Tenzorové rozklady, teorie a aplikace

školitel: Ing. Petr Tichavský, CSc.
e-mail: zobrazit e-mail
typ práce: dizertační práce
zaměření: MI_MM
odkaz: http://si.utia.cas.cz/contactPT.htm
popis: Pojem tenzor zde chápeme jako vícerozměrovou datovou struktury pravoúhlého tvaru. Například sekvence matic stejného tvaru je tenzor řádu 3. Takové datové struktury se vyskytují v praxi přirozeně, jako například pravděpodobnostní rozložení N diskrétních náhodných veličin je tenzor řádu N, nebo jsou konstruovány uměle za účelem separace signálů z jejich směsi. Tenzorové rozklady jako je kanonický rozklad, Tuckerův rozklad, nebo blokový rozklad lze využít v mnoha aplikacích pro klastrování, detekci, slepou separaci, a také hrají důležitou roli v matematické teorii složitosti algebraických operaci, jako je např. maticové násobení. Je zde mnoho ještě nevyřešených problémů a otázek. Téma disertace zahrnuje vývoj nových metod rozkladu tenzorů a jejich aplikace.
literatura: J. M. Landsberg, Tensors: Geometry and Applications, AMS 2012.
P. M. Kroonenberg: Applied Multiway Data Analysis, Wiley, 2008
A. Cichocki R. Zdunek, A.H. Phan, S.-I. Amari: Nonnegative Matrix and Tensor Factorizations, Wiley 2009
T.G. Kolda, B.W. Bader: Tensor decompositions and applications, SIAM Review, vol. 51, no.3, pp. 455--500, Sept. 2009
P. Comon: Tensors: a brief introduction, IEEE Signal Processing Magazine, vol. 31, no. 3, pp. 44--53, May 2014.
naposledy změněno: 13.09.2016 10:30:08

za obsah této stránky zodpovídá: Ľubomíra Dvořáková | naposledy změněno: 12.9.2011
Trojanova 13, 120 00 Praha 2, tel. 224 358 540, pevná linka 224 923 098, fax 234 358 643
České vysoké učení technické v Praze | Fakulta jaderná a fyzikálně inženýrská | Katedra matematiky