Zobecnění abstraktní algebraické logiky

školitel: Ing. Petr Cintula, Ph.D.
e-mail: zobrazit e-mail
typ práce: dizertační práce
zaměření: MI_MM, II_SIMI
klíčová slova: abstraktní algebraická logika, neklasické logiky, substrukturální logiky, matematická fuzzy logika, logiky pro informati
odkaz: http://www.cs.cas.cz/cintula
popis: Formální systémy (ne)klasických logik jsou zásadní pro mnohé oblasti informatiky. Jsou ceněny pro svou deduktivní povahu, universalitu, přenositelnost a široké možnosti, které plynou z jejich precizních matematických základů. Jednotný přístup založený na teorii abstraktní algebraické logiky (AAL) hluboce přispívá ke studiu této široké rodiny logických systémů. Technicky vzato, AAL studuje tzv. relace důsledku: relace mezi množinami formulí a formulemi indikující, které formule plynou z kterých množin předpokladů. Toto základní nastavení je ovšem poměrně omezující v požadavku, aby předpoklady tvořily množinu. Lze si představit dvě (související) zobecnění, která by učinila teorii AAL silnější, univerzálnější a šířeji aplikovatelnější: a) uvažovat multi-množiny předpokladů, vhodné zejména pro tzv. usuzování založené na zdrojích, které je v informatice poměrně běžné: zde považujeme předpoklad za zdroj a je jistě rozdíl, zda máme jistý zdroj k dispozici jednou nebo padesátkrát. b) uvažovat fuzzy množiny předpokladů, vhodné zejména pro tzv. škálované usuzování: zde nám fakt, že předpoklady nejsou splněny plně, ale třeba jen částečně, umožní (na rozdíl od klasického přístupu) odvodit alespoň částečné splnění některých závěrů. Cílem studenta je rozpracovat zobecnění AAL založené na jedné z těchto variant. Výhodou je, že směřování výzkumu je jasné: standardní výsledky AAL bude třeba dokázat v novém obecném nastavení. Zcela netriviální ovšem bude vymyslet smysluplné zobecnění základních pojmů, aby dávaly přirozené rozšíření stávající teorie a přitom zahrnovaly existující partikulární logické systémy s fuzzy nebo multi- množinami předpokladů.
literatura: [1] Petr Cintula, Carles Noguera. A General Framework for Mathematical Fuzzy Logic. In Handbook of Mathematical Fuzzy Logic - Volume 1. London, College Publications, pp. 103-207, 2011. [2] Janusz Czelakowski. Protoalgebraic Logics. Kluwer, Dordercht, 2001. [3] Josep Maria Font, Ramon Jansana, and Don Pigozzi. A survey of Abstract Algebraic Logic. Studia Logica, 74(1-2):13-97, 2003.
naposledy změněno: 15.04.2013 17:05:21

za obsah této stránky zodpovídá: Ľubomíra Dvořáková | naposledy změněno: 12.9.2011
Trojanova 13, 120 00 Praha 2, tel. 224 358 540, pevná linka 224 923 098, fax 234 358 643
České vysoké učení technické v Praze | Fakulta jaderná a fyzikálně inženýrská | Katedra matematiky