Analytická řešení nefickovské difuze

školitel: Ing. Václav Klika, Ph.D., Mgr. Michal Kozák
e-mail: zobrazit e-mail
typ práce: bakalářská práce, diplomová práce
zaměření: MI_MM, MI_AMSM
klíčová slova: difuzní rovnice, analytická řešení, symetrie diferenciálních rovnic
odkaz: http://mafia.fjfi.cvut.cz/download/NonfickDiffuAnalyticsMAFIA.pdf
přiložený soubor: ikona pdf
popis: Fickův zákon difuze (stejně jako Fourierův zákon vedení tepla), $\mathbf{j}_{D_{\alpha}}= D_{\alpha}\nabla c_{\alpha}$, kde $ c_{\alpha}$ je koncentrace, $D_{\alpha}$ je difuzní konstanta a $\mathbf{j}_{D_{\alpha}}$ je difuzní tok, je za jistých předpokladů dobrým modelem transportních procesů v prostředí. Navíc lze v tomto případě analyticky spočítat řešení difuzní rovnice (rovnice vedení tepla) s bodovým zdrojem, tzv. fundamentální řešení (viz předmět MMF/RMF). Jednou jeho vlastností je nereálnost rychlosti šíření informace prostorem (nekonečná rychlost). Předmětem této práce je shromáždit známá (ideálně i neznámá) analytická řešení difuzní rovnice pro nekonstantní závislost difuzní konstanty na koncentraci, umět tato řešení spočítat a porozumět metodám řešení. Například je známo analytické řešení pro $\mathbf{j}_{D_{\alpha}}= D_{\alpha} c_{\alpha}^m\nabla c_{\alpha}$, které vykazuje zcela odlišné kvalitativní chování od fickovské difuze, a sice konečnou rychlost šíření čela difuzní vlny. Tuto úlohu lze úspěšně řešit v rámci studia symetrií diferenciálních rovnic, což je velmi silný a obecný nástroj pro analytická řešení diferenciálních rovnic. V neposlední řadě budeme zkoumat analytická řešení smíšených úloh (zadaná okrajová i počáteční podmínka) v těchto problémech pomocí integrálních transformací. Student v průběhu řešení této práce získá přehled a zručnost v analytickém hledání řešení obyčejných i parciálních diferenciálních rovnic, seznámí se se základy nerovnovážné termodynamiky kontinua pro získávání evolučních rovnic uvažovaného problému a naučí se pracovat v matematickém prostředí (Mathematica).
literatura: [1] SR De Groot and P Mazur. Non-equilibrium thermodynamics. Dover Publications, 2013. [2] Peter E Hydon. Symmetry methods for diff erential equations: a beginner\'s guide, volume 22. Cambridge University Press, 2000. [3] Mark Kot. Elements of mathematical ecology. Cambridge University Press, 2001. [4] JD Murray. Mathematical biology, volume 2. springer, 2002. [5] Peter J Olver. Applications of Lie groups to di fferential equations, volume 107. Springer, 2000. [6] Laurent Schwartz. Mathematics for the physical sciences. New York, 1966. [7] Vasilij S Vladimirov. Equations of mathematical physics. Moscow Izdatel Nauka, 1, 1976.
naposledy změněno: 17.04.2014 10:17:55

za obsah této stránky zodpovídá: Ľubomíra Dvořáková | naposledy změněno: 12.9.2011
Trojanova 13, 120 00 Praha 2, tel. 224 358 540, pevná linka 224 923 098, fax 234 358 643
České vysoké učení technické v Praze | Fakulta jaderná a fyzikálně inženýrská | Katedra matematiky