podmínka ortogonality a sferikality (homoscedasticita), konsistence. Asymptotická normalita odhadu regresních koeficientů. Nejlepší nestranný odhad regresních koeficientů. Koeficient determinace, role interceptu, signifikance vysvětlujících veličin. Konfidenční intervaly, testování submodelu, Chowův test. Statistické knihovny (menu a key-orientované), možnosti, vstupy a výstupy, spolehlivost, interpretace výsledků. Whitův test na heteroskedasticitu, index plot. Testování normality, Theilova přepočítaná residua, test dobré shody, Kolmogorov-Smirnovův test, normal plot. Kolinearita, index podmíněnosti, Farrar-Glauberův test, redundance, hřebenová regrese, odhad s lineárními omezeními. AR, MA, AR(I)MA, podmínka invertibility a stacionarity. Vyhlazování (lineárního) trendu pomocí křivek, klouzavých průměrů a exponenciál. Sezónní a cyklická složka, testy náhodnosti. Eficientní odhad regresních koeficientů pro AR(1), MA(1), nebo AR(2), MA(2) disturbance (Prais-Winsten, Cochrane-Orcutt). Robustní regrese - M-odhady, kvalitativní a kvantitativní robustnost, influenční funkce, vlivné body (outliers, leverage points). Nejmenší medián čtverců residuí (the least median of squares), minimalizace usekaného součtu čtverců residuí a minimalizace součtu usekaných čtverců residuí (the trimmed least squares and the least trimmed squares), vážené nejmenší čtverce a nejmenší vážené čtverce (the weighted least squares and the least weighted squares), algoritmy, aplikace. Filosofické úvahy o matematickém modelování.
Osnova cvičení:Cvičení bude probíhat v souladu s přednáškou a jeho součástí bude osvojení si metod regresní analýzy v prostředí R.

Úvod do R, lineární model, odhad pomocí metody nejmenších čtverců, residua, pod-model, ANOVA, testy o splnění předpokladů, Normalita, Nezávislost, QQ plot, multikolinearita, logistická regrese, nelineární regrese, transformace, robustní metody odhadu.
Cíle:Znalosti:
Navázat na statistickou výuku a nabídnout jeden z nejmocnějších nástrojů modelování dat. Seznámit studenty s teoretickým zázemím i praktickým použitím. Otevřít jim pohled statistika a ekonometra, klasický a robustní přístup.

Schopnosti:
Samostatná aplikace regresních metod na empirická data.
Požadavky:
Rozsah práce:
Kličová slova:
Literatura:Povinná literatura:
[1] Statistická analýza dat. Vydavatelství Českého vysokého učení technického v Praze,1997. (187 stran, ISBN 80-01-01735-4)

Doporučená literatura:
[2] Hardle, W., Applied Nonparametric Regression (1990), ISBN 0-521-42950-1


za obsah této stránky zodpovídá: Radek Fučík | naposledy změněno: 7.8.2011
Trojanova 13, 120 00 Praha 2, tel. 224 358 540, pevná linka 224 923 098, fax 234 358 643
České vysoké učení technické v Praze | Fakulta jaderná a fyzikálně inženýrská | Katedra matematiky