Využití umělých neuronových sítí k urychlení evolučních algoritmů

školitel: Martin Holeňa
e-mail: zobrazit e-mail
typ práce:
zaměření: MI_MM, MI_AMSM, II_SIMI, II_TS, II_PRAK
klíčová slova: optimalizace, vícevrstvé perceptrony, RBF sítě, evoluční algoritmy, empirické optimalizované funkce
odkaz: http://www.cs.cas.cz/~martin/diplomka28.html
popis: Evoluční algoritmy jsou v posledních 20 letech jednou z nejúspěšnějších metod pro řešení netradičních optimalizačních problémů, jako např. hledání nejvhodnějších dokumentů obsahujících požadované informace, objevování nejzajímvějších informací v dostupných datech či další typy optimalizačních úloh, při nichž lze hodnoty optimalizované funkce získat pouze empiricky. Protože evoluční algoritmy pracují pouze s funkčními hodnotami optimalizované funkce, blíží s k jejímu optimu podstatně pomaleji než optimalizační metody pro hladké funkce, které využívají rovněž informace o gradientu optimalizované funkce, případně o jejích druhých derivacích. Tato vlastnost evolučních algoritmů je zvláště nepříjemná ve spojení se skutečností, že empirické získání hodnoty optimalizované funkce bývá obvykle značně nákladné i časově náročné. Evoluční algoritmy však lze podstatně urychlit tím, že při vyhodnocování funkční hodnoty optimalizované funkce používají empirickou optimalizovanou funkci jen občas, zatímco většinou vyhodnocují pouze její dostatečně přesný regresní model. K nejslibnějším regresním modelům patří některé typy umělých neuronových sítí, které mají tzv. univerzální aproximační schopnost, zejména vícevrstvé perceptrony a RBF sítě. Výzkum využitelnosti takových typů umělých neuronových sítí k urychlení evoluční optimalizace empirických funkcí je však teprve na samém počátku. Příspěvkem k němu by měla být i navržená diplomová práce. Student se nejdříve seznámí s principy optimalizace pomocí evolučních algoritmů a se základy umělých neuronových sítí. Bude přitom věnovat pozornost i urychlení evoluční optimalizace empirických funkcí pomocí regresního modelu optimalizované funkce. S využitím prostudované literatury analyzuje možnosti použití některých typů umělých neuronových sítí pro konstrukci takových regresních modelů. Několik nejslibnějších z nich rozpracuje až do implementovatelné podoby a zahrne je do prototypové implementace. Na závěr porovná implementovaná řešení na několika testovacích funkcích pro evoluční algoritmy, jakož i na alespoň jedné databázi hodnot empirické optimalizované funkce z reálné aplikace, kterou dostane od vedoucího práce.
literatura: viz http://www.cs.cas.cz/~martin/diplomka28.html
poznámka: Šikovný student, který výborně zvládne tuto diplomovou práci, bude mít v případě zájmu možnost navázat na ni příbuzným tématem v doktorandském studiu
naposledy změněno: 12.10.2011 09:12:01

za obsah této stránky zodpovídá: Ľubomíra Dvořáková | naposledy změněno: 12.9.2011
Trojanova 13, 120 00 Praha 2, tel. 224 358 540, pevná linka 224 923 098, fax 234 358 643
České vysoké učení technické v Praze | Fakulta jaderná a fyzikálně inženýrská | Katedra matematiky