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DNY 2014
sborník workshopu doktorandů FJFI
oboru Matematické inženýrství

14. a 21. listopadu 2014

P. Ambrož, Z. Masáková (editoři)



Doktorandské dny 2014
sborník workshopu doktorandů FJFI oboru Matematické inženýrství

P. Ambrož, Z. Masáková (editoři)
Kontakt petr.ambroz@fjfi.cvut.cz / 224 358 569

Vydalo České vysoké učení technické v Praze
Zpracovala Fakulta jaderná a fyzikálně inženýrská
Vytisklo Nakladatelství ČVUT-výroba, Zikova 4, Praha 6
Počet stran 274, Vydání 1.

ISBN 978-80-01-05605-9



Seznam příspěvků

Limit Distribution and Three-State Quantum Walk
I. Bezděková . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Phase Transition in Pedestrian Flow
M. Bukáček . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Bethe Vectors for Heisenberg Spin Chains
J. Fuksa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Dynamic Texture Modelling and Editing
M. Havlíček . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Beta-Expansions of Rational Numbers in the Quadratic Pisot Bases
T. Hejda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Pseudo-Random Number Generators in Statistical Thermodynamics
I. Horňák . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Headway Distribution for TASEP with Parallel Updates
P. Hrabák . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Mathematical Modeling of the Swelling Behavior of Articular Cartilage
J. Hradilová . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Dynamic Model and Requirements Engineering
R. Hřebík . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Edge Detectors for Alzheimer‘s Disease Diagnosis from 3D SPECT Image
M. Jandová . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Spectral Asymptotics of a Strong d‘ Interaction Supported by a Surface
M. Jex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Výpočet fázové rovnováhy systému CO2 – H2O
T. Jindrová . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Weyl Group Orbit Functions in Image Processing
O. Kajínek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Cartanovy podalgebry a řešitelná rozšíření Lieových algeber
D. Karásek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Implementation of Grid Coarsening Algorithm for Algebraic Multigrid on GPU
V. Klement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Fault Displacements in Central Europe Related to the Tōhoku Earthquake
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Předmluva
Doktorandské dny jsou setkáním, na které se každoročně těší především doktorandi

oboru Matematické inženýrství na FJFI, ale i jejich školitelé a další spřátelení členové
akademické obce ČVUT. Letos se konají již podeváté a opět na nich studenti vystoupí s
prezentacemi své výzkumné práce. Čekají nás příspěvky z oblasti diskrétní matematiky,
teoretické i aplikované informatiky, numerické matematiky, stochastického modelování a
v neposlední řadě také matematické fyziky. Tento sborník přináší texty k příspěvkům a
abstrakty vystupujících studentů.

I tento ročník workshopu Doktorandské dny finančně podpořila Studentská grantová
soutěž ČVUT, grant SVK 34/14/F4. Děkujeme.

Editoři
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Abstract. If we begin with well-known two-state Hadamard walk, we see that the limit distri-
bution depends on the choice of the initial state. In [1] the distribution is derived with respect
to the initial state in standard basis. Nevertheless in [3] authors derived the distribution in
di�erent basis that is formed by eigevectors of the coin operator. This approach simpli�es the
resulting description of the walk. The aim of this work is to describe how the choice of the
inicial state a�ects higher-dimensional quantum walks, namely we take two deformations of the
three-state Grover walk called eigenvalue and eigenvector family. Both families exhibits the
e�ect of localization, which means additional peak at the origin of the probability distribution.
The construction of the eigenvalue and eigenvector family is based on continuous transfer of
the Grover matrix to some trivial matrix [4]. If we take anti-diagonal permutation matrix as a
coin, the walk will be localizing and the spectrum of this matrix and the Grover matrix di�ers
in a sign of one eigenvalue, while the eigenvectors can be chosen the same. The addition of a
phase factor into the spectral decomposition of the Grover matrix provides continuous transfer
between these two matrices and give us so-called eigenvalue family. The eigenvector family is
the opposite case. We have to parametrize eigenvectors of the Grover matrix in order to get
trivial matrix with the same spectrum. Recently, quantum walk with eigenvector family as a
coin operator were studied from the viewpoint of the limit distribution [2]. The author derived
the distribution with respect to the initial state in standard basis. However, as in the case of
Hadamard walk, one can also express the initial state in di�erent and more convenient basis. The
new basis formed by eigenvectors of the coin operator simpli�es the result and reveals previously
hidden features. Similar approach can be applied to the eigenvalue family. Both families lead
to the localizing walk so the dependence of trapping probability at the origin on the eigenvector
basis can be expressed.

The full paper: Martin �tefa¬ák, Iva Bezd¥ková and Igor Jex, Phys. Rev. A 90, 012342
(2014) or arXiv:1405.7146.

Keywords: quantum walk, localization, limit distribution

Abstrakt. Jiº u Hadamardovy procházky s dv¥ma stavy chodce je vid¥t, ºe limitní rozd¥lení
závisí na volb¥ po£áte£ního stavu. V [1] je toto rozd¥lení odvozeno vzhledem k po£áte£nímu
stavu vyjád°enému ve standardní bázi. P°echodem k jiné bázi se toto rozd¥lení dá zjednodu²it,

∗This work was supported from SGS13/217/OHK4/3T/14 and GA�R 13-33906S.
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2 I. Bezd¥ková

jako nejvhodn¥j²í se p°i tom chová báze tvo°ená vlastními vektory mince [3]. Zajímali jsme
se o to, zda by ²el podobný p°ístup pouºít i pro jiné typy procházek. Konkrétn¥ jsme vy-
brali dv¥ zobecn¥ní Groverovy procházky, které vykazují lokalizaci, tedy nenulový pík v po£átku
pravd¥podobnostního rozd¥lení. Zobecn¥ní budeme nazývat jako rodina vlastních hodnot a ro-
dina vlastních vektor·. Jejich konstrukce probíhá jako parametrizace Groverovy mince spole£n¥
s jistou triviální mincí [4]. V prvním p°ípad¥, kdy jde o rodinu vlastních hodnot, bude na²e
triviální mince rovna antidiagonální permuta£ní matici. Ta má aº na znaménko u jedné vlastní
hodnoty stejné spektrum jako Groverova matice, p°i£emº vlastní vektory obou matic m·ºeme
volit shodné. P°idáme-li do spektrálního rozkladu Groverovy matice k oné vlastní hodnot¥ fá-
zový faktor, m·ºeme spojit¥ p°echázet mezi Groverovou a permuta£ní maticí. Opa£ný p°ípad
je rodina vlastních vektor·, kdy je naopak pot°eba parametrizovat vlastní vektory Groverovy
matice tak, aby p°e²li ve vlastní vektory triviální matice se stejným spektrem. Nedávno byla
rodina vlastních vektor· jako operátor mince studována z pohledu limitního rozd¥lení [2]. Autor
zde odvodil limitní rozd¥lení vzhledem k po£áte£nímu stavu ve standardní bázi. Podobn¥ jako
v p°ípad¥ Hadamardovy procházky je vhodn¥j²í, pokud po£áte£ní stav vyjád°íme v jiné bázi.
Ta bude op¥t tvo°ena vlastními vektory operátoru mince. Nová báze navíc odhalí d°íve skryté
zajímavé vlastnosti. Stejný postup se dá aplikovat i na procházku, kde jako minci volíme rodinu
vlastních hodnot. Jelikoº v obou p°ípadech jde o kvantovou procházku vykazující lokalizaci,
spo£teme rovn¥º pravd¥podobnost záchytu £ástice v po£átku v závislosti na vhodné volb¥ báze.

Plná verze £lánku: Martin �tefa¬ák, Iva Bezd¥ková and Igor Jex, Phys. Rev. A 90, 012342
(2014) nebo arXiv:1405.7146.

Klí£ová slova: kvantová procházka, lokalizace, limitní rozd¥lení
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Abstract. The transition between low and high density phases is a typical feature of systems
with social interaction (e.g. tra�c systems [2]). This contribution focuses on such characteristic
in a simple evacuation design of one room with one entrance and one exit, which can be under-
stood as one segment of larger network. The phase of the system is evaluated with respect to
the in�ow � controlled boundary condition. Critical values of in�ow and out�ow are described
with respect to the transition from low density to congested state.

To handle this task, four passing-through experiments were organized [4], [7], [8]. By means
of automatic image processing, pedestrians were detected, identi�ed and signi�cant qualities (e.g.
travel time or occupation) were extracted. Moreover, due to the ability of speci�c participant
identi�cation, detailed microscopic analysis of travel time is provided. The data measured
under experimental conditions are used to study general qualities of pedestrian �ow as well, the
fundamental diagram describing the dependency of �ow or velocity to density is evaluated.

Simultaneously to this project, the same design was studied by means of Floor Field model
[1], [3], a cellular automata tool frequently used to capture pedestrian �ow. This model was
enhanced by adaptive time span and principle of bounds [5], which improve the realistic behavior
on the microscopic level. Considering the average travel time through the room and average room
occupancy the settings incorporating the bounds and synchronous update seems to match the
experimental data better [6].

Keywords: pedestrian behavior, egress experiments, image processing

Abstrakt. Fázový p°echod mezi stavy nízkých a vysokých hustot je typickým prvkem po-
zorovaným v systémech se sociálními interakcemi (nap°. dopravní systémy [2]). Tento p°ísp¥vek
se zam¥°uje na výzkum tohoto jevu na jednoduchém scéná°i � pr·chod skupiny chodc· míst-
ností s jedním vchodem a jedním východem, který m·ºe reprezentovat jeden prvek rozsáhlej²ího
komplexu. Fázový p°echod byl vyhodnocován z pohledu kontrolovaného p°íchodu osob do míst-
nosti (okrajová podmínka). Kritické hodnoty toku do místnosti a ven byly stanoveny na základ¥
p°echodu systému ze stavu nízkých hustot do stavu kongesce.

V pr·b¥hu posledních let prob¥hly ve studovn¥ FJFI £ty°i evakua£ní experimenty s d·razem
na automatické zpracování kamerových záznam· [4], [7], [8]. Jednotliví chodci byli s pomocí

∗This work was supported by the grant SGS12/197/OHK4/3T/14 and the research program MSM
6840770039.
†This study has been provided in cooperation with Pavel Hrabák.
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4 M. Buká£ek

speciálních £epic rozpoznáni, identi�kováni a na základ¥ jejich drah byly vyhodnoceny výz-
namné veli£iny (nap°. £as pr·chodu £i obsazenost). Díky moºnosti identi�kace konkrétních
ú£astník· jsou navíc p°edstaveny n¥které mikroskopické vlastnosti pohybu chodc·. M¥°ená
data byla pouºita i k ov¥°ení základních vlastností pohybu chodc·, nap°íklad fundamentální
diagram popisující závislost rychlosti £i toku na hustot¥ byl vyhodnocen.

Paraleln¥ k tomuto projektu byl totoºný design simulován pomocí Floor Field modelu [1], [3],
celulárního automatonu b¥ºn¥ vyuºívaného k modelování pohybu lidí. tento model byl dopln¥n
o adaptivní £asový krok a princip vazeb mezi chodci [5], coº vylep²uje vlastnosti modelu na
mikroskopické úrovni. Z pohledu pr·m¥rného £asu pr·chodu a pr·m¥rné obsazenosti se ukazuje,
ºe nastavení modelu zahrnující vazby a synchronní update odpovídá experimentáln¥ m¥°eným
dat·m nejlépe [6].

Klí£ová slova: chování chodc·, evakua£ní experimenty, zpracování obrazu
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Abstract. Algebraic Bethe ansatz has turned out as remarkably su�cient tool in the theory
of quantum integrable systems. Its origins come up to the 80's and are connected mainly with
Leningrad shool. Since that time, it was used successfully to solve an amount of quantum
models, cf. [3, 8]. This contribution deals with algebraic Bethe ansatz for XXX- and XXZ-spin
chains which were used, e.g., to describe crystals with speci�c properties [9]. Our �rst aim is to
describe Bethe vectors in fermionic representation [7]. At �rst, we prescribe a way how to write
Bethe ansatz in terms of fermions. Then, generators of Yang-Baxter algebra are expressed in
fermionic representation and used to calculate explicit form of Bethe vectors up to 3-magnons.
We formulate a conjecture about general form of M -magnons, cf. [1, 2]. In the next part, we
discuss N-component model and use it to �nd explicit form of Bethe vectors in terms of usual
spin operators. This result turns out to be useful to prove our conjecture about Bethe vectors in
fermionic representation [4, 1, 2]. We also discuss inhomogeneous XXX- and XXZ-spin chains
and �nd explicit forms of their Bethe vectors [4].

This contribution is based on our texts [4, 1, 2].

Keywords: Yang�Baxter equation, algebraic Bethe ansatz, Bethe vectors, quantum integrable
systems

Abstrakt. Algebraický Betheho ansatz se osv¥d£il jako velice úsp¥²ná metoda kvantové inte-
grability. Jeho po£átky sahají do 80. let a jsou spjaty p°edev²ím s Leningradskou ²kolou. Od
té doby byl úsp¥²n¥ pouºit k °e²ení mnoºství kvantových model·, viz. [3, 8]. Tento p°ísp¥vek
se zabývá algebraickým Betheho ansatzem pro spinové XXX a XXZ °etízky, které byly pouºity
nap°. k popisu krystal· se speci�ckými vlastnostmi [9]. Na²ím prvním cílem je popsat Betheho
vektory pomocí fermion· [7]. Nejd°íve popí²eme zp·sob, jak formulovat Betheho ansatz ve
fermionové reprezentaci. Poté v této reprezentaci vyjád°íme generátory Yang-Baxterovy alge-
bry a pouºijeme je pro výpo£et explicitní podoby Betheho vektor· aº do 3-magnon·. Formu-
lujeme hypotézu o obecné podob¥ M -magnon·, srov. [1, 2]. V dal²í £ásti se budeme zabývat
N-komponentním modelem a pouºijeme ho k nalezení explicitní podoby Betheho vektor· v ob-
vyklé reprezentaci pomocí spinových operátor·. Tento výsledek se ukáºe být uºite£ný k d·kazu
na²í domn¥nky o Betheho vektorech ve fermionové reprezentaci [4, 1, 2]. Rozebereme také p°ípad
nehomogenních XXX a XXZ °etízk· a nalezneme explicitní tvar jejich Betheho vektor· [4].

Tento p°ísp¥vek je zaloºen na na²ich textech [4, 1, 2].

Klí£ová slova: Yang�Baxterova rovnice, algebraický Betheho ansatz, Betheho vektory, kvantové
integrabilní systémy

∗This work has been supported by the grant SGS12/198/OHK4/3T/14.
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Abstract. Real world materials often change their appearance over time. If these variations

are spatially and temporally homogeneous then the visual appearance can be represented by a

dynamic texture which is a natural extension of classic texture concept including the time as

an extra dimension. In this article we present possible way to handle multispectral dynamic

textures based on a combination of input data eigen analysis and subsequent processing of

temporal mixing coe�cients. The proposed method exhibits overall good performance, o�ers

extremely fast synthesis which is not restricted in temporal dimension and simultaneously enables

to compress signi�cantly the original data and additionally perform texture editing.

Keywords: Dynamic texture, texture analysis, texture synthesis, texture editing, data compres-

sion, computer graphics.

Abstrakt. Skute£né materiály velmi £asto m¥ní sv·j vzhled v £ase. Pokud jsou tyto zm¥ny

prostorov¥ a £asov¥ homogenní pak lze vizuální vlastnosti reprezentovat dynamickou texturou,

která p°edstavuje p°irozené roz²í°ení konceptu klasické textury o £as jako dodate£ný rozm¥r. V

tomto £lánku p°estavujeme moºný p°ístup k multispektrálním dynamickým texturám zaloºený

na kombinaci vlastní analýzy vstupních dat a následného zpracování £asových sm¥sových koe-

�cient·. Navrºená metoda vykazuje celkov¥ dobré vlastnosti, nabízí extrémn¥ rychlou syntézu,

která není omezená v £asovém rozm¥ru a zárove¬ umoº¬uje výrazn¥ komprimovat p·vodní data

a navíc textury editovat.

Klí£ová slova: Dynamická textura, analýza textur, syntéza textur, editace textur, komprese dat,

po£íta£ová gra�ka.

1 Introduction

Dynamic textures (DT) can be de�ned as spatially repetitive motion patterns exhibiting
homogeneous temporal properties. Good example might be smoke, �re or liquids, also
waving trees, straws or some moving mechanical objects can be also sometimes considered
as DT. A sequence of either monospectral or multispectral images which are called frames
is the simplest representation of DT. Measured DT data are always represented by a �-
nite length sequence, sometimes too short for an intended application. This property may

∗This research was supported by the grants GACR 14-10911S, GACR 14-0265S.
†Pattern Recognition Department, Institute of Information Theory and Automation, ASCR.
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8 M. Havlí£ek

limit possible use of DTs in virtual reality systems so temporally unconstrained synthesis
of DT is an interesting and challenging research problem in several computer graphics,
computer vision, and pattern recognition applications. On the other hand, synthesis can
be considered when dynamics of the texture can be represented more e�ciently.

The contribution of this paper is to propose straightforward multispectral DT mod-
elling method with low computational demands enabling extremely fast synthesis of ar-
bitrarily long DT sequence and in addition compression of original data and possible
texture editing. The method is based on input data dimensionality reduction using eigen
analysis and selective elimination of resulted temporal coe�cients.

2 Related Work

Already published articles dealing with DTs can be divided according to the application
to: recognition, representation and synthesis [2]. The DT synthesis is apparently the most
di�cult task and there are only few papers on this topic available [11, 10, 1, 3, 5]. Some
methods [11, 10] are limited by time consuming synthesis algorithm (in addition method
[11] requires some high level of temporal homogeneity of the input and is restricted to
monospectral DTs), method [1] is limited to �nite length sequence generation.

Another possibility is to utilize so called video editing techniques [12, 9, 6], developed
for general video sequences originally, which can be used for DT synthesis as DT can
be considered as a special case of general video sequence. For example video texture
generation based on searching for transition points for looping with additional blending
and morphing [9]. Evident drawback is using blend and morphing to achieve continuity
of the synthesized sequence which may introduce blur and other unfavourable visual
artifacts. This issue was solved in [6]. Another possibility is tree structured vector
quantization published in [12]. This method sometimes fail to reproduce global structures
which may appear in the original data [6]. Video editing techniques are also very often
time demanding [3]. We compare most of the above mentioned methods in Section 8.

3 Method Overview

The whole modelling process can be divided into two phases: analysis and synthesis. The
�rst step of the analysis is so called normalization of DT during that an average frame
from all frames in the analyzed sequence is computed per-pixel and then subtracted per-
pixel from each frame in the DT. Eigen analysis, described in detail in Section 4, follows.
The results of that analysis are eigen images and temporal mixing coe�cients which are
further processed during temporal mixing coe�cients reduction as explained in Section
5. Average frame, eigen images and reduced temporal mixing coe�cients are saved for
synthesis purposes. Synthesis procedure, described in detail in Section 6, consists of non-
deterministic temporal mixing coe�cients selection, sequence synthesis driven by chosen
coe�cients and denormalization which is an addition of the average frame to every single
frame in the synthesized sequence i.e. inverse procedure to the normalization.
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4 Dynamic Texture Eigen Analysis

Normalized DT sequence is analyzed and compressed by means of Principal Component
Analysis (PCA) which is able to create a low-dimensional representation of the original
data describing them as accurately as possible. Original data can be then reconstructed
simply by linear combination of the low-dimensional basis. We used traditional PCA
method for this task because of its optimal performance beside alternative choices as for
example non-linear techniques [7].

Values corresponding to pixel intensities of individual frames from the normalized
sequence are arranged into column vectors forming (n × t) matrix C where n is a
number of values equals frame width × frame height × number of spectral planes in the
DT and t is a number of DT frames. Then a covariance (t×t) matrix A is computed as
A = CTC. Thus the matrix A expresses how individual frames of the sequence depend
on the others. The matrix A is decomposed using singular value decomposition so that
A = UDUT , where U is an orthogonal matrix of eigen vectors and D is a diagonal
matrix of corresponding eigen numbers. Their values are proportional to their signi�cance
in data reconstruction so that some of them can be not used with simultaneous minimal
impact on reconstruction error. Therefore only k < t eigen vectors corresponding to
eigen numbers which are expected to represent the most of the information are used. A
threshold τ for selecting vectors which are used is computed from the values of the eigen
numbers as:

τ =
1

t

t∑
i=1

D(i,i) . (1)

If D(i,i) > τ, i ∈ {1, . . . , t} then i-th column of D and i-th column of U are used.
All used columns of D and U form new matrices D∗ and U∗ respectively. The
(n× k) matrix I of eigen images can be computed as: I = CT , where T is a (t× k)
matrix with elements:

T(i,j) =
U∗(i,j)√
D∗(j,j)

.

Computed matrix I represents the reduced basis for the reconstruction of the original
data therefore a matrix representing linear combination coe�cient is needed. This role
is played by a matrix of temporal mixing coe�cients which is computed as: M = ITC.
The (k × t) matrix M , which in fact re�ects the overall dynamics of the sequence, is a
subject of further processing described in following Section.

5 Temporal Mixing Coe�cients Reduction

The matrix of temporal mixing coe�cients M described in previous Section can be
further processed so that it provides additional compression and enables to apply non-
deterministic synthesis algorithm guaranteeing potentially in�nite DT sequence genera-
tion. For non-deterministic synthesis purposes analyzed DT is rede�ned in terms of graph
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theory so that the sequence is represented as a directed graph G where the individual
frames play the role of vertices and the order of the frames plays the role of edges i.e. the
graph structure de�nes for each frame the set of frames which may immediately follow.
Thus before the reduction an adjacency matrix A of G is formed as:

A(i,j) =

{
1 j = i+ 1
0 otherwise

,

where i ∈ {1, . . . , t}, j ∈ {1, . . . , t}. The idea of the reduction is to keep only those
columns of M for which there is no other su�ciently similar column in M , in terms of
certain metric, or generally distance.

Let a (t× t) matrix ∆ is composed of elements:

∆(i,j) =
k∑

l=1

(M(l,i) −M(l,j))
2 , (2)

i.e. ∆ consists of all mutual distances of the columns of M . Apparently, ∆ is
symmetric, with zero diagonal, and therefore it is su�cient to take into account only
those elements ∆(i,j) for which i < j holds and let ∆(i,j) = 0 otherwise. Distance (2)
was chosen because of its proven reasonable properties for column comparison purpose
and low computing demands.

An average distance δ is de�ned by the elements of ∆ as:

δ =
1

|Z|
∑

Z

∆(i,j) ,

where Z is the set de�ned as {∆(i,j) : i < j}. The average distance δ plays the
role of the criterion determining the similarity of the columns of M , in the sense of the
distance (2).

First adjacency matrix A is processed using ∆ and δ as described in following
algorithm: ∀i ∈< 1; t − 1 >: ∀j ∈< i + 1; t > if ∆(i,j) < δ holds then update adjacency
matrix as follows: A(i,j) = 0, A(i,i) = 1 and in addition if j < t also holds then update
adjacency matrix further like that: A(j,j+1) = 0, A(i,j+1) = 1. A brief demonstration of
presented algorithm is shown in Figure 1.

Remaining r columns of M , i.e. every column i : ∃j ∈ {1, . . . , t} : A(i,j) = 1, form
new (k× r) matrix M∗ which has to be stored and is later used for synthesis purposes
described in following Section.

6 Dynamic Texture Synthesis

The goal of the synthesis is to create DT sequence of required length. Dimensions of its
individual frames are identical to those of the original DT as the method is restricted to
temporal synthesis and compression.

During the synthesis a (k× t†) matrix of temporal mixing coe�cients M †, where t†

is a length of the synthesized sequence (in general di�erent from t) is created column wise
according to the following algorithm. The �rst column of M † is randomly chosen column
of M∗. Let the last chosen column of M∗ has index i ∈ {1, . . . , r} then the next column
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Figure 1: The reduction algorithm illustrated on the 5 frames long sample sequence.
Numbering re�ects the order of the frames in the original sequence. Vectors of the mixing
coe�cients corresponding to the individual frames are symbolically represented in the
form of bar graphs (the height of each bar equals to the value of an individual coe�cient).
In this example reduction is performed in three steps: 1) vector of mixing coe�cients of
the �rst frame is compared with vectors of mixing coe�cients of the frames of the rest
of the sequence as indicated by thin dashed arrows, 2) second frame was evaluated as
too similar to the �rst so it was replaced, graph structure was updated and vector of
mixing coe�cients of the third frame is compared with vectors of mixing coe�cients of
the remaining frames, 3) resulting graph structure describing reduced sequence.

is randomly chosen column of M∗ from those which ful�ll: A(i,j) = 1, j ∈ {1, . . . , r}.
This provides required continuity of the synthesized sequence since the set from which
the selection is performed consists of the frames such that there exists an edge between
them and the last chosen one in G (see Section 5).

If there does not exist any such column in M∗ then the column closest to the i-th
column of M∗, in sense of (2), is chosen. This can occur if the graph representing the
DT after reduction step described in Section 5 is not connected. Above mentioned rule
provides continuous sequence with no need to utilize any additional technique such as
morphing which could introduce some unfavourable artifacts to the visual information.

It is important to not allow choose the same columns of M∗ several times in succession
to avoid texture dynamics turn to static but it was observed that up to three consecutive
frames of the same has almost no observable impact on the result. Synthesized normalized
DT sequence C† which is a (n × t†) matrix can be then computed simply as: C† =
IM † as explained in Section 4. The last step is an addition of the average frame to
each synthesized frame in the sequence that is inverse procedure to the normalization
mentioned in Section 3.

7 Dynamic Texture Editing

There are several possibilities how to edit DT using this approach i.e. �nely adjust
overall appearance so that edited DT still looks realistic. In general texture editing
is complex, very often user directed task (image editing software) and although some
attempts have been made to automate this process it still remains an open problem. It
is possible to replace average frame and eigen images of the analyzed DT with average
frame and eigen images of another DT or even edit original average frame as a normal
multispectral image. In this case characteristic features of DT such as colours and lower
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clouds 23.0534 15.8105 4.4309
�ame 9.6099 3.1155
fountain 29.7381 6.756 2.8560
grass 15.2763 18.4564 6.0214
ocean 34.1274 31.3391 4.5209 20.3366 6.3397
pond 14.2968 13.7776 7.4999
river 40.3987 11.9223
smoke 36.9984 15.4730 23.8452 1.7904
sparkle 9.5897 1.5501
waterfall 18.7805 21.4468 55.8353 5.0756
waterfall2 10.9446 17.6794 1.9639

Table 1: Comparison of MAD quality criterion values on the Graphcut texture database
for six alternative DT synthesis methods, from the left: Method [6] (temporal cut only),
[6] (spatio temporal cut), [9], [12], [1], [10] and our proposed method.

frequencies are a�ected by new average frame, higher frequencies by eigen images and
overall dynamics is still driven by temporal mixing coe�cients. Similarly it is possible to
replace either matrix of eigen images or mixing coe�cients (or both) with similar e�ect
(or even only average frame) but in this case both DTs should be of a similar nature (i.g.
similar movement). There are another limitations of this approach. Both textures should
be rather dynamic textures than dynamic scenes (i.e. general video containing several
di�erent and in general moving objects or dynamic textures) and it is necessary to both
DTs have the same dimensions. Some of the achieved results is showed in Fig.2. Apart
from the above mentioned options it is also possible to apply frequency swap strategy [4]
to the individual frames of the DTs as they can be considered as multispectral textures.

8 Results

For a testing purposes we used dynamic texture data sets from DynTex texture database
[8] as a source of data. Each dynamic texture from this database is typically represented
by 250 frames, which equals 10 seconds, long video sequence. We extracted its frames,
converted, saved and used as 400× 300 RGB colour images, so that (n = 360000, t =
250). As test DTs were chosen: smoke, steam, streaming water, sea waves, river, candle
light, detail of running escalator, sheet, waving �ag, leaves, straws and branches. For
a comparison with alternative synthesis methods we also tested our method on video
textures from Graphcut texture database 1 [6]. This database consists of several very
di�erent textures including corresponding textures synthesized by alternative approaches.
In case of this database textures very often di�er from each other in dimensions. Some
achieved results are showed in Fig.8. It is really hard to compare visual quality of the
results of those methods exactly as robust and reliable similarity comparison even between
two static textures is still unsolved problem up to now. We decided to compare di�erences

1http://www.cc.gatech.edu/cpl/projects/graphcuttextures/
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between original DT and synthesized DTs of individual methods. Let the original DT O
is a LO long sequence of WO×HO images with SO spectral planes and the synthesized
DT S is a LS long sequence of WS ×HS images with SS spectral planes then Mean
Absolute Di�erence of the original DT and the synthesized DT (MAD) is de�ned as:

MAD =
1

LSHW

L∑
l=1

S∑
k=1

H∑
j=1

W∑
i=1

|O(i,j,k,l) − S(i,j,k,l)| , (3)

where α = min{αO;αS} and α ∈ {L, S,H,W}. From the results listed in Tab.1
it is apparent that our method outperforms, with one exception, the others, in this
concept. Although there is not exist any sample in used database which would o�er
results obtained by all alternative methods, Tab.1 clearly demonstrates certain quality of
our method. Another comparison is further discussed in following Section.

Criterion (1) allows adjust the level of compression for each type of texture. Loss of the
information can be expressed in the amount of energy (sum of used eigen values divided
by the sum of all eigen values) which was preserved. In case of tested DTs we achieved
these results: �re: 73%, clouds: 92%, �ame: 78%, fountain: 82%, grass: 65%, ocean:
83%, pond: 77%, river: 80%, smoke: 93%, sparkle: 87%, waterfall: 62%, waterfall2:
90%. To demonstrate computing time requirements several examples are available in
following table (in this case synthesized sequence was as long as original one).

Texture Number of frames Frame resolution Analysis time Synthesis time
clouds 61 128 × 128 10s 2s
�ame 89 320 × 240 112s 4s
grass 100 224 × 144 66s 3s
smoke 32 160 × 112 4s 1s

9 Discussion

The main advantage of this method is its simplicity, e�ciency and performance, using
optimal methods for compression. Extremely fast synthesis can be even more e�ciently
performed by contemporary graphical hardware since only elementary instructions and
matrix operations have to be realized. Our synthesis algorithm is less demanding than
in case of most other methods. The synthesis is not restricted on number of frames to
be generated, unlike [1], and it is not necessary to verify synthesized frames to prevent
extremely long sequence to turn static as for example like in case [3]. However eigen
analysis may cause observable loss of information (high frequencies which may occur in
the original more precisely). In contrast to the sampling based DT modelling method
called dynamic roller [5], our method cannot simultaneously enlarge the frames of the
DT. On the other hand, this avoids possible spatial repetition of patterns which may
appear in the synthesized DT produced by the dynamic roller.

10 Conclusion

We presented a novel method for fast synthesis of multispectral dynamic textures (DT).
The main part of the approach is based on reduction of temporal coe�cients resulted
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15th frame 30th frame 45th frame 60th frame

Figure 2: Several frames of original ocean DT (top row), original river DT (middle row)
and edited DT (using average frame and eigen images of ocean DT and temporal mixing
coe�cients of river DT) (bottom row).

from DT dimensionality analysis step using the singular value decomposition which en-
ables compress signi�cantly the original data. This solution also enables extremely fast
synthesis of arbitrary number of required multispectral DT frames, which can be even
more e�ciently performed by contemporary graphical hardware. We also presented sev-
eral possibilities how to edit dynamic texture utilizing this approach. From many showed
results it is apparent that the visual properties of the original DTs stayed preserved in
the synthesized ones. We also compared our method with several existing DT synthesis
and video texture generation approaches. This method avoids some problems of the al-
ternative methods. On the other hand, proposed synthesis algorithm does not extend DT
in spatial domain. Overall, this method represents interesting alternative to the existing
approaches.
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Abstract. We study the purely periodic β-expansions of rational numbers. We give an al-

gorithm for determining the value of the function γ(β) for quadratic Pisot numbers β. For

numbers satisfying β2 = aβ + b with b dividing a, we show a necessary and su�cient condition

for γ(β) = 1, i.e., that all rational numbers p/q ∈ [0, 1) with gcd(q, b) = 1 have a purely periodic

β-expansion.
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Abstrakt. V tomto p°ísp¥vku se zabýváme £ist¥ periodickými β-rozvoji racionálních £ísel.

Umíme ur£it hodnotu γ(β) algoritmicky pro kvadratická Pisotova £ísla β. Pokud je β ko°en

rovnice β2 = aβ + b, kde a je násobkem b, dokazujeme nutnou a posta£ující podmínku pro to,

aby γ(β) = 1, tedy, aby v²echna racionální £ísla p/q ∈ [0, 1) taková, ºe q je nesoud¥lné s b, m¥la

£ist¥ periodický β-rozvoj.
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Abstract. First, George Marsaglia's Diehard battery of tests completed by autocorrelation

tests is used for standard testing of pseudo-random number generators. Autocorrelation and

bit correlation of generators are tested by means of Random Walk Test and Autocorrelation

Matrix Test. Suitability of generators to evaluating integrals by means of Monte Carlo method

is also studied. The virial coe�cients of the gases are calculated analytically and evaluated by

means of Monte Carlo method. In this paper, it requires integration in dimensions up to three.

Suitability of generators for Monte Carlo simulation in statistical physics is also tested. From

an initial random disequilibrium con�guration a �uid reaches equilibrium. Once the equilibrium

is reached, compressibility factor is measured, and the results of the simulations are compared

with the result of analytical calculation. Pseudo-random number generators are compared via

statistical test.

Keywords: Mersenne-Twister, KISS, Xorshift, DIEHARD, Metropolis Algorithm, Lennard-Jones

Potential

Abstrakt. Sada test· Diehard Geroge Marsaglii dopln¥ná autokorela£ními testy je pouºita

ke standardnímu testování generátor· pseudonáhodných £ísel. Korelace a bitová korelace jsou

testovány Testem náhodné procházky a Testem autokorela£ní matice. Dále je studován vliv

generátor· v Monte Carlo metodách. Virialní koe�cienty plyn· jsou spo£ítány analyticky a

vyhodnoceny Monte Carlo integrací. V této práci to vyºaduje integraci od jedné do t°í dimenzí.

Dále jsou provedeny testy generátor· prost°edky Monte Carlo simulace ve statistické fyzice. Z

p·vodní náhodné nerovnováºné kon�gurace plyn dosahuje rovnováhy. Po dosaºení rovnováhy je

zm¥°en kompresibilní faktor a výsledky simulace jsou porovnány s analytickým vyhodnocením.

Výsledky generátor· pseduonáhodných £ísel jsou porovnány ttestem.

Klí£ová slova: Mersenne-Twister, KISS, Xorshift, DIEHARD, Metropolis·v algoritmus, Lennard-

Jones·v potenciál

1 Introduction

The question of the choice of a right pseudo-random generator is more important every
day. Many possible ways how to generate pseudo-random numbers can be found, and
many of them are very easy to use. However, there are some pitfalls that user has to be
aware of. Many applications tolerate even bad generators, because good statistics can

∗Special thanks go to Jaromír Kukal for his assistance
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still be obtained. On the other hand, the bad choice of generator can be fatal in more
complex applications.

Some standard generators have poor quality. It was mentioned in [2] that these
standard generators have serious defect. Some of them are:

• Standard Perl rand

• Python random() (versions before V2.3; V2.3 and above are OK)

• Java.util.Random

• C-library rand(), random() and drand48()

• Matlab's rand

• Mathematica's SWB generator

From the example of �awed standard generators it can be seen that the testing is
absolutely necessary and generators have to be used carefully.

The testing of the generator is very complex subject. There is not one test, that
veri�es the quality of the generator. Sets of statistical tests, which can provide complex
view of the generator's qualities, were created. The perfect example is George Marsaglia's
Diehard battery of tests, which can serve as good initial tool for judging generator's qual-
ities. Diehard does not contain an autocorrelation test. Thus further testing should be
performed, because correlation can strongly in�uence statistics. Can we choose genera-
tors, which passed Diehard, to a speci�c application without further doubts? We want to
employ aditional tests aimed to discover suitability for application in statistical physics.

The aim of this short text is to provide testing of popular generators known for its
qualities beyond Diehard battery of test and to verify if they can be used for Monte
Carlo evaluation of integrals and simulation of statistical �uids. This paper is organized
as follows. In the next section, �uid modeling preliminaries are brie�y reviewed. Section
3 deals with various potentials, and in section (4) various approaches to generator testing
are considered, and �nally, we focus on tested generators and after that results of our
tests are provided.

2 Fluid modeling preliminaries

The basic frame of �uid modeling preliminaries enables to study the role of pseudo-random
generators by validity of results. We consider a traditional design of N particles in an
abstract box of volume V = a3 with periodic extension, where a is the dimensionless side
of the box. Particle interactions are performed via dimensionless spherically symmetric
potential function u(r) satisfying u(1) = 0. Reduced virial coe�cients can be expressed
as:

B∗2 = 3

∫ ∞
0

f(r12)r
2
12dr12, (1)

B∗3 = 6

∫ ∞
0

∫ ∞
0

∫ r12+r13

r12−r13

f(r12)f(r13)f(r23)r12r13r23dr12dr13dr23. (2)
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using dimensionless temperature T ∗ > 0 and dimensionless Mayer function

f(r) = exp
(
− u(r)

T

)
− 1. (3)

Supposing low density ρ = N/V , we can approximate the virial expansion of the
compressibility factor

z = 1 +
∞∑
i=2

B∗i−1ρ
i−1 (4)

by its �rst three terms as
z = 1 +B∗2ρ+B∗3ρ

2. (5)

Formulas (1), (2) will be used for testing of the suitability of generators for Monte Carlo
evaluation of integrals. Formula (5) presents theoretical value of compressibility factor
for evaluation of Monte Carlo simulation.

The Metropolis method of importance sampling is used to reach equilibrium from
initial random non-equilibrium con�guration. Dimensionless potential energy is expressed
as

U(r1, ..., rN) =
∑
i<j

U(rij) (6)

where rij = ||ri − rj||, and ri ∈ R3 is the position vector of ith particle. A random
perturbation of a particle position is performed in every step of the Metropolis algorithm.
The new con�guration is accepted with probability

p = min(1, exp(−∆U/T ∗)) (7)

where ∆U = Unew − U is the change of dimensionless potential energy. Once the equi-
librium is reached, compressibility factor is measured by means of Metropolis algorithm
using

z = 1− 2Wf

3NT ∗
(8)

where

Wf =
1

2

N∑
i=1

ri
∂U

∂ri

(9)

is a force virial.
The resulting values of z form a statistical sample which is easy to compare with its

theoretical value (5).

3 Included models

Three models of particle interaction are used for evaluation of virial coe�cients by in-
tegration and for �uid modeling testing. Lennard-Jones model (LJ) is selected as a
representative of a traditional physically motivated potential expressed as:

u(r) = 4(r−12 − r−6). (10)
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Table 1: Virial coe�cients of Lennard-Jones �uid

T ∗ B∗2 B∗3
1 -2.538081 0.42968
3 -0.115234 0.35230
5 0.243344 0.31506

Table 2: Virial coe�cients of Constrained Potential Fluid

T ∗ B∗2 B∗3
1 0.207277 0.010017
3 0.078072 0.000567
5 0.048065 0.000134

Its virials can not be evaluated analytically, so numerical integration is necessary. The
obtained values of B∗2 , B

∗
3 in agreement with [1] are listed in Tab. 1. Considering the real

models often do not permit analytical evaluation of virial coe�cients, we establish trivial
models of particle repulsion permitting an analytical evaluation of virial coe�cients. The
�rst novel model called Constrained Potential Fluid (CP) with dimensionless potential

u(r) = max(1− r, 0) (11)

is introduced here. We can directly calculate

B∗2 = 1− 3T ∗ + 6(T ∗)2 + 6(T ∗)3(Q− 1) (12)

and

B∗3 =
5

8
− 15

4
T ∗ +

3(T ∗)2

4
(13− 2Q) +

3(T ∗)3

2
(25Q− 6)− 243(T ∗)4

4
Q+

9(T ∗)5

4
(51Q− 16) +

3(T ∗)6

8
(160− 537Q+ 384Q2 − 7Q3)

(13)

where Q = exp(− 1
T ∗ ). The obtained values of B∗2 , B

∗
3 are listed in Tab. 2.

The last model included is Logarithmic Potential Fluid (LOG) with dimensionless
potential

u(r) = max(−lnr, 0). (14)

Using (1), we can express the second reduced virial coe�cient of LOG as:

B∗2 = (1 + 3T ∗)−1. (15)

LOG permits analytical evaluation of the third virial coe�cient only for dimensionless
temperatures T ∗ = 1/n, where n ∈ N . Values of virial coe�cients for three dimensionless
temperatures are listed in Tab. 3.

Main advance of developed models ( CP , LOG ) is its similarity to hard sphere model
for r > 1, but they can be used for simulation via standard Monte Carlo techniques.
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Table 3: Virial coe�cients of Logarithmic Potential Fluid

T ∗ B∗2 B∗3
1/5 0.6200 686005/3139136
1/3 0.5000 1313/10500
1 0.2500 97/5040

4 Generator testing

4.1 Tests of pseudo random number generators

The goal of this text is to make generator testing very thorough. For this reason, Diehard
battery (DIEHARD) [3] battery of tests is used. DIEHARD was presented by George
Marsaglia in 1995. In order to provide tests that are more stringent than usual easy-to-
pass tests, DIEHARD combines various challenging tests. The battery is very popular
and it is often considered to be a standard in good quality generator testing.

DIEHARD lacks a test aimed to detect correlation. We think this is the �aw of the
battery. Correlation can be a serious defect of a generator. Recall that even some of good
quality generators are suspected to have a problem with correlation.

Considering the fact DIEHARD discovered no di�erence between the generators, we
focused on autocorrelation testing which is very close to movement simulation in pseudo-
experiment. Random Walk Test (RWT) was used for correlation testing.

The movement was simulated by m-step random walk in Rn according

xk = xk−1 + ek, (16)

where x0 = 0, ek ∼ N(0, I)

Under the hypothesis H0: Independence of ek realization, the criterion A = ‖xm‖22/m
has χ2

n distribution. The simulation and testing was performed for multiple values of m
and n at signi�cance level 0.05.

Digit correlation were studied by means of Autocorrelation Matrix Test (AMT) using
representation of depth as

xk =
N∑

j=1

bkj2
j. (17)

Using statistical sample x1, x2, ...., xN , we tested bit autocorrelation as follows: Every
individual test operates with ith and jth bits with time delay t ∈ N0. We study relationship
bk,i and bk+t,j for k = 1, ...,m − t in the term of χ2-test for adequate 2 × 2 contingency
table with one degree of freedom on critical level 0.05. Previous tests are useful in general
case. Additional tests concern with suitability of generators for application in statistical
thermodynamics.



24 I. Hor¬ák

4.2 Testing on virial integrals

Virial coe�cients are calculated analytically and numerically. For the case of LJ, where
analytical solution is not possible, values are compared with other sources [1]. As can be
seen from (1) and (2), the calculations of the second and the third reduced virial coe�-
cients are evaluations of integrals up to three dimensions. These integrals are evaluated
by means of Monte Carlo integration. Strati�ed Sampling method of integration is used
for n = 1, n = 2 or n = 3 with the number of segments Nn for N = 10. Results of
multiple simulations (M = 100) are compared with theoretical value. Supposing normal
distribution, we test hypothesis H0: µ = µ0 on a signi�cance level 0.05 using one sampled
two sided t-test. Here, µ0 is value of virial coe�cient calculated using formulas (1) and
(2), respectively.

4.3 Fluid modeling testing

Model is realized for isochoric NVT ensemble with periodic boundary conditions, which
reaches equilibrium from initial random non-equilibrium con�guration. Once the equilib-
rium is reached, a sample of size 104 of z values is collected. The equilibrium is studied
by 20 samples from multiple runs of various seeds connected into one. This sample is
then used to test random number generator.

Supposing normal distribution, we test hypothesis H0: µ = µ0 on a signi�cance level
0.05 using one sampled two sided t-test. Here, µ0 is theoretical value of compressibility
factor. We performed test 100 times and counted the number of successful runs.

5 Generators

5.1 Mersenne-Twister

Generator Mersenne-Twister was �rst introduced in publication [5] Up to date, it is one of
the most used pseudo-random number generators. For a particular choice of parameters
it has extremely long period of 219937 − 1.

A downside is its complexity of generation - it is often considered to be too elaborate.
The period, which is one of the advantages of the generator, is sometimes considered to
be unnecessarily long.

Mersenne-Twister generator is very well described. Therefore, we will not concern
with it in this work.

5.2 Xorshift generator

Mersenne-Twister has a very good reputation, but it is maybe too complicated for every
day use. There is an ambition to create a more simple, yet good quality generator. George
Marsaglia described Xorshift generator in [4]. Its generation is based repeated use of a
simple computer construction: exclusive-or of a computer word with a shifted version of
itself.

Combining such Xorshift operations for various shifts and arguments provides ex-
tremely fast and simple RNGs that seem to perform very well in tests of randomness.
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Xorshift generators are based on three Xorshift operations. Marsaglia stated, that there
are over hundred of possible combinations of the numbers of shifted bits. Combination
[17, 13, 5] is used.

5.3 KISS generator

KISS is primarily intended for scienti�c applications such as Monte Carlo simulations.
As mentioned in [6] advantages of KISS are: It is proposed by well known and respected
authors, it has a reasonably long but not excessive period (about 2123), and it does not
need to warm up.

KISS (32-bit version) consist of combination of four subgenerators of three kinds:

• one linear congruential generator modulo 232, a = 69069 , b = 1234567

• one Xorshift generator (combination [17, 13, 5] ),

• two multiply-with-carry generators modulo 216

With its simplicity which does not deteriorate quality of pseudo random numbers,
KISS generators become very popular and they �nd new applications very often.

Note that Xorshift generator is one of the four subgenerators of KISS. Combining
di�erent RNGs is now considered to be a sound practice in designing good RNGs by
many experts in the �eld. The �aws of one generator are likely to be compensated
by others generators. For further information about KISS and his subgenerators, [6] is
recommended.

6 Results

Selected generators are tested as follows: �rst, standard tests are used, then testing by
Monte Carlo integration is performed, and, �nally, testing by means of simulation in
statistical physics is studied. The main idea behind testing is to study relation between
standard and advance testing related to integration and simulations.

6.1 Standard testing

Tab. 4 consists of information, whether the generator passes the test (1/0 - pass/fail).
Here, AMT and RWT still stand for Autocorrelation Matrix Test and RandomWalk Test,
respectively. BRT represents Binary Rank Test and DIEHARD-BRT means Diehard
battery of tests excluding Binary Rank Test.

Mersenne-Twister passes several stringent statistical tests, including Diehard. This
result is in a compliance with [5]. When dealing with KISS generator, the same results are
obtained. These two generators pass RWT and AMT. Testing by means of BRT and AMT
reveals a serious �aw of Xorshift. From Tab. 4 it can be seen that DIEHARD excluding
BRT makes no di�erence between generators. BRT and AMT reveals insu�ciency of
Xorshift generator. The fail of Xorshift generators in BRT was previously described in
[4].
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The goal of successive testing is to perform advance testing of generators beyond
standard tests.

Table 4: Standard generator testing

model DIEHARD - BRT BRT RWT AMT
Mersenne-Twister 1 1 1 1

KISS 1 1 1 1
Xorshift 1 0 1 0

6.2 Monte Carlo integration

Considering just one dimensional Monte Carlo integration, no di�erence among generators
appears, ie all p-values are above 0.05. The di�erent situation arises when dealing with
3D integration. From Tab. 5 we can see that Xorshift can not be used for 3D integration.

Except for LJ Xorshift failed in evaluating of B∗3 ; therefore, we conclude that Xorshift
can not be used for multiple dimensions evaluation in general.

The fail in case of CP and LOG can be explained by the fact that the potentials are
not smooth and by e�ect of zero potential like in the case of hard spheres �uid.

Table 5: Testing by 3D integration (p-values)

model T ∗ Mersenne-Twister KISS Xorshift

LJ
1 0.86 0.72 0.62
3 0.91 0.86 0.91
5 0.89 0.93 0.92

CP
1 0.95 0.91 0.04
3 0.92 0.89 0.01
5 0.90 0.84 0.03

LOG
1/5 0.95 0.91 0.04
1/3 0.92 0.89 0.01
1 0.90 0.84 0.03

6.3 Fluid modeling testing

When dealing with simulation, the situation is di�erent from the case of Monte Carlo
integration. Simulation were performed 100 times. We get p-value of every run performed.
Signi�cance level is 0.05. In the pursuit of objectivity, we perform 100 runs, and we
study the number of successful runs with no signi�cant di�erence between theory and
experiment. Tab. 6 contains frequency of successful results. From Tab. 6 it can be
seen that results are comparable; Although, KISS showed the best results. On the the
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hand, Xorshift have the worst results. Pair t-test is used to identify signi�cant di�erence
in e�ciency between pseudo-random number generators. KISS outperformes Mersenne-
Twister. No signi�cance di�erence between Xorshift and Mersenne-Twister is discovered.
The same situation arises when dealing with KISS and Xorshift.

Table 6: Testing via Monte Carlo simulation (passing frequency [%])

model T ∗ Mersenne-Twister KISS Xorshift

LJ
1 60 69 50
3 56 66 55
5 52 65 51

CP
1 57 68 52
3 28 68 55
5 29 70 54

LOG
1/5 57 65 54
1/3 53 68 51
1 51 69 49

7 Conclusion

Tests of popular pseudo-random number generators have been made. Diehard battery
of tests has been used to determine the quality of generator. Flaws of some generators
have been discovered. Xorshift generator do not pass Binary Rank test in Diehard and it
fails in autocorrelation testing performed by Autocorrelation Matrix test. The suitability
of pseudo-random number generators for integral evaluation in three or less dimension
was tested Generators have been tested via �uid modeling. It has been shown, that
some generators are not suitable for physical simulation even if they pass Diehard. The
importance of additional testing beyond DIHARD was con�rmed.
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Abstract. Contribution focuses on four di�erent updating procedures of the totally asym-
metric simple exclusion process (abbr. TASEP), namely the fully-parallel, forward-sequential,
backward-sequential updates [5], and generalized backward update [2]. The goal is to introduce
the distance- and time-headway distribution for those updates to extend the random-sequential
update studies in [4] and [3]. All systems are considered on the circle of L sites. Corresponding
Markov processes are investigated in the large L approximation. Using the car-oriented mean-
�eld approximation [6] or mapping to the mass transport process [7], the stationary distribution
is derived, from which the time-headway distribution can be easily obtained. Furthermore, the
derivation of time-headway distribution of fully-parallel update [1] has been extended to other
parallel updates mentioned in this contribution.

Results presented within the conference Doktorandské Dny are being prepared for the sub-
mission to Journal of Physics A: Mathematical and Theoretical.

Keywords: TASEP, parallel updates, headway distribution

Abstrakt. P°ísp¥vek se zam¥°uje na £ty°i r·zná updatovací schémata totáln¥ asymetrického
jednoduchého vylu£ovacího procesu (TASEP), jmenovit¥ pln¥-paralelné, dop°edný, zp¥tný up-
date [5] a zobecn¥ný update [2]. Cílem je p°edstavit rozd¥lení vzdálenostních a £asových rozes-
tup· t¥chto updat· a roz²í°it tak výsledky pro náhodný update z [4] a [3]. V²echny systémy jsou
uváºovány na kruhové m°íºce tvo°ené L pozicemi. P°íslu²né markovské procesy jsou zkoumány
ve stacionárním stavu. Pomocí car-oriented mean-�eld aproximace [6] nebo p°evedením na mass
transport process [7] je odvozeno stacionární rozd¥lení, pomocí n¥hoº lze snadno získat rozd¥lení
vzdálenostních rozestup·. Dále, odvození £asových rozestup· pro pln¥-parallelní update [1] je
roz²í°eno pro ostatní uvaºované updaty.

Výsledky prezentované na konferenci Doktorandské Dny jsou p°ipravovány pro odeslání do
Journal of Physics A: Mathematical and Theoretical.
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Abstract. Articular cartilage changes its dimensions and volume when bathed in saline so-

lutions of di�erent concentrations. The change of dimensions, swelling or shrinkage, depends

on its �xed-charge density, sti�ness of its collagen-proteoglycan matrix, and the ion concentra-

tions in the interstitium. These parameters are fundamental of the electro-mechano-chemical

behavior of the cartilage. The investigation of degenerative state of the articular cartilage was

performed on a small-animal model. The mathematical model has beed developed and results

of experiments were compared with simulations to explain the observed phenomena.

Keywords: Articular cartilage, Osmotic swelling, Ultrasound, COMSOL

Abstrakt. Kloubní chrupavka m¥ní své rozm¥ry a objem p°i pono°ení do externích solných

lázní o r·zných koncentracích soli. Zm¥na rozm¥r·, otékání a splaskávání, závisí na hustot¥

pevných náboj· v chrupavce, na tuhosti pevné matice, tvo°ené p°edev²ím kolagenovými vlákny

a proteoglykany, a na koncentracích ion· v mezibun¥£ném prostoru. Tyto parametry jsou zák-

ladem elektro-mechano-chemackého chování kloubní chrupavky. Výzkum degenerativních stav·

chrupavky byl proveden na modelu malých zví°at. Byl vyvinut matematický model a výsledky

experiment· byly porovnány se simulacemi pro vysv¥tlení pozorovaných jev·.

Klí£ová slova: Kloubní chrupavka, Osmotické otékaní, Ultrazvuk, COMSOL

1 Introduction

Articular cartilage (AC) is a hydrated soft tissue covering the bone ends and aiding the
joint in absorbing mechanical shock. It also provides joints with lubrication allowing
smooth motion and maintains e�cient bearing system for the body. Structurally, artic-
ular cartilage comprises three main structural components: water, collagen �brils and
proteoglycan macromolecules. A proteoglycan monomer consists of a protein core and
glycosaminoglycan chains that carry negative charges. This is a fundament of the electro-
mechano-chemical behavior of the cartilage. The negatively charged groups of proteogly-
cans attract cations and water into the tissue to generate a substantial Donnan osmotic
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tion, IT ASCR No. 904150 and with institutional support RVO: 61388998
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pressure [1] and cause cartilage swelling. However, the swelling is balanced by the elastic
force of collagen �bril network.

Osteoarthrosis (OA) is one of the most common musculoskeletal diseases which af-
fects articular cartilage and joints, typically knees. OA causes signi�cant constraints
in the quality of patient's life because of pain and limitations of mobility, which results
in considerable loss of working ability and economic hardship. Possible causes of OA are
aging, injury, extensive loading and obesity. OA causes progressive degenerative changes
to cartilage surface, matrix and subchondral bone. In addition, the ability of cartilage
to repair itself is limited. One of the �rst symptoms of OA is cartilage tissue softening,
followed by cartilage �brillation and, in later stages, disruption of the collagen network
[2]. While early changes in the cartilage might still be reversible, treatment in later stages
is possible only with intra-articular injection or surgically, often only with short-term ef-
fect. However, the �rst subjective signs (e.g. pain) occur in advanced, irreversible, stages
of cartilage tissue damage. To avoid advanced stages of OA, the need of early changes (e.g.
cartilage surface �brillation) detecting methods arises. To date, early signs of cartilage
degeneration are commonly detected by histologic evaluation; this is not possible to do
noninvasively with current imaging methods (radiography, magnetic resonance imaging)
because of their insu�cient resolution [4].

High-frequency ultrasound (US) has the potential to provide su�cient information
about early degenerative cartilage changes noninvasively. Similar to the histologic analy-
sis, high-frequency US backscatter signals allow distinct evaluation of signals originating
from the cartilage surface, tissue matrix and subchondral bone boundary [2].

It has been been suggested that the quanti�cation of the swelling e�ects in articu-
lar cartilage can be used to characterize the degenerative changes associated with OA.
This is due to increased water content and swelling of the tissue induced by degeneration
of collagen �brils. Our aim is to use ultrasound to characterize AC (normal and degen-
erated) in a nondestructive way by measuring the transient swelling behavior induced by
changing the concentration of bathing solution. To achieve this, we investigate Dunkin-
Hartley guinea pigs (one control and several treated groups of animals) which develop
OA naturally by aging during �rst year of their life.

To better understand the underlying mechano-electro-chemical processes we devel-
oped a one-dimensional mathematical description of the cartilage swelling problem based
on triphasic theory [1] and utilize the commercial �nite-element code COMSOL Multi-
physics to simulate the steady state and transient behavior of the AC in response to chang-
ing salt concentration of the surrounding solution. The simulation results are compared
with available experimental data to show the accuracy of the model.

2 Materials and methods

Normal saline, or physiological saline, is a solution isotonic to body �uids. It is solution of
9.0g of NaCl dissolved in one liter of sterile water, it means 0.15mol/L NaCl (mole NaCl
per liter). At the physiological state of 0.15mol/L NaCl, cartilage is in a swollen state,
with a swelling pressure resisted by the elastic stress in the collagen-proteoglycan silod
matrix. Articular cartilage changes its dimensions, volume, and weight when the ion
concentration in the bathing solution is changed. For an unloaded specimen, the tis-
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sue dimensions decrease with increasing NaCl concentration; this decrease approaches
an asymptote at the concentrations as high as 2.5mol/L NaCl [1].

Articular cartilage specimens: Experiments were performed on fresh medial thibial
plateau (left and right) of three-months-old guinea pigs. Samples were visually classi�ed
as healthy.

Ultrasound system: Commercial high-frequency ultrasound imaging system Ultra-
sonix was used to monitor transient swelling behavior of small animal AC noninvasively.
Swelling was induced by changing the concentration of bathing saline. The system in-
cluded a 12MHz focused ultrasound transducer L40 − 8/12Linear, with focal range
0.2− 3cm, which allows to scan a �eld of 16mm.

Ultrasound measurements: Fresh cartilage specimens were placed rigidly on the bot-
tom of the container and then submerged in a 0.15mol/L saline solution. The ultrasound
transducer was �xed at a position over the central part of the medial thibia plateau with
the focal zone of its beam located inside the AC tissue. The AC specimen was tested
at the temperature of 36◦C ± 0.5◦C for all of the following procedures. After 30min
the AC specimen was supposed to reach the equilibrium, the 0.15mol/L saline was re-
placed with 0.3mol/L saline within 30s and the AC was monitored with ultrasound
for next 30min. The AC was supposed to shrink based on the Donnan theory of osmotic
pressure [1]. The echo signals re�ected from the surface of the AC and from the AC/bone
interface were continuously recorded with a sampling period of 3s. The bathing solution
was further changed from 0.3mol/L saline back to 0.15mol/L physiological saline to see
the backward e�ect. Collected data were then postprocessed using the methods of signal
analysis.

3 Mathematical model and simulations

Swelling of AC depends on its �xed charge density (i.e. density of the �xed charges at-
tached to the extracellular matrix), the sti�ness of its collagen-proteoglycan matrix, and
the ion concentrations in the interstitium. Simulation of AC swelling/shrinkage char-
acteristics require the mathematical formulation of coupled chemo-electro-mechanical
mechanisms between the AC and a surrounding bath solution. Following mathemati-
cal description couples the Nernst-Planck equation, Poisson's equation and mechanical
deformation equation for one dimensional case. The Nernst�Planck Equation describes
the concentrations of chemical species in a �uid medium. It extends the Fick's law of di�u-
sion for the case where the particles di�use under the in�uence of both ionic concentration
gradient and electrostatic forces:

∂ci(x, t)

∂t
=

∂

∂x

(
Di(x)

∂ci(x, t)

∂x

)
− ∂

∂x

(
Di(x)

zie

kBT
ci(x, t)E(x, t)

)
, (1)

where t, Di, ci, zi, e, kB, T and E are, respectively, time, the di�usion coe�cient of the
i-th ion, the concentration of the i-th ion, valence of the i-th ion, elementary charge, the
Boltzmann constant, temperature and electric �eld. In our case i ∈ {Na,Cl}. In this
equation, �rst term represents the di�usive �ux due to concentration gradient, the sec-
ond term describes the migration �ux due to electric potential gradient. Second term
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Figure 1: Times of �ight for cartilage surface (TOF1), cartilage/bone interface (TOF2)
and corresponding numerical simulations for cartilage equilibrated in 0.30mol/L solution.

is coupled with the equation for electric �eld:

dE(x, t)

dx
=
ρ(x, t)

ε0εr

=
F

ε0εr

(cNa(x, t)− cCl(x, t)− cF ) , (2)

where ρ, ε0, εr, F and cF are the charge density in the cartilage, the dielectric constant
of the vacuum, the relative dielectric constant of the solvent, the Faraday constant and
the �xed-charge concentration in the cartilage, respectively. The cartilage swelling or
shrinking is described by the following equation which we derived from the thriphasic
theory of [1]:

dex(x, t) = − RT

(λs + 2µs)

∑
i∈{Na,Cl,H2O}

dci(x, t), (3)

where ex is the swelling strain describing relative deformation, R is universal gas constant,
T is temperature, and λs and µs are Lamé parameters for solid extracellular matrix.
Calculation of H2O concentration has been done using the relation for the density of saline
water which depends on temperature, pressure and salinity, [3].

4 Results and discussion

Figures 1 and 2 show the progress of the swelling experiment. Figure 1 refers to the period
when the saline bath was changed from the physiological concentration of 0.15mol/L
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Figure 2: Times of �ight for cartilage surface (TOF1), cartilage/bone interface (TOF2)
and corresponding numerical simulations for cartilage equilibrated in 0.15mol/L solution.

to 0.30mol/L. Figure 2 refers to the period when the saline bath was changed from
the higher concentration of 0.30mol/L back to 0.15mol/L.

Figure 1 shows di�erent times of �ight (TOF): TOF1 corresponds to the echoes re-
�ected from the articular cartilage surface during the equilibration in the saline bath.
The shift of TOF1 represents the thickness change of cartilage tissue. We can conclude
that the articular cartilage shrink over the time. TOF2 describes behavior of echoes from
the cartilage/bone interface. The shift of TOF2 represents combination of, �rst, increas-
ing salt concentration inside the cartilage and, second, shrinking of the cartilage. These
phenomena lead to the change of the speed of sound in the cartilage tissue. We can see
from the Figure 1 that although the speed of sound is increasing over the time period,
the cartilage shrinking causes TOF2 to increase. Both variables, TOF1 and TOF2, agree
reasonably well with numerical simulations.

The same meaning of TOF1 and TOF2 holds for Figure 2. From TOF1 we can con-
clude that the cartilage does not swell as much as mathematical model suggests. This
could be attributed to the change in e�ective values of the Lamé coe�cients in Equation
(3). The shift of TOF2 represents a combination of, �rst, decreasing salt concentration in-
side the cartilage and, second, swelling of the cartilage tissue. From the slightly increasing
TOF2 curve in Figure 2 we can see that decreasing speed of sound has a greater in�u-
ence than swelling of the cartilage tissue. TOF2 corresponds well with the mathematical
model.
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Abstract. This contribution deals with the initial phase of software developing process and

suggests some improvement in this phase to make the whole developing process more e�ective.

The improvements are based on dynamic model of requirements. The model representing the

application requirements is created with the Business Object Relation Modeling tool. The

contribution deals with the representation of this model as a �nite state machine. The aim is to

use such model based on object-oriented paradigm and �nite state machines for improvements

in task veri�cation and �nd a way to improve software development process.
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Abstrakt. Tento p°ísp¥vek se zabývá po£áte£né fází procesu vývoje softwaru a navrhuj¥ n¥která

vylep²ení v této oblasti. Navrhovaná vylep²ení p°i vývoj· softwaru vychází z dynamického mod-

elu, který reprezentuje poºadavky na aplikaci. K vytvo°ení dynamického modelu poºadavk· je

vyuºito nástroje podporujícího metodu BORM. P°ísp¥vek zkoumá moºnost reprezentace modelu

poºadavk· v podob¥ kone£ného automatu. Cílem je vyuºití modelu poºadavk· zaloºeného na

prinicpech objektov¥ orientovaného programování a kone£ných automat· pro zlep²ní v oblasti

veri�kace zadání a nalezení cesty pro dal²í zlep²ení v procesu vývoje softwaru.

Klí£ová slova: Poºadavky, BORM, kone£ný automat, dynamický model, veri�kace

1 Introduction

Research is based on connection of requirements engineering, dynamic model representa-
tion by �nite state machines. The key role in the research plays requirements engineering.
This implies the applying of scienti�c knowledge to ensure that requirements are fully
correct. The obvious de�nition of requirements engineering is discipline based on un-
derstanding software requirements. Another possible de�nition comes from Laplante [11]
and de�nes requirements engineering as process of eliciting, analyzing, documenting, vali-
dating and managing requirements. Requirements a�ect the whole software development
process and can be changed. Software life-cycle in connection with requirements is detail
discussed in [2].

Naturally it has to be con�rmed with Laplante [11] that requirements have to be
documented. Documented requirements can lately serve as an evidence. Requirements
document has to be processed and readable. Requirements should be clear, precise and
unambiguous. If they are not well understood the system will not meet expectations and
the �nal version of program will be probably not delivered on time and the costs will
be much higher than originally expected. The costs of �xing errors in later development
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phases may be very high as discussed for example in [18]. All these problems can be
prevented by using knowledge of requirements engineering. The research is based on
representing software requirements as dynamic model.

2 Tools for requirement engineering

The need of requirement engineering is indisputable. Tools are available and commonly
helping requirements engineers in their work. Often they determined for a widely range
of use in the whole developing process. The mainstream tools are used in a standard
way. Next are brie�y mentioned some commercial tools as Jama Software, DOORS and
CaliberRM. As the research is focused not only to market tools, working with standard
ways of representing requirements, there is also mentioned ModellicaML representing very
interesting project of one Swedish PhD student. Project represents using requirements
to improve the software developing process.

The �rst selected tool Jama Contour represents web application helping users to
manage the entire requirements management life-cycle. It enables users to collaborate
with the requirements, reuse and trace them. The changing of requirements and testing
management is also available. Application is adapted to any process whether waterfall,
iterative or agile. The Contour enable user to publish requirements documents as a
software requirements speci�cation or as a product requirements document. The natural
languages requirements are not the main kind of expressing requirements. [5]

The IBM Rational Dynamic Object Oriented Requirements System (DOORS) repre-
sents requirements management tool for systems and advanced information technology
applications. Tool is accessible from web and to prevent the danger of con�icting changes
gives users the possibility to lock sections of documents for editing. As big advantage
of this tool can be seen the requirements interface bringing comprehensive roundtrip
traceability. Users are able to manage, track and report implanted processes. [4]

The next chosen example of requirements management tool comes from Micro Focus
and it is CaliberRM. As declared by producer the CaliberRM enable users the powerful
facilities to capture, analyse and validate requirements. As expected the tool also provides
central and secure repository for deposited requirements. [8]

ModelicaML represented new language developed by PhD student Schamai in Sweden
and enables requirement formalization and integrates UML and Modelica. The language
is implemented in a prototype based on Eclipse Papyrus UML, Acceleo, and Xtext for
modeling, and OpenModelica tools for simulation. The simulation results produced are
then used to draw conclusions on requirement violations. This approach supports the
development and dynamic veri�cation of cyber-physical systems. ModelicaML facilitates
a holistic view of the system by enabling engineers to model and verify multi-domain
system behavior using mathematical models and state-of-the-art simulation capabilities.
Using this approach, requirement inconsistencies, incorrectness, or infeasibilities, as well
as design errors, can be detected and avoided early on in system development. [14]

As because there still exists communication gap between analyst and domain experts,
the aim of this contribution is suggest an approach avoiding this. The research aims to
represent the dynamic requirements model as a �nite state machine (FSM). In such case it
can be used for quantifying the real processing of the application. As the dynamic model
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was selected representation using Business Object Relation Modeling (BORM) which was
not used in any mentioned commercial tool. The reason is simple. Any modeling and
simulation tool and any diagramming technique should be comprehensible to the stake-
holders, many of whom are not software engineering literate. Moreover, these diagrams
must not deform or inadequately simplify requirement information. The correct mapping
of the problem into the model and subsequent visualization and possible simulation is
very hard task with standard diagramming techniques used in major commercial tools.
The business community needs a simple yet expressive tool for process modeling.

3 BORM

Business Object Relation Modeling (BORM) represents an approach to both process
modeling and the subsequent development of information systems. [6, 7] It provides the
description of how real business systems evolve, change and behave. BORM was origi-
nally developed in 1993 and was intended to provide seamless support for the building
of object oriented software systems based on pure object-oriented languages, databases
and distributed environments. Subsequently, it has been realized that this method has
signi�cant potential in business process modeling and other related business issues. Pro-
cess approach and object orientation are the pillars of the BORM method. It is the
application of principles that are successful in the �eld of modeling and software.

The basis of the object approach is the notion that each action must have an object
that executes it. Each object must have some activity in a conceptual model. Every
action means there has to be an object, object means there has to be some action. This
is BORM interpretation of the MDA approach. [10]

3.1 Combination of the OOP and FSM

There was not a standard solution to the problem of gathering and representing knowl-
edge. That is the reason why own UML-based BORM process diagramming technique
[20] was developed and successfully used. It represents the way of starting object-oriented
business system analysis recommended by Taylor [19] and together with Scheldbauer [15]
it prefers this approach before the semantically di�erent Business Process Model and No-
tation (BPMN) [3, 17]. BORM innovation is based on the reuse of old thoughts from the
beginning of 1990s regarding the description of object properties and behavior using �nite
state machines (FSM). The �rst work expressing the possible merge of Object-Oriented
Paradigm (OOP) and FSM was the book by Shlaer and Mellor ([16]). One of the best
books about the applicability of OOP to the business modeling was written by Taylor
([19]). These works together with practical experience is why to believe that the business
requirements modeling and software modeling could be uni�ed on the platform of OOP
and FSM.

The object-oriented approach has its origins in the 1970s in the researching of operat-
ing systems and graphic user interfaces. The object describing data structures and their
behavior is the basic element. This is the di�erence from other modeling approaches
where data and behavior are described separately and independently. OOP has been
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and still is explained in many books, for example Schach in [13]. To one of the best
publications belongs Rubin and Goldberg [12].

In the �eld of theoretical informatics, the theory of automata is a study of abstract
automatons and the problems they can save. An automaton is a mathematical model for
a device that reacts to its surroundings, gets input, and provides output. Automatons
can be con�gured in a way that the output from one of them becomes input for another.
An automaton's behavior is de�ned by a combination of its inner structure and its newly
- accepted input. The automata theory is a basis for language and translation theory,
and for system behavior descriptions. The usage for modeling and simulation in software
engineering activities has been described for example by Shlaer and Mellor in [16]. The
idea of automata also inspired behavioral aspects of the UML.

3.2 Modeling cards

The BORM development methodology starts from an informal problem speci�cation and
the advantage is that it provides both, methods and techniques, to enable this informal
speci�cation to be transformed into an initial set of interacting objects. The main tech-
nique used here are modi�ed modeling cards from the Object Behavior Analysis (OBA)
being �rstly published in [12]. Original OBA is only text-based method and used a large
set of form sheets, textual lists and tables for storing and manipulating the informa-
tion being processed. Modeling cards are structured texts, various lists and tables and
so-called modeling cards (textual forms).

In BORM it is not started directly by drawing the process diagrams. Process dia-
grams are the subsequent re�ned visual representation of the information collected by the
modeling cards. Modeling card of a scenario clari�es the entire process contours, process
participants, necessary legislation, documents etc. Modeling card of a participant is a
textual description of some role in a process. It has similar structure as scenario card,
but seen from the di�erent perspective of particular participant. Participant modeling
cards are subsequently re�ned into several FSM.

Business process diagrams in BORM, or Object-Relationship Diagrams (ORD), are
visual representation of processes and objects inside of processes obtained by modeling
cards technique. Process diagram consists of participants, their states and transitions and
their mutual communications. Each participant is composed of a set of states, activities
and transitions (communications). Formally, it is a Mealy-type FSM. [16] Conceptual
link within one participant can be considered as a transition between states, it contains
no data, because it is only behavioral concept. On the other side communication between
more participants may contain the data and therefore can be considered as data �ows
between activities of these participants making together some concrete process. Therefore
a whole process diagram can be seen as a set of several �nite state machines where each
FSM represents just one participant.

In the basic concept of the FSM, each participant is represented as a unique entity,
de�ned as 5-tuple Pi(Si, Ii, δi, s

0
i , s

e
i ), where:

• Si is a �nite non-empty set of states which the participant may be in it,

• Ii is a �nite non-empty set of all possible inputs
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• δi represents the activities carried out, i.e. transitions between states,

δi : Ii × Si → Si,

• s0
i is the initial state of the process,

• se
i is the �nal state of the process.

The participant starts from the state s0
i and according user input Ii and actual state

transfers itself into a next state. In case the participant ends in the state se
i we say that Pi

accepts user word from input I∗i . We allow reading an empty symbol X so the participant
can continue to the next state even without any user input.

The model is possible to extend by N not communicating participants P1...PN simu-
lated together. User input symbols di�ers for each participant.

N⋂
i=1

Ii ⊆ {ε} (1)

it can be de�ned a �nite state machine PP, which is composition of the partial au-
tomata representing individual participants. That machine simulates all participants
together.

S = S1 × · · ·SN , s0 = (s0
1, s

0
2, · · · , s0

N), sε = (sε
1, s

ε
2, · · · , sε

N) (2)

I =
N⋃

i=1

Ii (3)

Therefore inner states of PP are tuples of length N composed of individual partici-
pant's inner states. Same can be said about start state and end state. User input symbols
are di�erent for each automata to easily de�ne action function for compound FSM with
the help of individual action function X.

δ : I × S → S (4)

δ(i, s1, · · · , sN) = (s1, · · · , sj−1, s
′
j, sj+1, · · · , sN)|∃j ∈ N̂ , δj(i, sj) = s′j (5)

The following process description is based on the basic concept of a �nite automaton,
but it enhances the part of the model of communicating �nite state machines that are
necessary to capture the mutual communication participants.

Business-process diagram representing a particular process can be de�ned as a �nite
set of participants.

BP = {Pi} (6)

Each participant then can be described as an ordered 6-tuple

Pi = (Si,−Mi,+Mi, f i, gi, si
1)

where:
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• Si is a �nite set of all possible states which the participant may be in it

• −M i is a �nite set of all outgoing messages

• +M i is a �nite set of all received messages

• f i represents the activities carried out, i.e. transition between states. The transition
function can be de�ned as f i : Si ×+M i → Si

• gi is output function that can be de�ned as gi : Si ×+M i → −M i

• si
1 is the initial state of participant P

i, if si
1 ∈ Si

Without loss of generality, it can be assumed that the participant will not send the
message to itself

−Mi ∩+Mi = ∅ (7)

The set of all messages participant will be the union of the set of all outgoing and
incoming messages

M i = −M i ∪+M i (8)

Without loss of generality, it can be assumed that within the entire communications
of a system is just one identical mi. Each message has only one recipient and one sender.

∀m1 ∈M1,m2 ∈M1 : m1 6= m2 (9)

The set of all messages Mi consists of an ordered triple
〈
σi, ini, outi

〉
M i =

{〈
σi, ini, outi

〉}
= mi (10)

where σi is symbol, textini and textouti are data.
Each message has its sender and recipient

∀Pi :
⋃
i

−M i =
⋃
i

+M i (11)

The functions data(P i) and in(mi) can be de�ned for recipient where

data(Pi; in(mi) = ini;mi =
〈
σi, ini, outi

〉
(12)

in(mi) = in
(〈
σi, ini, outi

〉)
= mi (13)

Analogously functions data(P j) and out(mi) for sender:

data(P j); out(mi) = outi;mi =
〈
σi, ini, outi

〉
(14)

out(mi) = out
(〈
σi, ini, outi

〉)
= mi (15)
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Although the exchange of messages carried out from the perspective of BORM seman-
tics at the same time, if we apply the theory of �nite automata, we must distinguish the
state before the transition and the new state after transition. Sent or received message
at time t+ 1 will depend on the state at time t.

Data interchange between participants we can de�ne for recipient as:

datat+1(Pi) = datat(Pi) ∪ in(mij) ∧ in(mij) ⊆ datat(Pj) (16)

And for sender:

datat+1(Pj) = datat(Pj) ∪ out(mij) ∧ out(mij) ⊆ datat(Pi) (17)

Using formal description based on the theory of �nite state machines was de�ned
process participant which can communicate with other participants by sending messages.
Process diagram consists of a set of participants who obtained partial composition of
�nite state machines into a single comprehensive machine. Such a complex machine will
represent a whole process diagram. Chance composing machines, thereby reducing the
complexity of the resulting process has been known for decades. In detail, the issue of
composition, minimization and generalization of �nite state machines deals such as [1],
which describes the speci�c algorithms for their composition.

Based on the derived de�nition of communicating participants, it can be described
any process diagram in BORM as a �nite state machine. This composed machine will
consist of a set of �nite state machines each of which will represent just one participant.
If we apply the algorithm for the composition of �nite state machines described in [16]
on a set of participants, we get

FSMBP = (AE, Ê, ϕ, γ, σ1) = {P i} = (Si,−Mi,+Mi, f i, gi, si
1)

where:
The transition function ϕ for the composed �nite state machine obtained using the

transition functions of each automaton represents participants.
The output function γ for the composed �nite state machine obtained using the tran-

sition functions of each automaton represents participants.
As it has been shown above it is possible to describe any process model in BORM using

FSM theory. The practical impact is the ability to use all the theoretical assumptions
and practices that are known from the theory of FSM for process models in BORM.
Therefore it can verify that all states of participants of the process are reachable and
that all activities performed. It is also possible to automatically identify the state in
which could lead to deadlock the process and evaluate the consistency of the model.
Formal description also opens up opportunities for better implementation of the method
BORM in CASE tools, especially in the construction process simulators.

4 Dynamic Model and Quantitative Methods

The main about BORM is that there is detail plan about data �ows in the program. The
data �ows are the main thing to be used in the research. There is no need to wait for
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�rst code, �rst prototype to test the application and �nd out for example bad de�ned
requirements in so late phase of software development process. The aim is to simulate
the real function of software in the possible earliest phase of developing process. This
is possible thanks to representation of dynamic request model as �nite state machine.
There is a possibility to simulate and quantify the data �ows in the application. It is
not only problem of function, there is a big potential of using the results of such testing
based on BORM diagrams to design the application data structure.

The reason is quite simple. Save the time for developing the whole application and
then starting the test phase just for the plain code. Never verify requirements after coding.
Realisation of requirements based testing in the early phase of developing process means
big cost savings because �xing errors in later developing phase is very expensive. This
represents relatively small time investment in early phase of developing process that can
means a big costs savings in later phases.

As already said, the main advantage is seen in using the BORM model represented by
�nite state machine to design the data structure of application. The research is based on
modelling and quantifying the possible application data �ows. at this time there is seen
big potential in task veri�cation and next in creating diagrams just from the dynamic
requirements model based on FSM.

4.1 Task Veri�cation

As the BORM diagram is fully dynamic, it can easily serve as something like testing
scenario of real application. There is a big chance to reach big costs savings. Because as
it well known, the testing phase of application development process is most expensive to
�x errors. The testing phase means in this case not the testing of meeting application
with ist requirements, but meeting requirements with practice use of application. There
is a big problem, when the application is well designed, but the practical use shows it
do not match the requirements. In the future research there is a plan to use the data
from testing process to suggest also the programming language. But this needs to have
the data set about the programming languages and then search the best language for the
application represented by the �nite state machine representing the BORM diagram.

4.2 Database diagram

The simple example to present our aim of using BORM method to create something like
pattern for the data structure is database model. There are objects with its own states
communicating each other. Each state is also telling the detailed information about itself.
As illustrative can be mentioned the project of library and the database of books. Each
book in the library has ist own state, is for example free to lend, lent or reserved. Each
state needs to be described more in detail, for example the time for lending, the time of
reservation, the number of lends in last period and so on.

There are some probabilities of being in some state. Then there are some statistics of
lending time. All these data has steakholder or will be collected in coordination with him.
Based on such data can be designed for example entity relation of the database. The key
role is in collecting users requirements. The data �ows collected from testing phase based
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at BORM diagram are the key to plan the correct database model. The simulations of
�ows can serve as the best input for new database. There is a big potential with big
potential cost savings in software developing process. The savings are based mainly on
testing the applications and also requirements in early phase of developing process.

5 Summary

Firstly was mentioned the basement of requirements engineering. As there already exist
a lot of tools working with requirements the brie�y overview was given. The market tools
give similar functions and work quite well. At this tools was seen that there is nothing
like the theme of presented research. The main problem is still seen in the existing gap
between analyst and domain exerts. In this contribution was presented the possible use of
dynamic requirements model represented by �nite state machines. The model is created
in early phase of developing process and that its big advantage. This means that the
results from working with it, can be easily use in later software developing phases. It also
means to prevent �xing errors in later phases of software developing process and that
means the possibility to make big costs savings. As the possible way of using the BORM
diagram is seen the task veri�cation and creating database models. The concrete way of
task veri�cation, creating database diagram, estimation of application robustness is task
for following research.
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Abstract. 3D SPECT Images of human brain are frequently used in diagnostics of Alzheimer's

disease. Our approach is based on digital morphology of 3D gray image. We compare traditional

edge detectors and morphological �lters together with various approaches to data preprocessing

in this study. Space �uctuations of detected signals are studied via statistical testing of skewness

or kurtosis. Pilot study on small patient's group brings statistical signi�cant characteristics

which are suitable for diagnosis of neural degenerative disease.

Keywords: high frequency �lter, edge detection, mathematical morphology, digital 3D image,

MATLAB, Alzheimer's disease

Abstrakt. 3D obrazy lidského mozku získaného pomocí metody SPECT se £asto vyuºívají p°i

diagnostice Alzheimerovy choroby. V této práci jsou porovnávány tradi£ní hranové detektory s

morfologickými �ltry za pouºití r·zných metod p°edzpracování obrazu. Výkyvy detekovaných

signál· jsou podrobeny statistickému testování pomocí ²ikmosti a ²pi£atosti. Získané výsledky

s malou skupinou pacient· p°iná²í statisticky významné charakteristiky, které jsou vhodné pro

diagnostiku neurodegenerativní onemocn¥ní.

Klí£ová slova: vysokofrekven£ní �ltr, hranový detektor, matematická morfologie, digitální 3D

obraz, MATLAB, Alzheimerova choroba

1 Introduction

Alzheimer's disease [15] is a disabling and distressing disorder that a�ects 5 % of the pop-
ulation older than 65 and 20 % of those over 80. For last three decades a great progress
were made in medical engineering and computing technologies. One of non-invasive di-
agnostic tools that provide clinical information regarding biochemical and physiologic
processes in patients is called Single-Photon Emission Computed Tomography (SPECT)
[5]. This methods provides a good inside into brain neuron activities. Using various radio
markers and measuring their activities during scan. Neural degenerative diseases [13] are
about structural changes of gray mater. The paper is oriented to structure morphology
of 3D image because changes of brain structure will change the structure of image and
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therefor can be indicated and then used to disease classi�cation. The paper is organized
as follows. Basic notations related to 3D image and its local processing are remembered
�rst. Novel method of Alzheimer's disease classi�cation is based on three step processing.
Linear and median �lters with various masks are used as low-pass �lters in the �rst step.
Traditional edge detectors and morphological detectors as high-pass �lters magnitudes
are applied in second step. Final third step consists of overall skewness and kurtosis eval-
uations. The e�ciency of recognition process will be investigated by statistical testing of
sample median di�erences between Alzheimer's and control groups.

2 Preliminaries of 3D Image

The paper is oriented to digital processing of 3D image. It is necessary to remember basic
terms and notations as will be used in next chapters.

Let m,n, h ∈ N be number of rows, columns, and levels of 3D image. The image

can by represented as matrix X ∈
(
R+

0

)m×n×h
. Any local image processing is driven by

mask, which is also a matrix. We prefer integer mask as M ∈ Z3×3×3 of small size in this
study. The mask slides over the data and we can easily perform local image processing as
follows. Let x ∈ (i, j, k) be position of mask center, where 2 ≤ i ≤ m− 1, 2 ≤ j ≤ n− 1,
2 ≤ k ≤ h − 1. Using mask M around this point we collect the values from original

image into matrix B ∈
(
R+

0

)3×3×3
according to formula bu,v,w = xi+u−2,j+v−2,k+w−2 for

u, v, w ∈ {1, 2, 3}.
Any local characteristic [3] is only a function ch(x) = g (B(x),M1, . . .Mk). Individual

characteristics di�er in number of masks, their elements, and type of processing function
g.

3 Local Image Processing

Detection of structures and their variabilities is based here on local image processing of
three kinds. Original 3D image can be preprocessed using image �ltering. Edge detection
can be performed using traditional approaches [3] or grey morphological operators [2],
[10].

3.1 Image �ltering

Low-pass digital �lters of two kinds: weighted arithmetic mean [4] and weighted median
[3], are optionally used for image smoothing with single mask. Various masks were used
as follows

F1 =

 0 0 0
0 1 0
0 0 0

∣∣∣∣∣∣
0 1 0
1 1 1
0 1 0

∣∣∣∣∣∣
0 0 0
0 1 0
0 0 0

 ,
F2 =

 0 0 0
0 1 0
0 0 0

∣∣∣∣∣∣
0 1 0
1 6 1
0 1 0

∣∣∣∣∣∣
0 0 0
0 1 0
0 0 0

 ,
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F3 =

 1 2 1
2 4 2
1 2 1

∣∣∣∣∣∣
2 4 2
4 8 4
2 4 2

∣∣∣∣∣∣
1 2 1
2 4 2
1 2 1

 ,

F4 =

 1 1 1
1 1 1
1 1 1

∣∣∣∣∣∣
1 1 1
1 1 1
1 1 1

∣∣∣∣∣∣
1 1 1
1 1 1
1 1 1

 .
The mask F1 is also useful in greyscale morphology, mask F3 is a good approximation of
gaussian smoothing, and mask F4 represents box �lter.

3.2 Traditional Edge Detectors

Digital edge detectors try to approximate norm of image gradient. General [10] formula
of traditional edge detector is

ch(x) = |Of(x)| ≈

(
N∑

k=1

G2
k

)1/2

where Gk is a gradient approximation using kth mask. When mk is a vector formed from
Mk and b is a vector formed from B, we direct calculate scalar product Gk = mk · b.

Roberts detector

Roberts edge detector [8], [2] applies four masks. First of them is

T1 =

 1 0 0
0 0 0
0 0 0

∣∣∣∣∣∣
0 0 0
0 −1 0
0 0 0

∣∣∣∣∣∣
0 0 0
0 0 0
0 0 0

 .
The other masks are also diagonals in 2× 2× 2 cube.

Prewitt operator

Prewitt edge detector [7], [11] applies nine masks. Two of them are

P1 =

 1 1 1
0 0 0
−1 −1 −1

∣∣∣∣∣∣
1 1 1
0 0 0
−1 −1 −1

∣∣∣∣∣∣
1 1 1
0 0 0
−1 −1 −1

 ,

P2 =

 1 1 0
1 0 −1
0 −1 −1

∣∣∣∣∣∣
1 1 0
1 0 −1
0 −1 −1

∣∣∣∣∣∣
1 1 0
1 0 −1
0 −1 −1

 .
The other masks are obtained by rotation.
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Sobel operator

Sobel edge detector [3] applies nine masks. Two of them are

S1 =

 1 2 1
0 0 0
−1 −2 −1

∣∣∣∣∣∣
2 4 2
0 0 0
−2 −4 −2

∣∣∣∣∣∣
1 2 1
0 0 0
−1 −2 −1

 ,
S2 =

 2 1 0
1 0 −1
0 −1 −2

∣∣∣∣∣∣
4 2 2
2 0 0
0 −2 −4

∣∣∣∣∣∣
2 1 0
1 0 −1
0 −1 −2

 .
The other masks are obtained by rotation.

Robinson operator

Robinson edge detector [9], [4] applies only single mask

R1 =

 1 1 1
1 −2 1
−1 −1 −1

∣∣∣∣∣∣
2 2 2
2 −4 2
−2 −2 −2

∣∣∣∣∣∣
1 1 1
1 −2 1
−1 −1 −1

 .
Laplacian operator

Laplacian edge detector [2] applies only single mask

L1 =

 0 0 0
0 1 0
0 0 0

∣∣∣∣∣∣
0 1 0
1 −6 1
0 1 0

∣∣∣∣∣∣
0 0 0
0 1 0
0 0 0

 .
Laplacian of Gaussian

Laplacian of Gaussian detector (LoG) [6], [3] is based on convolution of two masks: F3

and L1. It is possible to perform it as a sequence of linear �ltering based on gaussian
smoothing and then Laplacian detector.

3.3 Morphological Detectors

Using m and b as vector representations of mask and local image, we can de�ne elemen-
tary morphological operations using mask

M =

 0 1 0
1 1 1
0 1 0

∣∣∣∣∣∣
1 1 1
1 1 1
1 1 1

∣∣∣∣∣∣
0 1 0
1 1 1
0 1 0

 .
Dilation

Elementary dilation [10] of single size has local characteristics

ch(x) = max
j:mj=1

bj.

Dilation of higher size can be performed as repeated sequence of elementary dilation.
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Erosion

Elementary erosion [10] of single size has local characteristics

ch(x) = min
j:mj=1

bj.

Erosion of higher size can be performed as repeated sequence of elementary erosion.

Opening

Opening operator [2] is performed as dilation followed by erosion of the same mask size.

Closing

Closing operator [12] is performed as erosion followed by dilation of the same mask size.

High-pass morphological detectors

Let X,D,E,O,C be original image, its dilation, erosion, opening, and closing with �xed
mask size. Morphological high-pass �lters [3] can be designed as voxel by voxel calcula-
tions using formulas

H1 = D− E,

H2 = D−X,

H3 = X− E,

H4 = O−X,

H5 = X−C,

H6 = min(H2,H3),

H7 = min(H4,H5).

4 Fluctuation Measures

Local image processing operations from previous section will produce new image. Its
intensity is not constant in general and vary voxel by voxel. Standard statistical charac-
teristic are used as �uctuation measures. Employing arithmetic mean as

x̄ =
1

n

n∑
k=1

xk.

We remember basic statistical characteristics [14] as variance, skewness, and kurtosis
according to formulas

s2 =
1

n

n∑
k=1

(xk − x̄)2,
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skew =
1

n

n∑
k=1

(xk − x̄)3

s3
, and

kurt =
1

n

n∑
k=1

(xk − x̄)4

s4

where n is total number of voxels. We suppose the patients will di�er mainly in
skewness and kurtosis after local image transforms.

5 Case Study: Alzheimer's Disease Diagnosis

Previous principals of image transformation and analysis were applied to actual problem
of Alzheimer's diseases diagnosis. Original data were preprocessed via edge detectors
of various kinds and statistical analysis of di�erences between Alzheimer's disease and
control group was performed.

5.1 Data Description

Two groups of patients were studied. First group consist of 10 patients of Alzheimer's
disease (AD). Second group consist of 10 patients with Amyotrophic Lateral Sclerosis
(ALS) as control one with no changes in structure and functionality of brain. Patient
brains were scanned using 3D SPECT technic. Resulting 3D images of size 128×128×128
were subjects of data processing and statistical analysis. Therefore m = n = h = 128.
Nonnegative intensities were individually divided into patient's maximum intensity to
obtain normalized 3D image of every patient.

5.2 Selected Characteristic

Patient's characteristics are results of three step process: optional low-pass preprocessing,
edge detection, and calculation of global statistical measures. Four masks were used for
mean and median �ltering in the �rst step. But the �rst step can be skipped. Therefore,
there are nine possibilities of low pass image preprocessing. We used 6 traditional and 7
morphological edge detectors in the second step. Finally, both skewness and kurtosis of
whole 3D edge scans are calculated in the third step. We obtained 234 various patient's
characteristics in this way.

5.3 Hypotheses Testing

Individual patient's characteristics were tested using hypotheses H0 of median equity and
standard Wilcokson-Mann-Whitney test on signi�cance level 0,05. Results of testing are
included in tabs 1 - 4 as corresponding p-values. But it is a kind of multiple hypothesis
testing. Therefore, we use False Discovery Rate [1] supposing independent or positive
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dependent testing. Corrected signi�cant level is αFDR = 0, 0312. Statistically signi�cant
di�erences after this Bonferroni like correction are highlighted.

The results can be interpret as follows. Independently on preprocessing algorithm
and its masks, and independently on skewness or kurtosis evaluation, traditional �lters
as Roberts, Laplacian, and LoG are suitable for diagnosis of Alzheimer's disease. Simi-
lar observation related to preprocessing and statistical analysis recommends to use �rst
morphological detectors, which are based on pair di�erences between original and its di-
lation, erosion, and opening. Therefore, Minkowski sausage, dilation minus original �lter,
original minus erosion �lter, and white top hat detectors are comparable with the best
traditional ones.

Table 1: Skewness after Application of traditional Edge Detectors
Pre-

processing
Mask Roberts Prewitt Sobel Robinson Laplacian LoG

Mean

F1 0,007285 0,212294 0,273036 0,212294 0,021134 0,025748

F2 0,011330 0,212294 0,241322 0,241322 0,011330 0,037635

F3 0,014019 0,344704 0,384673 0,307489 0,031209 0,009108

F4 0,045155 0,472676 0,570750 0,472676 0,004586 0,002202

Median

F1 0,014019 0,021134 0,088973 0,031209 0,011330 0,007285

F2 0,014019 0,053903 0,140465 0,045155 0,011330 0,053903

F3 0,009108 0,031209 0,088973 0,037635 0,009108 0,007285

F4 0,009108 0,053903 0,121225 0,053903 0,007285 0,009108

None None 0,014019 0,064022 0,161972 0,037635 0,011330 0,053903

Table 2: Kurtosis after Application of traditional Edge Detectors
Pre-

processing
Mask Roberts Prewitt Sobel Robinson Laplacian LoG

Mean

F1 0,005795 0,021134 0,037635 0,021134 0,031209 0,004586

F2 0,011330 0,014019 0,025748 0,011330 0,011330 0,011330

F3 0,007285 0,053903 0,053903 0,053903 0,009108 0,002202

F4 0,017257 0,140465 0,161972 0,140465 0,002827 0,001706

Median

F1 0,011330 0,011330 0,017257 0,014019 0,009108 0,007285

F2 0,014019 0,009108 0,007285 0,007285 0,009108 0,021140

F3 0,011330 0,017257 0,025748 0,017257 0,007285 0,009108

F4 0,005795 0,031209 0,031209 0,037635 0,005795 0,009108

None None 0,014019 0,009108 0,007285 0,009108 0,009108 0,021134
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Table 3: Skewness after Application of Morphological Detectors
Pre-

processing
Mask H1 H2 H3 H4 H5 H6 H7

Mean

F1 0,009108 0,005795 0,007285 0,031209 0,064022 0,570750 0,011330

F2 0,007285 0,009108 0,009108 0,031209 0,733730 0,427355 0,014019

F3 0,011330 0,005795 0,007285 0,007285 0,014019 0,520523 0,014019

F4 0,021134 0,005795 0,004586 0,005795 0,011330 0,791337 0,014019

Median

F1 0,011330 0,007285 0,009108 0,014019 0,909722 0,520523 0,273036

F2 0,011330 0,011330 0,011330 0,004586 0,969850 0,140465 0,088973

F3 0,017257 0,005795 0,007285 0,011330 0,969850 0,677585 0,161972

F4 0,009108 0,005795 0,005795 0,017257 0,088973 0,677585 0,045155

None None 0,005795 0,011330 0,014019 0,088973 0,623176 0,017257 0,064022

Table 4: Kurtosis after Application of Morphological Detectors
Pre-

processing
Mask H1 H2 H3 H4 H5 H6 H7

Mean

F1 0,007285 0,009108 0,011330 0,017257 0,037635 0,037635 0,009108

F2 0,004586 0,009108 0,011330 0,017257 0,677585 0,014019 0,011330

F3 0,014019 0,005795 0,011330 0,014019 0,017257 0,140465 0,011330

F4 0,011330 0,004586 0,009108 0,007285 0,011330 0,273036 0,017257

Median

F1 0,003611 0,009108 0,009108 0,014019 0,969850 0,031209 0,140465

F2 0,003611 0,009108 0,009108 0,004586 1,000000 0,003611 0,241322

F3 0,002827 0,009108 0,009108 0,009108 0,969850 0,088973 0,075662

F4 0,002827 0,005795 0,009108 0,021134 0,088973 0,273036 0,075662

None None 0,011330 0,017257 0,011330 0,045155 0,472676 0,002202 0,045155

6 Conclusion

In this paper, traditional edge detectors and morphological �lters was tested for diagno-
sis of Alzheimer's disease. Independency these �lters on preprocessing algorithm and its
masks is proven by results of tests. The same applies for skewness or kurtosis evaluation.
Roberts, Laplacian, and LoG �lters and morphological detectors, which are based on pair
di�erences between original and its dilation, erosion, and opening, have produced statis-
tically signi�cant results. Therefore, these �lters can be used for diagnosis of Alzheimer's
disease.
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Abstrakt. Odvodíme asymptotický rozvoj bodového spektra Hamiltoniánu, který popisuje

silnou δ′ interakci lokalizovanou na hladké plo²e v R3, která je nekone£ná a asymptoticky plochá
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Abstract. Studying CO2 − H2O system phase behaviour is motivated by CO2 sequestration,
which is from an ecology point of view a possibility of protection against the greenhouse e�ect by
capturing emissions of CO2 at the source and storing them into deep geological repositories or
salt-water reservoirs. For such operations, it is essential to fully understand the thermodynamics
of the processes in the subsurface and to have a model which describes the behaviour of CO2

correctly under wide range of natural geological conditions.
Injecting CO2 into a reservoir, it may dissolve in water or it can mix with it and the

CO2 − H2O mixture can split into two or more phases. Let us consider a closed system of
total volume V containing a CO2 −H2O mixture with mole numbers Nw, Nc at temperature T .
First, we are interested to �nd out whether the system is under given conditions in single-phase
or splits into two or more phases; this is the problem of single-phase stability at constant volume,
temperature and moles (the so-called V T -stability). In case of phase-splitting we want to estab-
lish volumes of both phases, mole numbers of each component in both phases, and consequently
the equilibrium pressure of the system from the equation of state; this is the problem of two-
phase split calculation at constant volume, temperature and moles (the so-called V T -�ash). In
the previous work [3, 4, 6], these problems were formulated and the algorithms were proposed
and tested on many examples.

The contribution deals with the investigation of multi-phase equilibrium of CO2 − H2O
system at constant volume, temperature and moles. Studying CO2−H2O mixture under natural
geological conditions (pressures typically below 50 MPa and temperatures typically 298−383 K)
for di�erent system composition, two-phase and three-phase states were observed. Recently, we
have developed and successfully tested a fast and robust algorithm for constant-volume two-phase
split calculation, which is based on the direct minimization of the total Helmholtz free energy
of the mixture with respect to the mole- and volume-balance constraints [6]. The algorithm
uses modi�ed Newton-Raphson minimization method with line-search and modi�ed Cholesky
decomposition of the Hessian matrix to produce a sequence of states with decreasing values of
the total Helmholtz free energy. Using of the Newton-Raphson method ensures fast convergence
towards the exact solution. To initialize the algorithm, an initial guess is constructed using the

∗Práce vznikla v rámci projekt· Výpo£etní metody v termodynamice vícesloºkových sm¥sí LH12064
M�MT �R, Vývoj po£íta£ových model· pro simulaci ukládání CO2 do podzemí P105/11/1507
Grantové agentury �eské republiky, Aplikovaná matematika v technických a fyzikálních v¥dách
MSM6840770010 M�MT �R, a Pokro£ilé superpo£íta£ové metody implementace matematických mo-
del· SGS11/161/OHK4/3T/14 Studentské grantové sout¥ºe �VUT v Praze.
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results of constant-volume stability testing which has been developed in [4]. Now we extend the
results for CO2−H2O system and propose a fast and robust algorithm for three-phase equilibrium
computation at constant volume, temperature and moles. The performance of the proposed
algorithm has been tested on many examples of two- and three-phase equilibrium calculations
of CO2 − H2O mixture, which is described using the Cubic-Plus-Association equation of state.
In the contribution, we present several examples which are important for CO2 sequestration.

This work was presented at Interpore Conference 2014 in Milwaukee, Wisconsin (27.-30.5.2014)
and the full article [7] has been accepted to the IAENG Journal of Applied Mathematics.

Keywords: phase equilibrium, constant-volume �ash, CO2 sequestration, Helmholtz free energy
minimization, Newton-Raphson method, modi�ed Cholesky decomposition.

Abstrakt. Zkoumání fázového chování sm¥si CO2−H2O je motivováno CO2 sekvestrací; z eko-
logiského hlediska se jedná o jednu z moºností ochrany p°ed skleníkovým jevem zachycováním
emisí CO2 p°ímo u zdroje a ukládáním t¥chto emisí do hlubinných geologických úloºi²´ nebo
slaných akvifer·. Pro takové operace je nezbytné jednak rozum¥t termodynamice proces· pro-
bíhajících v podzemí a zárove¬ mít takový model, který dokáºe správn¥ popsat chování CO2

v ²irokém rozsahu b¥ºných geologických podmínek.
P°i injektování CO2 do rezervoáru m·ºe docházet bu¤ k jeho rozpu²t¥ní ve vod¥ nebo k jeho

smíchání s vodou a následnému rozd¥lení sm¥si CO2−H2O do dvou nebo více fází. Uvaºujeme-li
uzav°ený systém obsahující sm¥s CO2−H2O s látkovými mnoºstvími Nw, Nc o celkovém objemu
V p°i teplot¥ T , nachází se tento systém za daných podmínek bu¤ stabiln¥ v jedné fázi nebo
je nestabilní a dojde k jeho rozd¥lení do dvou nebo více fází; jedná se o problém jednofázové
stability p°i konstantním objemu, teplot¥ a sloºení (tzv. V T -stabilita). V p°ípad¥ rozd¥lení do
fází ur£íme objemy a sloºení obou fází, a následn¥ vypo£ítáme rovnováºný tlak systému ze
stavové rovnice; jedná se o problém výpo£tu dvoufázové rovnováhy p°i konstantním objemu,
teplot¥ a sloºení (tzv. V T -�ash). V p°edchozí práci [3, 4, 6] byly tyto problémy formulovány a
p°íslu²né výpo£etní algoritmy byly navrºeny a testovány na °ad¥ p°íklad·.

�lánek pojednává o vy²et°ování vícefázové rovnováhy sm¥si CO2 − H2O p°i konstantním
objemu, teplot¥ a sloºení. P°i vy²et°ování sm¥si CO2 −H2O za b¥ºných geologických podmínek
(typicky tlaky pod 50 MPa a teploty v rozmezí 298 − 383 K) a p°i r·zném sloºení sm¥si byly
pozorovány dvou- a t°ífázové stavy. Nedávno byl navrºen a úsp¥²n¥ testován rychlý a robustní
algoritmus pro výpo£et dvoufázové rovnováhy za konstantního objemu, teploty a sloºení zaloºený
na p°ímé minimalizaci celkové Helmholtzovy volné energie sm¥si p°i zachování podmínek na
bilanci hmoty a objemu [6]. Numerický algoritmus je zde zaloºen na modi�kované Newtonov¥-
Raphsonov¥ minimaliza£ní metod¥ s pouºitím metody line-search a modi�kovaného Choleskyho
rozkladu matice Hessiánu, £ímº je vytvo°ena posloupnost stav· s klesajícími hodnotami celkové
Helmholtzovy volné energie. Pouºití Newtonovy-Raphsonovy metody navíc zaji²´uje rychlou
konvergenci k p°esnému °e²ení. Algoritmus pro V T -�ash je inicializován po£áte£ním odhadem
z testování stability [4]. Nyní roz²í°íme výsledky pro sm¥s CO2 − H2O a navrhneme rychlý a
robustní algoritmus pro výpo£et t°ífázové rovnováhy p°i konstantním objemu, teplot¥ a sloºení.
Navrºený algoritmus byl testován na mnoha p°íkladech výpo£tu dvou- a t°ífázové rovnováhy
sm¥si CO2−H2O, která je popsána pomocí kubické stavové rovnice s asocia£ním £lenem. V £lánku
prezentujeme n¥kolik p°íklad·, které hrají významnou roli v CO2 sekvestraci.

Tato práce byla prezentována na konferenci Interpore 2014 v Milwaukee, Wisconsin (27.-
30.5.2014) a celý £lánek [7] byl p°ijat do £asopisu IAENG Journal of Applied Mathematics.

Klí£ová slova: fázová rovnováha, �ash p°i konstantním objemu, CO2 sekvestrace, minimalizace
Helmholtzovy volné energie, Newtonova-Raphsonova metoda, modi�kovaná Choleskyho dekom-
pozice.
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Abstract. This article is concerned with the Fourier-like analysis of functions on discrete grids

in two-dimensional simplexes using C− and E− Weyl group orbit functions. The convolution

theorem is presented for these cases. An example of application of image processing using the

C− functions and the convolutions for spatial �ltering of the treated image.

The full version of the article was published as G. Chadzitaskos, L. Háková and O. Kajínek,

Weyl Group Orbit Functions in Image Processing, Applied Mathematics 5 (2014), 501�511.

Keywords: orbit functions, convolution, image processing

Abstrakt. Objektem zájmu tohoto £lánku je analýza funkce na diskrétních m°íºkách ve dvourozm¥rných

simplexech pomocí C− a E− funkcí na orbitách Weylových grup. Pro tyto p°ípady je zobec-

n¥n konvolu£ní teorém. Jako p°íklad aplikace ve zpracování obrazu je pouºita C− funkce pro

provedení konvoluce jakoºto nástroje �ltrace obrazu.

Plná verze tohoto p°ísp¥vku byla publikována v £lánku as G. Chadzitaskos, L. Háková and

O. Kajínek, Weyl Group Orbit Functions in Image Processing, Applied Mathematics 5 (2014),

501�511.

Klí£ová slova: funkce na orbitách, konvoluce, zpracování obrazu
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Abstract. Cartan subalgebras have proven their value when the semisimple Lie algebras were

classi�ed. However, they seem to have their utilization also in the classi�cation of solvable Lie

algebras. The aim of this text is to present one example how they can be harnessed. At the

same time, we try to thoroughly demonstrate the connection of cohomologies of Lie algebras

and complete reducibility of representations.

Keywords: Lie algebra, solvable, extensions, cohomology, Cartan subalgebras

Abstrakt. Cartanovy podalgebry mají své velké opodstatn¥ní p°i klasi�kaci poloprostých Lie-

ových algeber. Ukazuje se ov²em, ºe by mohly jít vyuºít i p°i klasi�kaci °e²itelných algeber.

Prezentovat jedno takové vyuºití je cílem tohoto p°ísp¥vku. Sou£asn¥ se snaºí zevrubn¥ ukázat,

jak souvisí úplná reducibilita reprezentací a invariantní dopl¬ky s kohomologiemi.

Klí£ová slova: Lieova algebra, °e²itelná, roz²í°ení, kohomologie, Cartanova podalgebra

1 Úvod

Klasi�kace Lieových algeber je jedním z doposud nedokon£ených velkých úkol· matema-
tické fyziky. Velký kus práce byl p°itom paradoxn¥ odveden uº chvíli po jejich objevení.
Cartan klasi�koval poloprosté Lieovy algebry a Levi dokázal, ºe kaºdá Lieova algebra lze
rozloºit na polop°ímý sou£et poloprosté a °e²itelné. V tom okamºiku se vývoj zastavil a uº
p°es sto let se spí²e pomalu prodíráme kup°edu. Ukazuje se totiº, ºe klasi�kovat °e²itelné
algebry je dosti obtíºný úkol. Mnoºství neekvivalentních t°íd totiº s dimenzí velmi rychle
nar·stá.

�áste£ný postup byl zaznamenán pouºitím odli²né metody. Jedná se o °e²itelná roz-
²í°ení, kdy se ze série nilpotentních algeber podobného typu ale libovoln¥ velké dimenze
vytvo°í mnoºina algeber °e²itelných. Tyto t°ídy m·ºeme po jejich klasi�kaci vyuºít k po-
zorování a hledání zajímavých vlastností, které by mohli p°isp¥t ke klasi�kaci a v dal²ích
oblastech.

Jednou takovou pozorovanou vlastností se zabývá práv¥ tento text. D°íve neº se k ní
na konci 4. sekce dostaneme, je pot°eba de�novat základní pojmy, které se týkají modul·,
kohomologie Lieových algeber a Cartanových podalgeber. Tomu se v¥nujeme v 2. sekci.

∗Tato práce byla podpo°ena grantem SGS13/217/OHK4/3T/14 ze Studentské grantové sout¥ºe
�VUT.
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Velký prostor v¥nujeme v sekci 3 aplikaci teorie kohomologií na kritérium existence in-
variantních dopl¬k· k invariantním podprostor·m pro reprezentace Lieových algeber.
V neposlední °ad¥ je nutno vysv¥tlit, co myslíme °e²itelným roz²í°ením a jak se takové
roz²í°ení hledá a klasi�kuje. Toho se týká za£átek sekce 4.

2 De�nice

2.1 Moduly

P°ed samotnou de�nicí kohomologie se nám bude hodit zade�novat si moduly, jelikoº
reprezentace Lieových algeber není nic jiného neº teorie jejich modul·. Více podrobností
a p°íklad· týkajících se modul· lze nalézt v monogra�i [2].

De�nice 2.1. O uspo°ádané trojici (R,U, ·) °ekneme, ºe jde o R-modul U , kdyº platí,
ºe

1. Mnoºina U je abelovská grupa.

2. Mnoºina R je okruh.

3. Zobrazení · : R× U → U je levou akcí.

Axiomy pro násobení ve vektorovém prostoru V nad t¥lesem T nám °íkají, ºe násobe-
ním £íslem je levou akcí okruhu (s jednotkou). Kaºdý vektorový prostor je tedy T-modul.
Máme-li Lieovu algebru L, lze se na ní dívat jako na okruh a její reprezentace na vek-
torovém prostoru V jsou v 1-1 vztahu s L-moduly na V . P°echod mezi reprezentací ρ
a modulem vyjad°uje vztah x · v = ρ(x)v a mezi t¥mito dv¥ma popisy budeme £asto
p°echázet.

De�nice 2.2. M¥jme R-moduly U a V . Zobrazení ϕ : U → V je (R-)homomor�smus
modul·, kdyº je aditivní a zárove¬ platí ϕ(x · u) = x · ϕ(u) pro v²echny x ∈ R a u ∈ U .

Mnoºinu v²ech R-homomor�sm· budeme zna£it HomR(U, V ).

Vrátíme-li se k interpretaci vektorového prosturu nad T jako T-modulu, tak prvky
mnoºiny HomT(U, V ) nejsou nic jiného neº lineární zobrazení mezi U a V . Podobn¥
kdyº chceme vy²et°ovat reprezentace Lieovy algebry L, jsou pro nás zajímavá zobrazení
z HomL(U, V ).

V¥ta 2.3. M¥jme Lieovu algebru L a dva L-moduly U a V . Mnoºina HomT(U, V ) s ope-
rací ·2 de�novanou pobodov¥ (x ·2 ϕ)(u) := x ·V ϕ(u)− ϕ(x ·U u) je také L-modul.

2.2 Kohomologie

Nyní postupme k samotné de�nici kohomologie Lieovy algebery. Ta vychází z takzvaných
Cartanových vztah· pro diferenciální formy na variet¥. Od této chvíle uvaºujeme pouze
komplexní Lieovy algebry.
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De�nice 2.4. M¥jme Lieovu algebru L a L-modul V . Prvky mnoºiny v²ech totáln¥
antisymetrických q-lineární zobrazení s hodnotami ve V (q ∈ N0) se nazývají ko°et¥zce
stupn¥ q, nebo také q-ko°et¥zce.

Cq(L, V ) := HomC

(
q∧
L, V

)
, (1)

C0(L, V ) := V. (2)

Dále de�nujme gradovaný operátor d(q).

d(q) : Cq(L, V )→ Cq+1(L, V ),

(d(0) ω0)(x) := x · ω0, (3)

(d(q) ωq)(x0, . . . , xq) :=

q∑
i=0

(−1)ixi · ωq(x0, . . . , x̂i, . . . , xq)+

+
∑
i<j

(−1)i+jωq([xi, xj], x0, . . . , x̂i, x̂j, . . . , xq), (4)

kde q zna£í stupe¬ ko°et¥zce a st°í²ka znamená, ºe je nutno daný vektor vynechat.
Zobrazení d se ozna£uje jako operátor kohranice a je nilpotentní

d(q+1) ◦ d(q) = 0. (5)

To nám umoº¬uje de�novat kocykly Zq, kohranice Bq a kohomologické grupy Hq(L, V ).

Zq(L, V ) := ker d(q), (6)

Bq(L, V ) := d(q−1)(Cq−1(L, V )), (7)

Hq(L, V ) := Zq(L, V )
/
Bq(L, V ). (8)

Pro r·zné volby akcí L na V dostáváme r·zné dimenze kohomologických grup. Ty
£asto zachycují d·leºité invarianty Lieovy algebry, p°ípadn¥ jejího modulu. Jedná se na-
p°íklad o dimenzi jádra, mnoºství vn¥j²ích derivací, jestli je algebra perfektní a podobn¥.

2.3 Cartanovy podalgebry

Poslední struktura, která je zapot°ebí zade�novat, je Cartanova podalgebra. Cartanovy
podalgebry jsou nesmírn¥ d·leºité zejména p°i klasi�kaci poloprostých Lieových algeber,
ale my je vyuºijeme i p°i studiu t¥ch °e²itelných a nilpotentních. D·kazy v¥t v této
podkapitole a mnohá dal²í tvrzení obsahují nap°íklad knihy [4, 5].

De�nice 2.5. M¥jme Lieovu algebru L. Podalgebru C ozna£íme jako Cartanovu, pokud
spl¬uje dv¥ podmínky:

1. Je nilpotentní.
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2. Sama sebe normalizuje, tedy nelze nalézt v¥t²í podalgebru W (C⊂⊂W ⊂⊂ L), pro
níº by C bylo ideálem.

Tato de�nice je sice jednoduchá a elegantní, ale nedává nám návod, jak takovou Car-
tanovu podalgebru najít a zda v·bec existuje. To ov²em °e²í následující v¥ta.

V¥ta 2.6. Bu¤ mnoºina ker∞A := {x ∈ L|∃n,Anx = 0} zobecn¥né jádro operátoru
A ∈ HomC(L,L). Ozna£me C = {ker∞ adx |x ∈ L} mnoºinu zobecn¥ných jader vnit°-
ních derivací.

Pak
C je Cartanova podalgebra⇐⇒ C ∈ arg min

B∈C
(dimB) . (9)

Tato v¥ta tvrdí, ºe Cartanovy podalgebry jsou práv¥ zobecn¥ná jádra vnit°ních deri-
vací adx (pro v¥t²inu vektor· x), coº jsou objekty, se kterými se pracuje mnohem lépe, a
navíc m·ºeme volit vektor x tak, aby nám to vyhovovalo. Také je vid¥t, ºe Lieova algebra
má v¥t²inou vícero Cartanových podalgeber, ale v²echny mají stejnou dimenzi.

3 Kohomologie a reducibilita

Pro zobecn¥ní výsledk· se nám bude hodit zp·sob, jak kvanti�kovat úplnou reducibilitu
pomocí kohomologie. P°i zpracování tohoto tématu jsme vycházeli z [3].

De�nice 3.1. M¥jme Lieovu algebru L. Její reprezentace ρ na V (L-modul) je reducibilní,
kdyº existuje netriviální spole£ný invariantní podprostor pro ρ(L). Pokud pro kaºdý spo-
le£ný invariantní podprostor existuje invariantní dopln¥k, °íkáme, ºe je tato reprezentace
úpln¥ reducibilní.

M¥jme nyní Lieovu algebru L a její reducibilní reprezentaci ρ na V . Nech´ dále W je
invariantní podprostor reprezentace ρ, neboli ρ(L)W ⊂ W . Zvolme dopln¥k U . Vektorový
prostor jde rozloºit V = W u U a reprezentace jde rozepsat blokov¥ jako

ρ(x) =

(
ρW (x) λU(x)

0 ρU(x)

)
, (10)

kde bloky jdou chápat jako ρW ∈ HomC(W,W ), ρU ∈ HomC(U,U) a λU ∈ HomC(U,W ).

Tvrzení 3.2. Zobrazení ρ de�nované blokov¥ vztahem (10) je reprezentace s invariantním
podprostorem W , práv¥ kdyº blokové komponenty mají tyto t°i vlastnosti:

1. Zobrazení ρW je reprezentace na W .

2. Zobrazení ρU je reprezentace na U .

3. Pro v²echna x, y ∈ L platí vztah

ρW (x) ◦ λU(y)− λU(y) ◦ ρU(x)− (ρW (y) ◦ λU(x)− λU(x) ◦ ρU(y))− λU([x, y]) = 0.
(11)
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Jelikoº W i U jsou L-moduly, lze vyuºít v¥tu 2.3 a p°epsat vztah (11) jako

x ·2 λU(y)− y ·2 λU(x)− λU([x, y]) = 0, (12)

coº není nic jiného neº poºadavek, aby λU byl kocyklus z Z1(L,HomC(U,W )).
Dopln¥k U je moºno samoz°ejm¥ zvolit jinak a na²ím cílem je zjistit, jestli ho lze zvolit

tak, aby bylo λU nulové zobrazení.
R·zné volby dopl¬ku (a báze v n¥m) m·ºeme popsat také pomocí zobrazení z prostoru

HomC(U,W ).

V¥ta 3.3. Dopl¬ky U a Ũ jsou isomorfní pomocí vztahu

Ũ = YU = (1− Ã)U, (13)

kde Ã ∈ HomC(U,W ). A kaºdé dva dopl¬ky lze takto popsat.

D·kaz. Neprve ukáºeme, ºe takto de�nované Ũ je op¥t dopln¥k. Zobrazení Y je operátor
na V a jeho zúºením na podprostor U bychom m¥li dostat prosté zobrazení.

Bu¤ u ∈ kerY. Potom

0 = Yu = (1− Ã)u = u− Ãu. (14)

Máme rozklad nulového vektoru do direktního sou£tu U uW . Ob¥ sloºky musí být
nulovými vektory. Tedy jak u, tak Ãu. Vektor u tedy je nulový vektor, zobrazení Y je
prosté a z de�nice Ũ ve vztahu (13) plyne, ºe dimU = dim Ũ .

Nyní sta£í dokázat, ºe W ∩ Ũ = {0} a z dimenzionální analýzy (první v¥ta o dimenzi)
plyne, ºe Ũ je dopln¥k.

M¥jme x ∈ W ∩Ũ . Jelikoº x ∈ Ũ , jde najít jeho Y-vzor u a zapsat ho jako x = u+Ãu.
Tím jsme ov²em nalezli zárove¬ rozklad vektoru x do direktního sou£tu W uU , a jelikoº
p°edpokládáme, ºe x ∈ W , musí být jeho £ást pat°ící do U nulová, a tedy u = 0, coº
okamºit¥ implikuje x = u+ Ãu = 0 + 0 = 0.

Pro opa£ný sm¥r musíme najít Ã ∈ HomC(U,W ) pro zadaný dopln¥k Ũ . Ukazuje se,
ºe tím správným Ã je projektor X na W podle Ũ , který zúºíme na U .

Zaprvé Y := 1−X je projektor na Ũ podleW a platí tedy Ũ ⊂ Y(U) a pokud ũ ∈ Ũ ,
pak lze vzít jeho rozklad ũ = w + u do W u U a hledaným vzorem pro d·kaz opa£né
inkluze bude u.

Y(u) = Y(ũ− w) = Yũ−Yw = ũ− 0 = ũ, (15)

kde jsme vyuºili vlastností projektoru.

Nyní si vezmeme reprezentaci ρ, zadanou pomocí (ρW , ρU , λU), p°ejdeme k jinému
dopl¬ku Ũ pomocí zobrazení Ã a ztotoºníme ho s U pomocí vztahu (13).

Ukazuje se, ºe reprezentace se zm¥ní a je popsaná

(ρW , ρŨ , λŨ) = (ρW , ρU , λU − d(1)
Ã), (16)

takºe zm¥na nastala pouze v poslední komponent¥, která se li²í o kohranici z prostoru
B1(L,HomC(U,W )).
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Dosp¥li jsme tedy k tomu, ºe λU musí být kocyklus a p°i zm¥n¥ dopl¬ku se toto zob-
razení zm¥ní o kohranici. S trochou dal²í práce, která je vícemén¥ technickou záleºitostí,
z toho plyne, ºe kaºdé reprezentaci L na V s invariantním podprostorem W odpovídá
jedna t°ída ekvivalence z H1(L,HomC(V /W,W )). Pokud je tato t°ída ekvivalence nu-
lová, lze nalézt invariantní dopln¥k.

D·sledek 3.4. Pokud H1(L,HomC(V /W,W ))=0, lze nalézt invariantní dopln¥k pro
libovolnou reprezentaci se zadaným ρW a ρV /W .

Z tohoto d·sledku mimojiné plyne známý fakt, ºe poloprosté algebry jsou úpln¥ re-
ducibilní, nebo´ Whiteheadovo lemma tvrdí, ºe H1(L, V ) pro poloprostou algebru L je
vºdy triviální.

4 �e²itelná roz²í°ení

4.1 De�nice °e²itelného roz²í°ení

Tato sekce se zabývá °e²itelnými roz²í°eními nilpotentních algeber. Dal²í podrobnosti
v£etn¥ velkého mnoºství p°íklad· lze nalézt v monogra�i [11]. M¥jme nilpotentní Lieovu
algebru N dimenze n. Zajímají nás v²echny °e²itelné algebry S, jejichº nilradikál je s N
isomorfní. Tyto algebry nazýváme °e²itelná roz²í°ení algebry N .

Pokud v N zvolíme bázi E := (e1, . . . , en), m·ºeme de�novat strukturní koe�cienty
cijm vztahem [ej, em] = cijmei. Na²ím cílem p°i °e²itelném roz²í°ení o k prvk· je de�novat
násobení na vektorovém prostoru N u Ck. Nechceme ho v²ak de�novat libovoln¥, ale
tak, aby se na N shodovalo s p·vodní Lieovou závorkou. Zárove¬ bychom byli rádi, aby
N byl ideál a výsledná algebra byla °e²itelná, díky £emuº nám sta£í p°idat dodate£né
strukturní konstanty (Da)

i
k a γiab, kde a, b = 1, . . . , k, a pomocí nich de�novat násobení

na bázi (e1, . . . , en, s1, . . . , sk), vzniknuv²í slou£ením báze E a báze v Ck:

[ej, em] := cijmei, (17)

[sa, ej] := (Da)
i
jei, (18)

[sa, sb] := γiabei. (19)

Strukturní konstanty samoz°ejm¥ nelze volit libovoln¥. Koneckonc· chceme, abychom
dostali Lieovu algebru. Násobení musí být antisymetrické a spl¬ovat Jacobiho identitu.
Antisymetrie implikuje cijm = −cimj, coº je spln¥no díky tomu, ºe N Lieova algebra uº
byla, a γiab = −γiba. V²imn¥me si, ºe Da lze interpretovat jako lineární operátor na N a
γ jako lineární zobrazení Ck ∧Ck γ−→ N .

Jacobiho identita
[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (20)

musí být spln¥na pro v²echny vektory x, y, z. Zjevn¥ sta£í ov¥°it platnost na bázi. Po-
dobn¥ jako v p°ípad¥ antisymetrie, pokud za x, y, z zvolíme vektory z N , nedá nám
Jacobiho identita ºádná nová omezení, protoºe N uº Lieova algebra byla.

Na druhou stranu ostatní Jacobiho identity (JI) nám omezí volbu Da a γ. Pro trojice
typu sa, ej, em jsou Jacobiho identity ekvivalentní s poºadavkem, aby Da jako lineární
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operátor byl derivace, a JI typu sa, sb, ei nám sváºou Da a γ, nebo´ je lze ekvivalentn¥
zapsat jako

[Da, Db] = adγ(sa,sb), (21)

kde závorkami na levé stran¥ rovnice je my²len komutátor operátor·. Tato rovnost v sob¥
také skrývá podmínku, ºe komutátor [Da, Db] musí být vnit°ní derivace pro v²echny a, b.

Poslední Jacobiho identity (pro vektory £ist¥ z Ck) nám je²t¥ víc prováºou derivace
Da a zobrazení γ. S vyuºitím antisymetrie γ je m·ºeme ekvivalentn¥ zapsat jako

Daγ(sb, sc)−Dbγ(sa, sc) +Dcγ(sa, sb) = 0. (22)

Dosp¥li jsme tedy k poznatku, ºe libovolná mnoºina (D1, . . . , Dk; γ), pokud spl¬uje
Jacobiho identity, de�nuje roz²í°ení.

Zbývá vy°e²it poslední v¥c. Po na²em °e²itelném roz²í°ení vyºadujeme, aby N bylo ni-
lradikálem, jinak bychom totiº nem¥li shora omezenou dimenzi S, nehled¥ k tomu, ºe by se
nám p°i klasi�kaci vytvo°ily duplicitní t°ídy. Je tedy pot°eba, abychom p°idáním vektor·
sa nezv¥t²ili nilradikál. Toho se vyhneme tím, ºe naloºíme je²t¥ jednu dodate£nou pod-
mínku na derivace D1, . . . , Dk: Musí být lineárn¥ nilnezávislé (linearly nilindependent),
t.j. jediná lineární kombinace, která z nich vytvo°í nilpotentní zobrazení, je ta triviální.

4.2 Klasi�kace °e²itelných roz²í°ení

Kdyº te¤ víme, jak roz²í°it nilpotentní algebru, v¥nujme se chvíli klasi�kaci t¥chto roz-
²í°ení. Dv¥ mnoºiny dat (D1, . . . , Dk; γ) a (D̃1, . . . , D̃k; γ̃) popisující °e²itelná roz²í°ení
jsou pro nás (slab¥) ekvivalentní, práv¥ kdyº vzniklá roz²í°ení S a S̃ jsou isomorfní jako
Lieovy algebry. Tato de�nice nám generuje t°i operace s daty, které nám nezm¥ní t°ídu
ekvivalence.

1. M·ºeme vybrat v lineárním obalu span{D1, . . . , Dk} jinou bázi.

2. M·ºeme p°ejít pomocí Φ, automor�smu naN , k dat·m (ΦD1Φ
−1, . . . ,ΦDkΦ

−1; Φγ).

3. M·ºeme k libovolnému Da p°i£íst libovolnou vnit°ní derivaci na N a sou£asn¥
upravit γ tak, aby stále spl¬ovalo (21). Nap°íklad D̃1 := D1 + ade3 a γ̃(s1, sa) :=
γ(s1, sa)−Da(e3).

V praxi v¥t²inou probíhá klasi�kace tím zp·sobem, ºe nejprve klasi�kujeme °e²itelná
roz²í°ení o jeden vektor. Tam sta£í zklasi�kovat vn¥j²í derivace pomocí druhé a t°etí
operace�v podstat¥ klasi�kujeme t°ídy vn¥j²ích derivací pomocí automor�sm· modulo
vnit°ní derivace. Potom zkoumáme dvoudimenzionální podprostory lineárn¥ nilnezávis-
lých derivací a vyuºijeme jiº získaných výsledk· k výb¥ru vhodného reprezentanta D1,
kterého pomocí automor�sm· upravíme do jednoduchého tvaru. Následn¥ zjistíme, jak
nám podmínka (21) a p°edev²ím její d·sledek o tom, ºe komutátor [D1, D2] musí být
vnit°ní derivace, omezí tvary D2. Prozkoumáme r·zné moºnosti výb¥ru γ a vyuºijeme
zbylé ekvivalentní transformace. Dál postup opakujeme s trojdimenzionálními podpro-
story. . .
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V pr·b¥hu klasi�kace se dá s výhodou vyuºít n¥kolika fakt·. Prvním je, ºe algebra
v²ech derivací je Lieova algebra grupy v²ech automor�sm·. Druhým je, ºe °e²itelné al-
gebry kanonicky obsahují svaz ideál·, které jsou zárove¬ invariantními podprostory pro
v²echny automor�smy (a derivace). Zárove¬ jsou koe�cienty automor�sm· a derivací ur-
£eny malým mnoºstvím parametr·, které popisují chování t¥chto zobrazení na vektorech,
které pat°í do dopl¬ku k takzvané derivované algeb°e [N,N ]. Tyto jevy jsou detailn¥ji
zpracovány v [7] a [1].

4.3 P°edpovídané vlastnosti °e²itelných roz²í°ení

Metoda hledání °e²itelných roz²í°ení byla pouºita profesorem Winternitzem a jeho spo-
lupracovníky k vytvo°ení velké mnoºiny klasi�kovaných °e²itelných Lieových algeber li-
bovoln¥ velké dimenze, vycházejících ze speciálních t°íd nilpotentních algeber. Jedná se
nap°íklad o Heisenbergovy algebry [6], Borelovy algebry [10], nebo algebry �liformní [9]
a jim podobné [8]. Tento seznam samoz°ejm¥ není vy£erpávající, ale umoº¬uje nám po-
zorovat spole£né vlastnosti a vyslovit hypotézy o vlastnostech t¥chto roz²í°ení.

Jedna z t¥chto hypotéz vychází z pozorování, ºe p°i klasi�kaci ²la vºdy zvolit taková
báze, ºe p°idané vektory spolu tém¥° komutovaly.

Hypotéza 4.1. V kaºdé °e²itelné algeb°e lze zvolit bázi (e1, . . . , en, s1, . . . , sk) tak, ºe
prvních n vektor· pat°í do nilradikálu a výsledek Lieovy závorky zbylých k bazických
vektor· leºí v centru nilradikálu.

Pro velkou t°ídu °e²itelných roz²í°ení se nám povedlo najít p°í£inu, pro£ mají tuto
vlastnost. Ukazuje se, ºe platí tvrzení

V¥ta 4.2. Nech´ S je °e²itelné roz²í°ení algebry N , a C jeho Cartanova podalgebra. Pak
C p·sobí na S ad-reprezentací a platí, ºe

H0
(
C,HomC

(
S
/
N,N

))
= 0 =⇒ S = N u A, (23)

kde A je abelovská podalgebra. To znamená, ºe lze zvolit bázi tak, ºe p°idané vektory
komutují.

D·kaz. Za£n¥me tím, ºe si ujasníme, jak vypadá ad-reprezentace na S /N . Jelikoº S je
°e²itelná algebra a N je její nilradikál, musí být reprezentace na faktorprostoru S /N
triviální (plyne to z faktu, ºe [S, S] ⊂ N).

Dále vyuºijeme známý výsledek pro nilpotentní algebry, který lze nalézt nap°íklad
v [4]. Ten tvrdí, ºe pro nilpotentní algebry�a Cartanova algebra je nilpotentní z de�nice�
je nultá kohomologická grupa triviální práv¥ tehdy, je-li triviální první kohomologická
grupa.

Víme tedy, ºe H1 (C,HomC (S /N,N)) = 0. Tato kohomologická grupa nám ale po-
pisuje, zda existuje invariantní dopln¥k k N . Pouºijeme tedy d·sledek 3.4 a vidíme, ºe
lze invariantní dopln¥k U nalézt. Reprezentace je poté v blokov¥ diagonálním tvaru

ρ(x) =

(
ρN(x) 0

0 0

)
. (24)
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Z n¥ho plyne, ºe pro v²echna x ∈ C a v²echna u ∈ U , platí

ρ(x)u = [x, u] = adx u = 0 (25)

a u leºí v jádru vnit°ní derivace adx. Speciáln¥ tam leºí i pro c ∈ C, pomocí kterého je
popsaná Cartanova podalgebra jako C = ker∞ adc. To ov²em implikuje, ºe U ⊂ C.

V dal²ím kroku znovu vyuºijeme vztah (25), tentokrát za vektor x z Cartanovy po-
dalgebry zvolíme také vektor z U , a ρ(u1)u2 = 0 nám dokazuje, ºe U je ona hledaná
abelovská podalgebra A.

Tuto v¥tu nyní vyuºijeme na p°ípad, kdy °e²itelné roz²í°ení lze popsat daty (D1, . . . , Dk; γ),
kde první derivace D1 je regulární zobrazení. A£ se m·ºe zdát, ºe je to dosti omezující
p°edpoklad, ukazuje se, ºe ve skute£nosti popisuje velké mnoºství p°ípad·. Uº jenom
proto, ºe m·ºeme permutovat derivace Di, p°ípadn¥ d¥lat jejich lineární kombinace.

Nyní m·ºeme najít Cartanovu podalgebru jako zobecn¥né jádro ads1 . To nám zajistí,
ºe vektor s1 bude v na²í Cartanov¥ podalgeb°e. Uvaºovaná ad-reprezentace algebry C,
zúºená na ideál N tak obsahuje regulární derivaci ρ(s1)�N= D1.

Dokaºme nyní, ºe H0 (C,HomC (S /N,N)) = 0. Jelikoº se jedná o nultou kohomolo-
gickou grupu, neobsahuje ºádné kohranice a sta£í zjistit, co jsou kocykly.

A ∈ Z0
(
C,HomC

(
S
/
N,N

))
⇔ ∀x ∈ C, (dA)(x) = 0

0 = x ·2 A = ρN(x) ◦A−A ◦ ρS /N(x) = ρN(x) ◦A−A ◦ 0 = ρN(x) ◦A.
(26)

Tato rovnost musí platit pro v²echny vektory x ∈ C, musí tedy platit i pro s1, ale
ρN(s1) = D1 je regulární operátor, takºe z toho plyne, ºe A = 0 a jediným kocyklem je
nulové zobrazení. Z toho plyne trivialita nulté kohomologické grupy.

5 Záv¥r

V tomto p°ísp¥vku jsme de�novali základní pojmy týkající se modul·, kohomologií, Car-
tanových podalgeber a °e²itelných roz²í°ení. Poté jsme pouºili kohomologické metody,
abychom odhalili p°í£iny jednoduchého tvaru velké t°ídy °e²itelných roz²í°ení. Ve v¥t¥
4.2 jsme zformulovali posta£ující podmínku a poté jsme ji pouºili pro speciální, ale velmi
£asto se vyskytující p°ípad.

Pro úplnost dodejme, ºe pro tento konkrétní p°ípad není t°eba budovat celou ma²i-
nerii kohomologií, a lze si v zásad¥ vysta£it s Jordanovým tvarem matice. Pokud ov²em
hodláme vyuºít tento jednoduchý p°íklad jako výchozí bod pro dal²í pr8ci, je vhodné
formulovat tvrzení tak, aby ²ly snáze zobecnit. A tvrzení o �sou£asném p°evedení vícero
matic do Jordanova tvaru� je zachyceno práv¥ pomocí dopl¬k· a kohomologií.

Vypadá to, ºe Cartanovy podalgebry se hodí nejenom ke klasi�kaci poloprostých Lie-
ových algeber, ale lze je s výhodou vyuºít i pro ty °e²itelné.
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Abstract. This article deals with coarsening algorithm used for algebraic multigrid method

in open source library Paralution and its e�ective implementation on GPU. One of the most

important problems when creating algebraic multigrid is the way of obtaining translation oper-

ators and coarser version of the system matrix, which is basically a graph clustering problem.

Even though there exist a number of ways how to solve this task, most of them are inherently

sequential and therefore cannot be directly used on graphics cards. In this article we tried to

�nd e�ective way how to convert one such method on the GPU, despite its sequential nature.

This implementation was successful and we were able to obtain performance comparable to the

CPU version.

Keywords: GPU, Algebraic Multigrid, Coarsening

Abstrakt. Tento £lánek se zabývá algoritmem zhrubování sít¥ pro pot°eby metody algebraick-

ého multigridu a jeho implementací na GPU. Jeden ze základních problém· p°i implementaci

algebraického multigridu je zp·sob, jakým získat operátory p°enosu mezi hrub²í a jemn¥j²í sítí

respektive hrub²í matici systému. V základu se jedná o problem rozd¥lení grafu do n¥kolika

komponent. A£koliv existuje mnoºství algoritm·, které takovouto úlohu °e²í, v¥t²ina z nich je

sekven£ní a nejde proto p°ímo pouºít na gra�cké kart¥. Tento £lánek se bude zabývat práv¥

efektivní implementací jedné takové metody na GPU. Danou metodu se poda°ilo úsp¥²n¥ im-

plementovat a dosáhnout výkonu srovnatelného s verzí na procesoru.

Klí£ová slova: GPU, Algebraický Multigrid, Zhrubování

1 Introduction

Algebraic multigrid methods are a group of algorithms for solving linear systems from
di�erential equations using a hierarchy of matrices. Their main advantage compared to
geometric multigrid is that they are able to create coarser matrices on their own just
from the original system matrix. This coarsening is however quite complex problem,
with unknown optimal solution. Therefore there exist number of methods how to solve
it. Moreover most of them are inherently sequential and therefore cannot be directly used
on parallel architectures. This is not much of an issue for standard multicore processors
because normally only small amount of time is spent in the creation of coarser system
during the computation, so it does not hinder the performance even though it isn't
parallelized. However it can be quite a bottleneck on architectures with dedicated memory
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such as graphics card, because if coarsening must run on the processor although rest of
the program runs on the GPU, data must be constantly shifted between CPU and GPU
memory, which can signi�cantly reduce performance.

We are currently working with open source library Paralution[4], where this is exactly
the case. The library contains numerous methods for solving linear systems, which are
mostly implemented also on GPU and can be launched there to accelerate the compu-
tation. One of the methods is even algebraic multigrid, where however the coarsening
algorithm is implemented only on CPU. Therefore if many matrices has to be solved
during the computation, e.g. if evolutionary problems are solved, data need to be often
copied between memories, which spoils the bene�ts of GPU acceleration.

To improve this situation we tried to convert the coarsening part on the GPU. The
algorithm is quite simple, but it is inherently sequential which makes its implementation
complicated. On the other hand it is memory bandwidth limited, so it should be alright
if GPU computation performance is not fully utilized as long as we can use its bigger
memory bandwidth. Moreover we do not need to speed up the coarsening computation,
performance comparable to CPU should su�ce as the main contribution will be that the
data transfers can be eliminated.

2 Algebraic multigrid

We will be interested mainly in the setup phase of AMG, where the matrix hierarchy and
transitions operators are created. It consist of the following steps:

• Variables clustering

• De�ning transition operators

• Creating coarse problem matrix

which will be described in more detail.
Once the problem hierarchy is created the main iteration is same as in the case of

geometric multigrid and so any standard multigrid cycle can be used to obtain the �nal
solution.

2.1 Variables clustering

First and most important part is to divide the variables into clusters (groups), so that
all variables in the same group are joined to one variable on the coarser level. To achieve
this we will need to de�ne strong dependence:

De�nition 1: Given a threshold value 0 < θ ≤ 1, the variable (unknown) ui strongly

depends on the variable uj if
abs(aij) ≥ θabs(aii). (1)

This means that variable ui strongly depends on the variable uj if the coe�cient aij

is comparable in magnitude to the diagonal coe�cient in the ith equation.
Now we can proceed to the variable clustering itself. It is basically graph clustering

problem where the graph is created in following way:
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1. All variables ui, i ∈ 0...N become nodes

2. There is oriented edge from ui to uj if ui strongly depends on uij.

To divide resulting graph into components Paralution uses simple approach that works
as follows:

1. Create array groupId of group ids for each variable, group id for variable ui will be
denoted as groupIdi

2. Set all group ids groupIdi to undefined

3. Set group counter last_id to -1.

4. For each node ui do:

(a) If groupIdi is not undefined continue with next ui

(b) Increase group counter last_id by one

(c) Set groupIdi to last_id

(d) For each neighbor(uj) of ui, if groupIdj is not removed set it to last_id

(e) For each neighbor(uk) of each neighbor uj, if groupIdk is undefined set it to
last_id

2.2 De�ning transition operators and coarser system matrix

When the clusters have been selected, the next goal is to de�ne transition operators. Each
cluster will form one variable on the coarser grid. In this case prolongation operator (Ih

2h)
will simply distribute value from coarser variable to all its �ner descendants i.e. the ith
component of Ih

2he is
(Ih

2he)i = egi, (2)

where e is the vector that should be prolonged to the �ner grid and gi is group number
for given variable ui so gi = groupIdi.

Restriction operator can be then constructed from the interpolation one by simple
transpose:

I2h
h = (Ih

2h)
T , (3)

and restricted matrix is produced by

A2h = I2h
h AhIh

2h. (4)

3 GPU programming

GPU is shared memory parallel architecture so all threads that run on it use the same
memory. Unlike multi-core programming where there are typically 2-32 computational
cores running at once, GPU can spawn hundreds of concurrently running threads. These
threads are, however, not completely independent and all run the same function (called
kernel) so it is the SIMD (simple instruction multiple data) type of architecture.
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There are some key principles which must be taken into account when creating pro-
gram for GPU, which come from the type of calculations graphics cards were designed
for. The most important are:

Limited communication Computational threads form a two layer hierarchy. On
�rst one threads are grouped to blocks, and on second all blocks create the so called grid.
Number of blocks in the grid is completely up to the programmer and it should match
the size of the solved problem. Size of the block can be also chosen, however it must be
less than 513. The reason for this two level hierarchy is that only threads that are in
the same block can communicate between each other. This means that blocks have to be
completely independent.

Branching Threads on the GPU aren't completely independent, groups of 32 threads
in the same block forms the so called warp. Threads in the warp has to always execute
same instruction at the same time or wait, so if the kernel contains divergent branches
and not all threads in the warp take the same one, complete computational time for each
thread will be equal to the sum of all taken branches.

Coalescing Very important feature for numerical computation on GPU is the coa-

lescing. Graphics card have much bigger bandwidth than standard RAM when reading
blocks of data. More precisely when half warp (16 consecutive threads) try to read or
write continuous block of data it can be coalesced into single operation and so whole
block can be loaded more than ten times faster. Since most numerical applications are
limited by memory accesses, utilizing this feature is absolutely crucial when implementing
numerical problems on GPU. There are several ways how coalescing can be achieved even
when data aren't naturally read in right order:

• Best solution, if it is possible, is to reorder data so that access to them will be
coalesced. One classic example is to use structure of arrays instead of array of
structures (i.e. group data by type, not by the thread they belong to).

• Threads in the same block can pre-fetch data to shared memory (shared within
block), even random accesses to this memory are very cheap. This is especially
useful when needed data form a continuous region, but are accessed randomly.

• If data are needed to be ordered di�erently in di�erent kernels they can be dupli-
cated (unless memory is a strong concern) this can be especially useful in the case
of constant data (for example data describing mesh on which problem is solved).

Transports between GPU and CPU memory GPU don't use same memory as
CPU, it has its own video RAM (VRAM). This isn't issue when problem is completely
solved on GPU, but in case of converting only most computational demanding parts on
GPU and doing rest of the work on processor, constant copying can cause a signi�cant
overhead.
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4 GPU implementation

The GPU version of the coarsening algorithm was implemented in CUDA, which is a
technology from NVidia company designed for general purpose programming on GPU,
same as rest of the Paralution GPU code. The coarsening algorithm itself consist of
several parts that were parallelized individually. Namely they were

• Deciding which neighbors are strongly connected

• Removing nodes without neighbors

• Creating the groups

• Creating prolongation operator

• Creating restriction operator and coarser system matrix

which will be now subsequently described.

4.1 Finding strongly connected neighbors

This means for each connection between two variables (therefore for each Ai,j, i 6= j)
decide whether it is strong connection or not. This is done by comparison of value Ai,j

to diagonal element Ai,i. In CPU version the diagonal is �rstly obtained by Paralution's
function ExtractDiagonal(which works also on GPU) and then simple for cycle is used.
The for cycle is easily parallelizable, so same approach was used on GPU in kernel

1 template <typename ValueType>
2 __global__ void kernel_csr_amg_connect ( const int nrow , const int ∗ row_offset ,
3 const int ∗ co l s , const ValueType ∗ vals , const ValueType ∗ vec_diag ,
4 int ∗cast_conn , ValueType theta2 )
5 {
6 int i = blockIdx . x∗blockDim . x+threadIdx . x ;
7 i f ( i >= nrow ) return ;
8

9 ValueType theta_dia_i = theta2 ∗ vec_diag [ i ] ;
10 for ( int j=row_of f set [ i ] ; j<row_of fset [ i +1] ; ++j ) {
11 int c = c o l s [ j ] ;
12 ValueType v = va l s [ j ] ;
13 // Strong connect ion i f not d iagona l e lement and b i g g e r then t h e t a ∗ d iagona l
14 cast_conn [ j ] = ( c != i ) && (v ∗ v > theta_dia_i ∗ vec_diag [ c ] ) ;
15 }
16 }

Result is stored as a mask for all Ai,j elements in variable cast_con

4.2 Removing nodes without neighbors

Also this part was quite easy it consist in loop over each unknown and setting its group_id
either to undefined if it has some strongly connected neighbors or to removed if it has
not. Such kernel can look as follows:
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1 __global__ void kernel_csr_amgaggregate_remove_empty ( const int nrow ,
2 const int ∗ row_offset , int ∗cast_conn , int∗ cast_agg )
3 {
4 int a i = blockIdx . x∗blockDim . x+threadIdx . x ;
5 int a j ;
6

7 i f ( a i <nrow ) {
8 int s t a t e = removed ;
9 for ( a j=row_of fset [ a i ] ; aj<row_of f set [ a i +1] ; ++aj ) {

10 i f ( cast_conn [ a j ]>0) s t a t e = undef ined ;
11 }
12 cast_agg [ a i ]= s t a t e ;
13 }
14 }

Resulting group ids are stored in variable cast_agg.

4.3 Creating the groups

This part was hardest to implement because it is the sequential one. The algorithm
works as described in section 2.1 and therefore new group cannot be created unless the
previous one was already fully processed. To overcome this issue we use only one block
of threads which can be manually synchronized. The last_id index is managed by only
one thread (the one with id == 0) and others are used only to spread the current value
to all neighbors and neighbors of neighbors. To employ GPU memory throughput, we
tried to use coalescing for most of the memory accesses:

1 __global__ void kernel_csr_amgaggregate_plain ( const int nrow ,
2 const int ∗ row_offset , const int∗ co l s ,
3 int ∗cast_conn , int∗ cast_agg )
4 {
5 const int BLOCK_SIZE=512;
6 int id = threadIdx . x ;
7 __shared__ int last_g ;
8 __shared__ int s_ca [BLOCK_SIZE ] ;
9 __shared__ int s_ro [BLOCK_SIZE+1] ;

10

11 i f ( id==0) la s t_id = −1;
12 for ( int actOf f =0; ac tOf f < nrow ; actOf f+=BLOCK_SIZE)
13 {
14 int i = actOf f+id ;
15 s_ca [ id ] = cast_agg [ i ] ;
16 s_ro [ id ] = row_of f set [ i ] ;
17

18 i f ( id==0) s_ro [BLOCK_SIZE] = row_of fset [ ac tOf f + BLOCK_SIZE ] ;
19 __syncthreads ( ) ;
20

21 for ( int j =0; j < BLOCK_SIZE; j++)
22 {
23 __syncthreads ( ) ;
24 i f ( s_ca [ j ] != undef ined ) continue ;
25 i f ( id==0) s_ca [ j ] = ++las t_id ; //New seed
26 __syncthreads ( ) ;
27
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28 // Inc lude i t s ne i ghbor s as w e l l .
29 for ( int i 1 = s_ro [ j ]+ id , end1=s_ro [ j +1] ; i 1 < end1 ; i 1+=BLOCK_SIZE)
30 {
31 int c = c o l s [ i 1 ] ;
32 int ∗ ca = ( c>=actOf f && c<actOf f+BLOCK_SIZE)?
33 &s_ca [ c−actOf f ] : &cast_agg [ c ] ;
34 i f ( cast_conn [ i 1 ] && ∗ ca != removed )
35 {
36 ∗ ca=las t_id ;
37

38 //Neigbours o f ne igbours
39 for ( int i 2=row_of f set [ c ] , end2=row_of fset [ c +1] ; i2<end2 ; i 2++){
40 i f ( cast_conn [ i 2 ]==0) continue ; //Not v a l i d l i n k
41 int c2 = c o l s [ i 2 ] ;
42 int ∗ ca2 = ( c2>=actOf f && c2<actOf f+BLOCK_SIZE)?
43 &s_ca [ c2−actOf f ] : &cast_agg [ c2 ] ;
44 i f ( ∗ ca2 == undef ined )
45 ∗ ca2=las t_id ;
46 }
47 }
48 }
49 __syncthreads ( ) ;
50 }
51 int i = actOf f+id ;
52 cast_agg [ i ] = s_ca [ id ] ;
53 __syncthreads ( ) ;
54 }
55 }

4.4 Creating interpolation operator

The main part of the algorithm for creation of prolongation operator consist from the
following code

1 for ( int i =0, j =0; i < nrow ; ++i )
2 {
3 i f ( cast_agg [ i ] >= 0) {
4 c o l [ j ] = cast_agg−>vec_ [ i ] ;
5 va l [ j ] = 1 . 0 ;
6 ++j ;
7 }
8 }

which for each �ne unknown ui with set group number gi creates one line with only one
1 value on the Gi position. Therefore prolongation is done so that value of coarse point
given by gi is simply copied to the ui. This part was not yet implemented on the GPU
but should be quite straightforward. One block of threads will be employed, all threads
will be used to save and write data to/from global memory, but the computation itself
will be done only by one thread and will use shared memory.
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4.5 Creating restriction operator and coarser system matrix

Last part was quite easy because it consist only from matrix transposition and matrix
matrix multiplication for which Paralution already have functions usable also on GPU.
Therefore no work was needed.

5 Results

The computations were done on the system equipped by Intel Core 2 Duo 2.6Ghz CPU
and Nvidia Geforce GTX480 GPU. All simulations were computed in double precision.

First table (Tab 1) compares speed of the �rst part of the coarsening algorithm, where
each connection is evaluated whether it is strong or not. This part was entirely parallel
so there can be seen nice speedup.

Second table (Tab 2) shows results for the main part of coarsening algorithm, the
clustering. From the result it is obvious that GPU version is quite slower than the CPU
one.

Time Relative time

CPU edge detection 10.3 s 1
GPU edge detection 2.9 s 0.28

Table 1: Time of �nding strongly connected edges

Time Relative time

CPU clustering 9.8 s 1
GPU clustering 23.8 s 2.43

Table 2: Time of the groups creating part

Most important and interesting is the �nal table (Tab 3), which compares total ex-
ecution time of both versions of coarsening algorithms. Here one can see that GPU is
still slower but now only by a small margin. This di�erence should be however quite
negligible in real application where most of the time is not spent in the coarsening part
but in the iterative one. In this case it should still be pro�table to use GPU version to
avoid copying data between memories.

However this could not be tested because, as was stated in the previous chapter, GPU
version isn't yet complete, the part for creating interpolation operator is, due to the lack
of time, still missing. Therefore in future we would like to �nish the GPU version and
try to compare the performance on larger spectrum of di�erent matrices.
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Time Relative time

CPU complete 18.9 s 1
GPU complete 26.4 s 1.4

Table 3: Complete time of coarsening algorithm

6 Summary

This article presented key principles of coarsening algorithm for algebraic multigrid im-
plemented in Paralution software library. This algorithm was then, despite its serial
nature, converted to semi parallel version feasible for implementation on GPU and this
implementation was thoroughly described. From the obtained results it is obvious that
the GPU is not perfectly suited for this task, but the performance is not worse by a large
margin. Therefore it should be pro�table to use GPU coarsening if this prevents the need
to copy data between GPU and CPU memory which was our main goal. Unfortunately
this was not yet tested and therefore will be addressed in future research.
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Abstract. Tectonic instability may be measured directly using extensometers installed across
active faults or it may be indicated by anomalous natural gas concentrations in the vicinity of
active faults. This paper presents the results of fault displacement monitoring at two sites in
the Bohemian Massif and Western Carpathians. These data have been supplemented by radon
monitoring in the Mlade£ Caves and by carbon dioxide monitoring in the Zbra²ov Aragonite
Caves. A signi�cant period of tectonic instability is indicated by changes in the fault displace-
ment trends and by anomalous radon and carbon dioxide concentrations. This was recorded
around the time of the catastrophic MW = 9.0 T	ohoku Earthquake, which hit eastern Japan
on 11 March 2011. It is tentatively suggested that the T	ohoku Earthquake in the Paci�c Ocean
and the unusual geodynamic activity recorded in the Bohemian Massif and Western Carpathians
both re�ect contemporaneous global tectonic changes.
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Abstrakt. Tektonické nestability mohou být m¥°eny p°ímo s vyuºitím extenzometru v míst¥
aktivního zlomu. Dal²í moºností jak zji²´ovat tyto nestability je detekce nezvyklé koncentrace
p°írodních plyn· v okolí aktivních zlom·. Tento £lánek se zabývá výsledky nam¥°enými na tek-
tonické poru²e na dvou místech � �eské vyso£in¥ a v západních Karpatech. Data byla dopln¥na
o sledování radonu v Mlade£ských jeskyních a oxidu uhli£itého v Zbra²ovských argonitových
jeskyních. Významné období tektonické nestability je zaznamenáno zm¥nou velikosti trhlin v
podloºí a podle nezvyklých koncentrací vý²e zmín¥ných p°írodních plyn·. Data byla sledována
v pr·b¥hu katastro�ckého zem¥t°esení T	ohoku ve východním Japonsku 11. b°ezna 2011, které
dosáhlo aº 9 stup¬· Momentové ²kály. P°edb¥ºn¥ lze °íci, ºe zem¥t°esení T	ohoku v Tichém
Oceánu a neobvyklé geodynamické aktivity, které byly zaznamenány v �eské vyso£in¥ a západ-
ních Karpatech, odráºí sou£asné globální tektonické zm¥ny.

Plná verze p°ísp¥vku: M. Briestenský, L. Thinová, R. Praksová, J. Stemberk, M.D. Rowberry
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Abstract. This contribution deals with the consrained mean curvature �ow for closed planar

curves and open planar curves with �xed endpoints. We particularly focus on the area preserving

mean curvature �ow, which conserves area enclosed by the closed nonsel�ntersecting curve or

area enclosed by the open curve and the lines connecting the �xed endpoints with origin of the

coordinates. We deal with such geometrical equation by means of the parametric approach and

discuss the e�ect of tangential redistribution. Resulting system of PDEs is numerically solved

and results of particular numerical experiment are presented. We also summarize some results

recently published and submitted.

Keywords: mean curvature �ow, tangential redistribution, parametric method

Abstrakt. Tento p°ísp¥vek se zabývá speciálním p°ípadem pohybu k°ivek (uzav°ených nebo

otev°ených s pevnými konci) v závislosti na st°ední k°ivosti, který zachovává jistou geometrickou

veli£inu. Zam¥°ujeme se p°edev²ím na p°ípad, kdy se zachovává plocha - v p°ípad¥ uzav°ené

k°ivky plocha pod k°ivkou, v p°ípad¥ otev°ené k°ivky plocha pod k°ivkou a spojnicemi pevných

konc· s po£átkem sou°adnic. Je diskutován parametrický popis problému v£etn¥ vlivu tangen-

tiální redistribuce. Výsledný systém PDR je numericky °e²en a výsledky numerického experi-

mentu jsou prezentovány. Také shrnujeme nedávné publikované výsledky a výsledky zaslané k

recenzi.

Klí£ová slova: pohyb k°ivek °ízený st°ední k°ivostí, tangenciální redistribuce, parametrizace

1 Introduction

This contribution deals with the applications of the mean curvature �ow, i.e., the motion
of curves, boundaries or interfaces in dependence on their mean curvature and under
e�ect of external forces. The most general dimensionless form reads as the following
geometric evolution equation

normal velocity = mean curvature + force. (1)

∗This work has been supported by the grant Two scales discrete-continuum approach to dislocation
dynamics, project No. P108/12/1463 and by the grant Multidisciplinary research cntre for advanced
materials, project No. 14-36566G of the Grant Agency of the Czech Republic.
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In this contribution, our investigation is restricted to the the motion of open and closed
planar curves in geometrical context and intended application in discrete dislocation
dynamics as in [1].

More precisely, the �ow (1) of a planar curve Γ is mathematically described by the
following equation

vΓ = κΓ + F, (2)
Γ|t=0 = Γini, (3)

where Γ is either a C1 smooth closed curve or an C1 smooth open curve with �xed
endpoints in R2. The quantity vΓ is the velocity in the direction of the outer normal, κΓ

is the mean curvature of Γ and F is the force term.
In dependence on the force term F , equation (2) exhibits either global or local charac-

ter. The global character of the forcing term F often occurs in the so called constrained
mean curvature �ow, where F depends on global geometrical quantities of the curve Γ,
such as its length L(Γ) or enclosed area A(Γ). Here we compile several known particular
constrained motions, and appropriate choices of the corresponding force terms F :

• Area preserving mean curvature �ow (see [5, 6]):

F =
1

L(Γ)

∫
Γ

κΓds.

Choice of this forcing term causes that during time evolution according to (2), the
area enclosed by initial curve Γini is conserved.

• Length preserving mean curvature �ow (see [14]):

F =

∫
Γ
κ2

Γds∫
Γ
κΓds

.

Time evolution of Γ is constrained in such a way that the lenth of the initial curve
Γini is preserved.

• Isoperimetric gradient �ow

F =
L(Γ)

2A(Γ)
.

This motion is constrained in such a way that it minimizes the isoperimetric ratio
in relative geometry. More details are discussed by �ev£ovi£ and Yazaki in [14].

Another well-known non-local character of the geometric governing equation (2) concerns
the recrystallization phenomena, where a �xed previously melted volume of the liquid
phase solidi�es � see [8].

The local character of the force F typically occurs in applications of (2) in the �eld
of digital image processing (image segmentation usually; the force here locally depents
on the intensity of the processed image � see [9]). Many other particular forms of the
force term F are investigated in problems with physical context, especially in the �eld of
discrete dislocation dynamics (see [1, 11]).
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2 Parametric Approach

There are several approaches how to treat equation (2). Popular and widely chosen
methods come from the family of interface capturing approaches, such as the phase-�eld
method ([10]) or the level set method ([4, 7]). One of their most discussed advantage is
their ability to deal with topological change, such as merging of multiple curves into a
single one or splitting a single curve into several others. On the other hand, in the case of
evolution of planar curves, it is in fact required to solve a 2D problem, and consequently
extract the wanted curve (which is one-dimensional object) from a 2D solution. This
typically causes computational complexity and slowness of these methods.

A fast and straightforward approach for evolving planar curves is provided by the
parametric method (also called direct or Lagrange method [1, 9, 11, 12]). In the direct
method, when treating (2), one can describe the family of smooth time-dependent planar
curves as

Γt = {Image( ~X(t, u)) : u ∈ [0, 1]}, t ≥ 0

by means of the parametrization
~X = ~X(t, u),

where the spatial parameter u belongs to the �xed interval [0, 1]. The parametrization ~X
is chosen to be oriented conterclockwise. For closed curves, we impose periodic boundary
conditions at u = 0 and u = 1, i.e., ~X(t, 0) = ~X(t, 1) and ∂u

~X(t, 0) = ∂u
~X(t, 1). For

open curves with �xed endpoints, the Dirichlet boundary conditions at u = 0 and u = 1,
i.e., ~X(t, 0) = ~X0 and ~X(t, 1) = ~X1 are prescribed. Consequently, we can describe the
geometric quantities of interest by means of the parametrization ~X. The unit tangential
vector ~t and the unit normal vector ~n are given by the following formulae:

~t =
∂u
~X

|∂u
~X|
, and ~n =

∂u
~X⊥

|∂u
~X|
,

where ⊥ is the symbol of perpendicularity. The vector ~n is chosen in such a way that
det(~n,~t) = 1 holds, i.e., we consider the outer unit normal vector. The mean curvature
is expressed as

κΓ =
1

|∂u
~X|
∂u

(
∂u
~X

∂u
~X

)
· ~n.

The normal velocity is de�ned straightforwardly as

v = ∂t
~X · ~n.

Then equation (2) is valid provided the parametrization ~X satis�es the following para-
metric equation

∂t
~X =

∂uu
~X

|∂u
~X|2

+ F
∂u
~X⊥

|∂u
~X|
. (4)
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3 Constrained motion

Let us denote A = At the following quantity parametrized by time

A =
1

2

∫
Γt

det( ~X,~t)ds. (5)

Then the following mean curvature �ow

vΓt = κΓt +
1

L(Γt)

∫
Γt

κΓtds (6)

preserves the quantity A, i.e., A = At = A0 for all t ≥ 0. Considering Γt a Jordan curve,
the quantity A represents the enclosed area, i.e., A =

∫
int(Γt)

dx. In the case where Γt is
an open curve with �xed endpoints, the quantity At represents the area, which is enclosed
by the curve Γt and by the lines connecting the �xed endpoints with the origin of the
coordinates.

In [3], we proposed the following proposition
Proposition: Suppose Γt is a family of C1 smooth curves in the plane for t ≥ 0, either
closed curves or open curves with �xed endpoints evolving according to the mean curvature
�ow (2). Then

dA

dt
= −

∫
Γt

vΓtds.

Particularly, if the time evolution is given by constrained mean curvature �ow (6), then

dA

dt
= 0. (7)

In general, area-preserving relation (7) is valid for each geometric �ow in the form

vΓt = f − 1

L(Γt)

∫
Γt

fds.

4 The E�ect of Tangential Redistribution

It is known when tracking a curve motion, the tangential terms do not a�ect its shape
and hence when analyzing, it is su�cient to take into the account only the terms in the
normal direction to the curve. Hovewer, numerical experiments show that the parametric
equations (4) are not always apropriate for the numerical computation and instabilities
can occur. Since the curve is discretized by a certain number of grid points, in certain
cases, we can observe that during the evolution, the grid (discretized) points are accu-
mulated somewhere and, on the other hand, very sparse somewhere else. One possible
way to overcome this problem is to complement the equation (4) with a tangential term
responsible for redistribution of discretization points

∂t
~X =

∂uu
~X

|∂u
~X|2

+ α
∂u
~X

|∂u
~X|

+ F
∂u
~X⊥

|∂u
~X|
. (8)
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The term α, is a (possibly nonlocal) function of the position vector ~X, its �rst and second
derivatives and the time. Generally, the tangential terms a�ect the discretization points
and move them along the curve without a�ecting its shape. If correctly chosen, the
numerical algorithm is more stable and has higher accuracy. On the other hand, wrong
choice of tangential terms can lead to the errors and in the worst case, to the failure of
the algorithm.

The problem of tangential redistribution has been extensivelly studied by many au-
thors. We use the curvature adjusted tangential redistribution, which was originally
proposed by D. �ev£ovi£ and S. Yazaki in [12] for closed curves. Here which one can also
�nd a brief overview and a critical discussion of redistribution methods. In paper [1], we
adapted their original algorithm and developed a modi�cation suitable for open curves
with �xed endpoints.

The impact of the tangential redistribution is shown on the Figure 1.
According to the [12], the tangential component has been proposed as the soluton of

the following problem

∂s(ϕ(κΓt)α) = H,

H = f − ϕ(κΓt)

〈ϕ(κΓt)〉
〈f〉+ ω

(
L(Γt)

|∂u
~X|
〈ϕ(κΓt)〉 − ϕ(κΓt)

)
,

(9)

where ∂s denotes the derivative with respect to the arc-length, i.e. ∂s
~X = ∂u

~X/|∂u
~X|

and ds = |∂u
~X|du. The parameter ω is a given positive constant. The other factors in

the problem (9) are as follows

ϕ(κΓt) = 1− ε+ ε
√

1− ε+ ε2,

f = ϕ(κΓt)κΓt(κΓt + F )− ϕ′(κΓt)(∂
2
sκΓt + ∂2

sF + κ2
Γt

(κΓt + F )),

〈F (·, t)〉 =
1

L(Γt)

∫
Γt

F (s, t)ds.

The function ϕ(κΓt) plays an important role because it controls the redistribution of the
grid points. The special choice ϕ(κΓt) = 1 produces the uniform redistribution for ω = 0
and asymptotically uniform redistribution for ε > 0. The function ϕ = |κΓ| was proposed
for the crystalline curvature �ow (see [13]). Choosing ε ∈ (0, 1), we obtain curvature
adjusted redistribution [12].

The redistribution coe�cient α is (up to an additive constant) uniquely determined
from (9). For closed curves, �ev£ovi£ and Yazaki used renormalization constraint

〈α(·, t)〉 = 0.

For open curves with �xed endpoints (see [1, 3]), we have to ensure

α(0, t) = α(L(Γt), t) = 0

for all t ≥ 0. As ϕ(κ(L(Γt))) > 0, setting α(0, t) = 0 and integrating (9) over the curve
Γt with respect to the arc-length yields

ϕ(κΓt)α(s, t)|s=L(Γt) = ϕ(κΓt)α(s, t)|s=0 +

∫
Γt

H(s)ds,
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Figure 1: The impact of the tangential redistribution. On the left �gure there is a case
without the tangential velocity, the curve on the right �gure was computed with the usage
of the uniform redistribution.

because one can easily see that∫
Γt

Hds = ω(L(Γt)〈ϕ〉 − L(Γt)〈ϕ〉) = 0

and the uniqueness condition

α(0, t) = α(L(Γt), t) = 0

holds.

5 Numerical Solution

For the numerical computations we can use either the scheme based on �owing �nite
volume method proposed by D. �ev£ovi£ and S. Yazaki [12], which is also discussed in cite.
In cite, it is also proposed, the �owing �nite volume scheme has order of approximation
O(h2), where h = 1/M for the number of �nite volumesM . Another possibility, which we
propose in this paper, is the fully discrete semi-implicit scheme with spatial discretization
based on �nite di�erences, such as is cite

~Xk+1
j − τ

~Xk+1
uu,j

Q2( ~Xk
u,j)
− ταk+1

j

~Xk+1
u,j

Q( ~Xk
u,j)

= ~Xk
j + τF

~X⊥,k
u,j

Q( ~Xk
u,j)

,

where ~Xk
j ≈ ~X(jh, kτ) for the spatial step h and the time step τ ,Q( ~X) =

√
X2

1 +X2
2 + ε2

serving as the regularization term since it is necessary to avoid dividing by zero. The
symbols ~Xk

u,j and ~Xk
uu,j denote the �rst and the second central di�erences.

6 Computational Results

We presented the results of the numerical experiment of the area preserving mean cur-
vature �ow (6) for a particular closed curve, where the initial condition has shape of a
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snow�ake. As expected, the solution approaches steady state in circular shape in �nite
time (see e.g., [2, 3]). This result is in agreement with the hypothesis, which is also
supported by our results for closed curves in [2]. In [3], where we focused on area pre-
serving mean curvature �ow for open curves with �xed endpoints, one can �nd another
computational study and numerical results of convergence analysis.

In this numerical experiment, the enclosed area of initial condition is ≈ 3.258 and
the area enclosed by the steady state solution is ≈ 3.263. Time evolution is depicted in
Figure 2.

7 Conclusion

We presented geometrical equation describing area preserving mean curvature �ow for
closed curves and open curves with �xed endpoints in the plane. We discussed the
parametric description of the problem and the enhancement of the parametric equation
by employing the tangental redistribution, including its modi�cation for open curves with
�xed endpoints. We presented our results of one particular numerical experiment, which
is in a good agreement with the theory. We also summarized our published and submitted
results.
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Figure 2: Time evolution of closed curve with initial shape of snow�ake. The curve
evolves according to area preserving mean curvature �ow (6) and approaches steady
state of circular shape.
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Abstract. In the framework of Multifractal di�usion entropy analysis we propose a method for

choosing an optimal bin-width in histograms generated from underlying probability distributions

of interest. The method presented uses techniques of Rényi's entropy and the mean squared error

analysis to discuss the conditions under which the error in the multifractal spectrum estimation

is minimal. We illustrate the utility of our approach by focusing on a scaling behavior of

�nancial time series. In particular, we analyze the S&P 500 stock index as sampled at a daily

rate in the time period 1950�2013. In order to demonstrate a strength of the method proposed

we compare the multifractal δ-spectrum for various bin-widths and show the robustness of the

method, especially for large values of q. For such values, other methods in use, e.g., those

based on moment estimation, tend to fail for heavy-tailed data or data with long correlations.

Connection between the δ-spectrum and Rényi's q parameter is also discussed and elucidated

on a simple example of multiscale time series.

This article has been published in Physica A, 413:438�458, 2014, and the results have been

presented and are part of conference proceedigs of ISCS 2014 held in Florence, Italy.

Keywords: Multifractals, Rényi entropy, Stable distributions, Time series

Abstrakt. V rámci multifraktální di�usion entropy analysis (MFDEA) je odvozena nová

metoda pro výb¥r optimální ²í°ky sloupce histogramu generovaného z modelu °ízeného pravd¥po-

dobnostním rozd¥lením daného modelu. Tato metoda uºívá technik Rényiho entropie a st°ední

kvadratické chyby k diskuzi, za kterých podmínek je odhad multifraktálního spektra optimální.

Uºite£nost tohoto p°ístupu je ilustrována na ²kálování �nan£ních £asových °ad, konkrétn¥ na

£asové °ad¥ denních výnos· indexu S&P 500 v období 1950-2013. Za tímto ú£elem porovnáváme

multifraktální δ spektra pro r·zné ²í°ky sloupc· a ilustrujeme robustnost této metody, hlavn¥

pro velké hodnoty parametru q. Pro tyto hodnoty ostatní pouºívané metody, nap°íklad ty, které

jsou zaloºeny na odhadu moment· daného rozd¥lení, mají tendenci selhat pro data s t¥ºkými

rameny nebo data s dlouhými korelacemi. Spojitost mezi δ spektrem a Rényiho parametrem q
je také diskutována na jednoduchém p°íkladu multi²kálové £asové °ady.

Tento p°ísp¥vek byl publikován v Physica A, 413:438�458, 2014 a byl p°enesen (a je sou£ástí

sborníku) na konferenci ISCS 2014 konané ve Florenci v Itálii.

Klí£ová slova: multifraktály, Rényiho entropie, stabilní rozd¥lení, £asové °ady
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Abstract. This work is focused on a proposal of a new type of telescopes using a rotating
parabolic strip as the primary mirror. It is a principal modi�cation of the design of telescopes
from the times of Galileo and Newton. In order to demonstrate the basic idea, the image of an
arti�cial constellation observed by this kind of telescope was reconstructed using the techniques
described in this article. We present a working model of this new telescope, we have used an
assembly of the primary mirror � a strip of acrylic glass parabolic mirror 30 cm long and 10
cm wide shaped as a parabolic cylinder of focal length 1 m � and an arti�cial constellation,
a set of LED diodes in a distance of 15 m. In order to reconstruct the image, we made a
series of snaps, each after a rotation of the constellation by 5 degrees. Using three di�erent
algorithms we reconstructed the image of this arti�cial constellation. This contribution is based
on (Chadzitaskos 2013) with new telescope designs and new experimental tests.

Full text: V. Kosejk, G. Chadzitaskos, and J. �ervený, Parabolic Strip Telescope, In `Pro-
ceedings of PIERS 2014 in Guangzhou' (2014), 471�476. Available on: http://piers.org/

piersproceedings/piers2014GuangzhouProc.php?start=100.

Keywords: Telescope, angular resolution, image processing,

Abstrakt. Tento £lánek se zam¥°uje na návrh nového typu teleskopu, který vyuºívá rota£ní
parabolický pásek jako primární optický element. Takové °e²ení je hlavní modi�kací v návrhu
dalekohled· od dob Galiea a Newtona. K demonstraci principu základní my²lenky je vyuºit obraz
um¥lého souhv¥zdí, pozorovaného rota£ním teleskopem, s vyuºitím rekonstruk£ních technik pop-
saných v tomto £lánku. Fungující model nového teleskopu pracuje s akrylovým parabolickým
páskem o rozm¥rech 30x10 cm, který je tvarovaný jako parabolický válec s ohniskovou vzdáleností
1 metr. Obraz um¥lého souhv¥zdí je reprezentován souborem LED diod ve vzdálenosti 15 metr·.
Rekonstrukci obrazu provádíme ze série snímk·, kde p°i kaºdém snímání oto£íme desku um¥lého
souhv¥zdí o 5 st. Pro rekonstrukci obrazu vyuºíváme 3 rozdílné algoritmy zpracování nasní-
maných obraz·. Tento p°ísp¥vek je zaloºen na (Chadzitaskos 2013) s novým modelem teleskopu
a novou sérií test·.

Celý £lánek: V. Kosejk, G. Chadzitaskos, and J. �ervený, Parabolic Strip Telescope, In
`Proceedings of PIERS 2014 in Guangzhou' (2014), 471�476. Available on: http://piers.org/
piersproceedings/piers2014GuangzhouProc.php?start=100.

Klí£ová slova: Teleskop, úhlové rozli²ení, zpracování obrazu.
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Abstract. The demand for proper sport match prediction tools is constantly increasing together

with the amount of money put into sports betting. Possible ways of modeling tennis matches

and their in-play states using discrete Markov chains are introduced in this paper. The results

are based on the 2007-2013 ATP seasons.
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Abstrakt. Celosv¥tov¥ vzr·stající mnoºství prost°edk· vloºených do sportovních sázek stup¬uje

poptávku po kvalitních nástrojích k predikci sportovních výsledk·. V tomto £lánku jsou p°ed-

staveny n¥které moºnosti vyuºití diskrétních Markovských °et¥zc· pro modelování situací v

pr·b¥hu tenisových utkání. Záv¥ry jsou postaveny na výsledcích sv¥tové tenisové série ATP z

let 2007 aº 2013.

Klí£ová slova: diskrétní Markovovy °et¥zce, tenis, modelování herních situací

1 Introduction

The popularity of sports betting and especially the online sports betting has been in-
creasing over the course of past several years. In order to satisfy the demands of bettors,
the bookmakers are continuously expanding the betting o�er. Therefore it becomes in-
creasingly important to correctly predict not only the match outcomes (i.e. the win of a
certain player or a team), but also the di�erent particular results (such as the number of
sets played, goals scored), especially for the popular sports such as tennis. Mathematical
modeling could be a proper tool to produce such predictions.

To predict the outcome of a single match, most approaches consider time development
of individual player's strength from match to match and adjust the pre-game parameters
according to the previous results [7]. The obvious drawback of this approach is that
the subject of study are real people and their behavior or properties over the course
of time. Without doubt the performance during previous matches and tournaments is
a good indicator of the future performance, but there are still many other factors to
consider. Some of them could be observed, such as the preference of certain surface or
a head to head results with a given opponent, but others, such as small illness between
tournaments or irregular support of fans, are extremely hard to even identify, let alone to
quantify (especially back in time). Altogether, it is obvious that the player's performance
varies not only tournament by tournament and match by match, but probably even point
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by point. Di�erent approach than considering the development from match to match, is
examining the development over the course of one match. One match of tennis can be
viewed as a realization of a discrete stochastic process, considering sets, games, points
or even single strokes as units of time [5]. In this paper we focus on a set by set tennis
match model.

1.1 Input data

Tracking all the individual variables that might in�uence the outcome of a tennis match
(and the probabilities of an outcome) several years backwards is a di�cult task. Some
parts of it, such as the past results, past player's rankings or even point by point match
development can be done with the help of computers. On the other hand, there are some
variables that certainly in�uence a tennis game which are very di�cult to track in real
time and virtually impossible to track backwards. Those are especially some life events of
individual players, such as a small illness or injury, change of a personal physiotherapist
or even a baggage lost during a �ight. Such variables can (but not necessarily have to)
in�uence match outcomes and without their knowledge, computing probabilities from
past results can introduce some kind of bias.

However, professional bookmakers keep (and have always kept) track of all those
individual variables and already incorporated those into their match odds. In this paper,
it is assumed that all matches with similar starting odds should have similar development,
no matter what tournament, surface or players are involved. Therefore the starting
odds given by bookmakers are taken as a starting point for match modeling That is,
two matches between Roger Federer and Rafael Nadal are not considered to be two
observations of the same process (or variable), but rather are the two matches where the
odds are same (or similar).

1.2 Odds

The bookmakers' odds are just another form of expressing probabilities. There are three
way to represent odds, European, American and fractal, for more detail see for example
[4]. The most common is the European (decimal) format. Let oA be the odds for player A
to win a match. When a bet bA is placed, the payout if successful is payA = oA · bA. Thus
the probability associated with the odds oA is p̃A = 1

oA
. However, in order to generate

pro�t, the bookmakers use some margin, causing that 1
oA

+ 1
oB

= p̃A + p̃B > 1. The
margin can be as low as 1% (for the most prestigious games such as Grand Slam �nals),
but also > 10% (for some low rank tournaments). That means that p̃A and p̃B are not
actual winning probabilities of the players, but margin-adjusted probabilities. In order
to obtain the actual probabilities, p̃A and p̃B have to be normalized.

Standard normalization distributes the margin evenly between the favorite and the
outsider. Empirical results, however, suggest, that such distribution is incorrect and
that the bookmakers' margin lies rather on the side of the outsider and that the odd-
probability of the favorite is very close of the actual winning probability. Therefore, odd
adjusted normalization has to be introduced in order to obtain correct probabilities.
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2 Markov Chains

Markov chain is a stochastic process with discrete set of states and discrete time that
satis�es the Markov property. That is the probability that at time t the chain is at state
i, p

(t)
i , only depends on the previous state, i.e. the state at time t − 1 [2]. Markov chain

is �nite (or in�nite) if the corresponding state sets are �nite and in�nite, respectively.

Let p
(t)
ij denote the conditional probability that the chain will be at state j at the next

step, given it is at state i in the current step. The probabilities p
(t)
ij are called transition

probabilities. The square matrix P such that

P
(t)
i,j = p

(t)
ij

is called the transition matrix. A Markov chain is said to be homogeneous if the proba-
bility p

(t)
i,j is time independent for all i, j. A state i of a Markov chain is called absorbing

if it is impossible to leave it (i.e., pii = 1). A Markov chain is absorbing if it has at
least one absorbing state. In an absorbing Markov chain, a state which is not absorbing
is called transient [3]. The states of a Markov chain can be renumbered such that the
absorbing states come �rst and the transient last. Then the transition matrix will have
the canonical form

P =

(
I 0
R Q

)
.

The fundamental matrix is the matrix

N = (I − Q)−1.

The elements of the fundamental matrix have this meaning. nij is the expected number of
times the Markov chain will be in state j if it started in state i. Let bij be the probability
of the chain to be absorbed in state j given it started in i and let

Bi,j = bij

be a matrix. Then
B = NR,

where N is the fundamental matrix and R is the sub-matrix from the canonical form.
Matrices N and B allow to compute all necessary information about the Markov chain
and the stochastic process that it represents. More information about Markov chains
together with proofs of the statements above can be found in [3].

3 Data Description

The application of Markov chains on tennis match simulation is studied on the set of tennis
match results from the 2007 thru 2013 ATP1 seasons, available freely from http://tennis-
data.co.uk/alldata.php2. The data contains basic information about the tournament, the

1Association of Tennis Professionals, men tennis association.
2The data contains many errors, which were removed manually. Thus, some matches from the men-

tioned seasons are not included in the dataset.
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Figure 1: Histogram of
the data distribution.

players and set by set results. It also contains winning odds for each player provided
by 5 of the top international bookmakers - Bet365, Expect Win, Ladbrokes, Pinnacle
Sports and Stan James (Unibet for earlier seasons). Only matches, where there was
necessary to win two sets in order to win a match, were considered in our study, therefore
the four Grand Slam tournaments were omitted for each season. In this paper, the two
tennis players are always labeled as the favorite and the outsider. This is the best way
to name the players, as unlike in most other sports, the concept of home and away teams
(players) is not used in tennis3. In order to avoid confusion, matches without a favorite,
i.e. matches where the odds were even, were also not included in our study (242 matches).
Altogether, the database contains 14 240 di�erent matches.

The matches were divided into groups according to the winning probability distribu-
tion among the two players. In order to obtain groups with enough observations, small
intervals were taken instead of individual values. This goes in tact with the fact that the
odds given by bookmakers are mere the probability estimates, not the actual probabili-
ties. The data were not uniformly distributed and therefore logarithmic scale was used
to create groups with similar number of matches. The histogram showing the division of
the matches into respective groups is in Figure 1.

4 Results

4.1 I.i.d. Hypothesis

Given the probabilities of wining a match, the hypothesis can be assumed that the proba-
bilities of winning respective sets are independent identically distributed random variables.
For the matches played as best of three, there are three possible ways for the favorite
to win a match, that is win 2:0, win 2:1 and lose the �rst set and win 2:1 and lose the
second set. The theoretical value of the probability of winning in a set can be obtained
by solving the equation

pmatch = p2
set + 2 · p2

set (1 − pset).

3Of course, there are some British players playing the Wimbledon and French players playing the

French Open etc., but in general, the home away concept is not present in tennis.
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This cubic equation can be numerically solved for example using the Newton-Raphson
algorithm [6]. Under the i.i.d. hypothesis, a tennis match can be modeled as a Markov
chain with six di�erent states. The match starts, is tied, the favorite is leading by one
set, the favorite is down by one set, favorite wins and favorite loses. Renumbering the
states accordingly, the following transition matrix in the canonical form is obtained, with
p standing for the probability of the favorite to win a set under the i.i.d. hypothesis.

P =



F win F lose F lead F back 1 : 1 0 : 0
F win 1 0 0 0 0 0
F lose 0 1 0 0 0 0
F lead p 0 0 0 1 − p 0
F back 0 1 − p 0 0 p 0
1 : 1 p 1 − p 0 0 0 0
0 : 0 0 0 p 1 − p 0 0


It is an absorbing Markov chain which has two absorbing and four transient states. All
match outcomes for all in-play situations can be obtained from this transition matrix, see
Section 2 for details.

4.2 Empirical Results

The circumstances of a tennis match, as an encounter between two individuals, suggest
that the i.i.d. hypothesis might not correspond with the reality and that a di�erent
transition matrix has to be constructed. In order to con�rm or reject the hypothesis,
empirical results were compared with the theoretical values. Tables 1 thru 5 show the
results. First two columns show the division into groups, third column contains the set
winning probability obtained assuming the i.i.d. hypothesis and the other columns show
the values obtained from the data together with the p-values associated with the reality.
Namely, if we denote p as the probability derived from the i.i.d hypothesis and p̂ relative

frequencies computed from data, the test statistics is Z =
√

n
p·(1−p)

· (p̂ − p) and, under

stated hypothesis, its distribution is taken to be standard normal (due to the central limit
theorem) [1].

The results for the �rst set are almost completely in tact with the i.i.d. hypothesis,
see Table 1. This is obvious, as the set number one is the �rst random variable and there
is nothing to be dependent on. The only group where the i.i.d. hypothesis can be rejected
is that of the huge favorites with the favorite winning probability over 93 %. This can be
caused by the fact that for such a big favorite, the bookmakers' are not that accurate.
Tables 2 and 3 on the other hand show that the second set results do not correspond with
the i.i.d. hypothesis at all and suggest that winning the �rst set increases the chances of
winning the second set as well. This is in tact with the opinion about tennis and sports
in general, which can be expressed as �success breeds success�. Graphical illustration of
the situation after the �rst set can be observed in Figures 2 and 3.

The most interesting part is the third set. The question is whether there is a di�erence
between the beginning of the match (i.e. the state 0:0) and the state 1:1, and between
the two ways of getting into the state 1:1. Tables 4, 5 and 6 do not give a de�nite answer
for the question. Not all the p-values speak against the i.i.d. hypothesis and against the
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p_match
lower
bound

p_match
upper
bound

p_set i.i.d. �rst set
winning
ratio

total
matches

p_value

0,50 0,53 0,51 0,51 442 0,491
0,53 0,57 0,54 0,53 1526 0,398
0,57 0,61 0,56 0,57 1501 0,264
0,61 0,66 0,59 0,57 1561 0,123
0,66 0,70 0,61 0,60 2078 0,087
0,70 0,76 0,66 0,68 2348 0,032
0,76 0,81 0,70 0,70 1426 0,361
0,81 0,87 0,75 0,75 1487 0,429
0,87 0,93 0,80 0,79 1173 0,178
0,93 1 0,88 0,91 698 0,006
0,5 1 0,65 0,65 14240 0,476

Table 1: The i.i.d. hypothesis compared to the actual results of �rst sets.

p_match
lower
bound

p_match
upper
bound

p_set i.i.d. second set
winning
ratio

total
matches

p_value

0,50 0,53 0,51 0,67 226 0,000
0,53 0,57 0,54 0,63 813 0,000
0,57 0,61 0,56 0,65 857 0,000
0,61 0,66 0,59 0,71 892 0,000
0,66 0,70 0,61 0,70 1257 0,000
0,70 0,76 0,66 0,74 1589 0,000
0,76 0,81 0,70 0,78 998 0,000
0,81 0,87 0,75 0,80 1117 0,000
0,87 0,93 0,80 0,87 930 0,000
0,93 1 0,88 0,89 634 0,168
0,5 1 0,65 0,75 9313 0,000

Table 2: The i.i.d. hypothesis compared to the actual results of second sets after the
favorite has won the �rst set.

Figure 2: Favorite's winning
probabilities after winning �rst
set compared to those computed
under i.i.d.
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p_match
lower
bound

p_match
upper
bound

p_set i.i.d. second set
winning
ratio

total
matches

p_value

0,50 0,53 0,51 0,36 216 0,000
0,53 0,57 0,54 0,41 713 0,000
0,57 0,61 0,56 0,46 644 0,000
0,61 0,66 0,59 0,48 669 0,000
0,66 0,70 0,61 0,50 821 0,000
0,70 0,76 0,66 0,55 759 0,000
0,76 0,81 0,70 0,60 428 0,000
0,81 0,87 0,75 0,59 370 0,000
0,87 0,93 0,80 0,67 243 0,000
0,93 1 0,88 0,75 64 0,001
0,5 1 0,65 0,51 4927 0,000

Table 3: The i.i.d. hypothesis compared to the actual results of second sets after the
favorite has lost the �rst set.

p_match
lower
bound

p_match
upper
bound

p_set i.i.d. third set
winning
ratio

total
matches

p_value

0,50 0,53 0,51 0,65 78 0,006
0,53 0,57 0,54 0,58 291 0,079
0,57 0,61 0,56 0,59 294 0,189
0,61 0,66 0,59 0,56 320 0,168
0,66 0,70 0,61 0,63 412 0,313
0,70 0,76 0,66 0,66 414 0,486
0,76 0,81 0,70 0,73 255 0,154
0,81 0,87 0,75 0,76 217 0,411
0,87 0,93 0,80 0,79 163 0,348
0,93 1 0,88 0,83 48 0,178
0,5 1 0,65 0,65 2492 0,414

Table 4: The i.i.d. hypothesis compared to the actual results of third sets after the
favorite has lost the �rst set and won the second set.
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p_match
lower
bound

p_match
upper
bound

p_set i.i.d. third set
winning
ratio

total
matches

p_value

0,50 0,53 0,51 0,47 75 0,222
0,53 0,57 0,54 0,41 300 0,000
0,57 0,61 0,56 0,50 300 0,010
0,61 0,66 0,59 0,55 260 0,097
0,66 0,70 0,61 0,59 380 0,137
0,70 0,76 0,66 0,65 416 0,379
0,76 0,81 0,70 0,73 222 0,246
0,81 0,87 0,75 0,75 228 0,488
0,87 0,93 0,80 0,76 118 0,132
0,93 1 0,88 0,81 70 0,055
0,5 1 0,65 0,60 2369 0,000

Table 5: The i.i.d. hypothesis compared to the actual results of third sets after the
favorite has won the �rst set and lost the second set.

p_match
lower
bound

p_match
upper
bound

favorite
loses,

then wins

total
matches

favorite
wins,

then loses

total
matches

p_value

0,50 0,53 0,65 78 0,47 75 0,009
0,53 0,57 0,58 291 0,41 300 0,000
0,57 0,61 0,59 294 0,50 300 0,012
0,61 0,66 0,56 320 0,55 260 0,375
0,66 0,70 0,63 412 0,59 380 0,130
0,70 0,76 0,66 414 0,65 416 0,404
0,76 0,81 0,73 255 0,73 222 0,421
0,81 0,87 0,76 217 0,75 228 0,444
0,87 0,93 0,79 163 0,76 118 0,285
0,93 1 0,83 48 0,81 70 0,394
0,5 1 0,65 2492 0,60 2369 0,000

Table 6: Comparison of the two ways of getting into the 1:1 state of a tennis match.

Figure 3: Favorite's winning
probabilities after losing �rst
set compared to those computed
under i.i.d.
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hypothesis that the two ways of getting into 1:1 are equivalent. The mean values of set
winning probabilities suggest that the two hypotheses might be incorrect but there is not
enough observations to prove it. If we look at all matches as a one group, we can tell
that it does matter how is the 1:1 state achieved and that if the outsider ties a match
after losing the �rst set, his chances of winning set number there are better than those
computed under the i.i.d. hypothesis.

These results indicate that in order to model a tennis match using a Markov chain
we have to improve it according to the observed data by introducing new states. The
adjusted transition matrix in the canonical form is then

P =



F win F lose 0 : 0 F O FO OF
F win 1 0 0 0 0 0 0
F lose 0 1 0 0 0 0 0
0 : 0 0 0 0 piid 1 − piid 0 0
F pF 0 0 0 0 1 − pF 0
O 0 1 − pO 0 0 0 0 pO

FO pFO 1 − pFO 0 0 0 0 0
OF pOF 1 − pOF 0 0 0 0 0


where F and O stand for a set won by the favorite and outsider, respectively, and psituation

stands for the set winning probability of the favorite under the respective situation. This
matrix again has two absorbing states but �ve transient states. Results from Table 4
suggest that pOF = piid. Again, this matrix can be used to compute all the in-play odds
for di�erent match situations. Another possible adjustment to the transition matrix
would be to introduce another two absorbing states to di�erentiate between 2:0 and 2:1
win (or loss).

5 Conclusion

The possibility of modeling a tennis match set by set using Markov chains was studied in
this paper. The simple independence hypothesis was rejected by observing actual tennis
match results obtained from the ATP series from years 2007 thru 2013. It was proven
that the set winning probabilities of the players change throughout the match depending
on the outcomes of the past sets. This is in tact with the general belief about sports
and tennis in particular. The Markov chain that models the real tennis match set by set
development was introduced.

6 Future Work

The presented results constitute to a good starting point for the further study of the
implementation of Markov chains in sports and in tennis in particular. The �rst area of
interest is to study whether the presented results apply only for the studied case or can
be generalized. Therefore the i.i.d. hypothesis should be tested on di�erent data sets
regarding tennis (such as women tennis matches, doubles etc.) and other sports played in
sets, both individual (such as table tennis or badminton) and team (such as volleyball).



110 T. Kou°im

The other way of research is to study the possible implementation of Markov chains
in the modeling of tennis matches in more detail. That is, to study the match not only
set by set, but also game by game, point by point or even stroke by stroke.
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Abstract. Pattern formation due to chemical instability is one of the most important phe-
nomenon in many non-equilibrium systems, ranging from developmental biology to gas-discharge
systems, crystal growth in solidifying alloys, plasma or semiconductors. The recognised funda-
mental symmetry breaking mechanism is a di�usion-driven instability (Turing instability [2]) in
a reaction di�usion system (RD system). Turing showed that small perturbation of well-mixed
homogeneous system of autocatalic and inhibitory di�using species could cause instability which
leads to an emergence of spatial patterns. Further, motivated by Belousov-Zhabotinsky reaction,
Rovinsky and Menzinger proposed other possible mechanism, di�erential-�ow-induced chemical
instability (DIFICI) [3] containing a term with advection. As a result, they obtained a range
of new spatial patterns. Other mechanism followed, e.g. �ow-distributed oscilations (FDO) [4],
�ow-and-di�usion structures (FDS) [5]. These approaches di�er in chosen parameter, impor-
tance of each equation element or physical motivation. We will be interested in analysis of such
models on the bounded domain where reaction, di�usion and advection are considered (RDA
system) and where the spatial pattern formation occurs.

If we compare Turing instability in RD systems and the instabilities in RDA systems de-
scribed above, the principle of modelling some real situation seems to be very similar, thus we
could expect similar results, and yet from the mathematical point of view they are very di�erent.
The operator corresponding to RD system is self-adjoint, the operator corresponding to RDA
system is not, thus behaviour of RDA operator is not characterized by sum of its eigenfunctions
and hence it is more complex (a very helpful theory is the theory about pseudospectrum [8, 9]).
Additionally, the presence of advection leads to a di�erence in concept of "system without di�u-
sion", between setting D = 0 and letting limit limD→0. In this work, we consider the latter, we
suppose various boundary conditions (Dirichlet's, zero-�ux, no out�ow due to di�usion, periodic
and Danckwert's) and analyse two RDA systems of two equations in one-dimensional spatial
variable that are both well outside of the classical di�usion-driven instability regime; in the �rst
case, one species is attached to a �xed substrate (one equation contains neither di�usion nor
advection term), in the second case both equations have the same coe�cient of di�usion and
the same coe�cient of advection.

We use concept of linearised stability, thus we are interested in a sign of real parts of roots
of the so-called dispersion relation. We employ that we are able to compute eigenvalues of ap-
propriate operators analytically with each type of boundary condition and by standard methods
of model analysis we derive conditions when the di�usion driven instability occurs.

∗This work has been supported by the grant SGS12/198/OHK4/3T/14.
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The obtained results di�er from naive intuition but also qualitatively di�er from those pre-
sented in literature where the results were obtained by di�erent methods. In the �rst studied
case, with one attached species, the homogeneous steady state for dominant advection is always
stable, which is in contrast with studies of unbounded systems [6, 7]. In the second case, both
species moving, signi�cant relaxation of conditions comparing to Turing instability occurs - arbi-
trary small advection causes that stability of homogeneous system always holds, therefore there
are no binding conditions in analysis of instability of the system.

The contribution of this article lies in demonstration and highlighting a crucial di�erence
between conditions of emergence of spatial pattern in RD and RDA systems but also that other
(and more complex) methods of stability analysis have to be used for analysis of RDA operator.
As the in�uence of arbitrary small advection on system's behaviour is striking, a natural question
arises: is advection present in real applications or can it be safely assumed that advection is not
considered? To recognize whenever RD od RDA model �ts better to real situation, we shall also
look closely to the physical essence of modelled phenomenon in our future work.

Keywords: reaction-di�usion-advection system, di�usion driven instability

Abstrakt. Vznik prostorových struktur je jedním z nejd·leºit¥j²ích jev· v mnoha nerovnováº-
ných systémech, po£ínaje vývojovou biologií p°es r·st krystal· v tuhnoucích slitinách, kon£e
plasmou nebo polovodi£i. Základním mechanismem k naru²ení symetrie je nestabilita zp·sobená
difuzí (di�usion driven instability; Turingova nestabilita [2]) reak£n¥-difuzních systém· (RD sys-
tém). Turing ukázal, ºe malá perturbace homogenního systému autokatalyticky a inhibi£n¥ di-
fundujících druh· mohou zp·sobit nestabilitu, která vede ke vzniku prostorových struktur. Dále,
motivováni Belousov-Zhabotinského reakcí, Rovinsky a Menzinger navrhli jiný moºný mechanis-
mus, di�erential-�ow-induced chemical instability (DIFICI) [3] obsahující £len s advekcí. Jako
výsledek dostali °adu nových prostorových struktur. Dal²í mechanismy následovaly, nap°íklad
�ow-distributed oscilations (FDO) [4], �ow-and-di�usion structures (FDS) [5]. Tyto p°ístupy se
li²í volbou parametr·, d·leºitostí jednotlivých £len· v rovnici nebo fyzikálními motivacemi. Nás
bude zajímat analýza takových model· uvaºovaných na omezených oblastech, kde je p°ítomna
reakce, difuze a advekce (RDA systém) a kde dochází ke vzniku prostorových struktur.

Porovnáme-li Turingovu nestabilitu v RD systémech s nestabilitami v RDA systémech pop-
sanými vý²e, podstata modelování konkrétní reálné situace vypadá velmi podobn¥, tedy bychom
p°edpokládali i podobné výsledky, le£ z matematického hlediska jsou velmi odli²né. Operátor
p°íslu²ný RD sysému je samoadjungovaný, operátor p°íslu²ný RDA systému ne, tudíº chování
RDA operátoru nejde charakterizovat sou£tem svých vlastních funkcí, jde tedy o komplexn¥j²í
chování (nápomocnou teorií je teorie pseudospekter [8, 9]). Dále, p°ítomnost advekce vede
k rozdíl·m v konceptu "systému bez difuze", mezi dosazením D = 0 a limitním p°echodem
limD→0. V této práci uvaºujeme posledn¥ jmenovaný, p°edpokládáme °adu okrajových pod-
mínek (Dirichletovy, nulový tok, nulový tok vzhledem k difuzi, periodické a Danckwertovy) a
analyzujeme dva RDA systémy o dvou rovnicích v jedné prostorové prom¥nné, oba p°esahující
rámec klasické nestability zp·sobené difuzí; v prvním p°ípad¥ je jeden druh p°ichycen k pevnému
podloºí (jedna rovnice neobsahuje ani difuzní ani advek£ní £len), v druhém p°ípad¥ ob¥ rovnice
mají stejný difuzní koe�cient a stejný advek£ní koe�cient. Pouºíváme koncepci linearizované sta-
bility, zajímají nás tedy znaménka reálných £ástí ko°en· takzvané disperzní relace. Vyuºíváme,
ºe jsme schopni analyticky spo£ítat vlastní £ísla p°íslu²ných operátor· pro kaºdý typ okrajových
podmínek a standardními metodami analýzy odvodíme podmínky, za kterých dojde k nestabilit¥
zp·sobené difuzí.

Obdrºené výsledky se li²í od prosté intuice, ale také se kvalitativn¥ li²í od t¥ch prezentovaných
v literatu°e, ve které byly výsledky získány jinými metodami. V prvn¥ studovaném p°ípad¥, s
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jedním nepohyblivým druhem, homogenní stav je v p°ípad¥ dominantní advekce vºdy stabilní,
coº je v kontrastu se studiem neomezených systém· [6, 7]. V druhém p°ípad¥, s ob¥ma druhy
pohybujícími se, dochází v porovnání s Turingovou nestabilitou k významné relaxaci podmínek
- libovoln¥ malá advekce zap°i£iní, ºe homogenní systém je vºdy stabilní, a tedy do analýzy
nestability nejsou p°eneseny ºádné svazující podmínky.

P°ínosem tohoto £lánku je demonstrace a zd·razn¥ní zásadního rozdílu mezi podmínkami
vzniku prostorových struktur v RD a RDA systémech, ale také nutnosti pouºít jiné (a kom-
plexn¥j²í) metody analýzy stability pro analýzu RDA operátor·. Protoºe vliv libovoln¥ malé
advekce na chování systému je markantní, vyvstává p°irozená otázka: je advekce p°ítomna v
reálných aplikacích nebo m·ºeme advekci bezpe£n¥ neuvaºovat? K rozpoznání, zda RD nebo
RDA modely lépe pasují na reálné situace, se budeme v na²í budoucí práci podrobn¥ji zabývat
fyzikální podstatu modelovaných jev·.

Klí£ová slova: reak£n¥-advek£n¥-difuzní systém, nestabilita zp·sobená difuzí
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Abstract. When running data intensive applications on distributed computational resources
long I/O overheads may be observed as access to remotely stored data is performed. Latencies
and bandwidth can become the major limiting factor for the overall computation performance
and can reduce the CPU/WallTime ratio to excessive IO wait. Reusing the knowledge of our
previous research, we propose a constraint programming based planner that schedules compu-
tational jobs and data placements (transfers) in a distributed environment in order to optimize
resource utilization and reduce the overall processing completion time. The optimization is
achieved by ensuring that none of the resources (network links, data storages and CPUs) are
oversaturated at any moment of time and either (a) that the data is pre-placed at the site where
the job runs or (b) that the jobs are scheduled where the data is already present. Such an
approach eliminates the idle CPU cycles occurring when the job is waiting for the I/O from a
remote site and would have wide application in the community. Our planner was evaluated and
simulated based on data extracted from log �les of batch and data management systems of the
STAR experiment. The results of evaluation and estimation of performance improvements are
discussed in this paper.

Keywords: constraint programming, Grid, Cloud, data processing , data transferring, data
production, planning, scheduling, optimization, computational jobs, batch system.

Abstrakt. P°i b¥hu datov¥ náro£ných aplikací na distribuovaných výpo£etních systémech
se mohou vyskytnout dlouhé I/O prodlevy p°i vzdáleném p°ístupu k uloºeným dat·m. La-
tence a propustnost se mohou stát hlavními limitujícími faktory pro celkový výkon výpo£tu
a mohou sníºit pom¥r CPU/walltime díky nadm¥rnému £ekání na I/O. Na základ¥ poznatk·
z na²eho p°edchozího výzkumu navrhujeme Plánova£ vyuºívající programování s omezujícími
podmínkami, který rozvrhuje výpo£etní úlohy a datová umíst¥ní (p°evody) v distribuovaném
prost°edí s cílem optimalizovat vyuºití zdroj· a sníºit celkový £as zpracování úloh. Optimal-
izace je dosaºeno tím, ºe se zajistí, ºe ºádný ze zdroj· (sí´ové spojení, datové úloºi²t¥ a CPU)
není p°esycený v ºádném £asovém okamºiku a bu¤ (a) data jsou p°edem umíst¥na tam, kde se
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úloha spustí, nebo (b) úlohy jsou spu²t¥ny na strojích, na kterých jsou jiº data p°ítomna. Takový
p°ístup eliminuje prostoje cykl· CPU vyskytujících se v p°ípadech, kdy úloha £eká na I/O ze
vzdáleného místa a bude mít ²iroké uplatn¥ní v dané oblasti. Ná² Plánova£ byl vyzkou²en a
simulován na základ¥ údaj· získaných ze záznamových soubor· dávkových systém· experimentu
STAR. Výsledky hodnocení a odhadu zvý²ení výkonu jsou popsány v tomto £lánku.

Klí£ová slova: Programování s omezujícími podmínkami, Grid, Cloud, zpracování dat, p°enos
soubor·, plánování, optimalizace, výpo£etní úlohy.

1 Introduction

Previous collaborative work between BNL and NPI/ASCR showed that the global plan-
ning of data transfers within the Grid can outperform widely used heuristics such as
Peer-to-Peer and Fastest link (used in Xrootd)[1, 2]. Those results became the ground
for continuation of research and extension of global planning to the entire data processing
work�ow, i.e., scheduling of CPU allocation, data transferring and placement at storage.

Long I/O overheads when accessing data from remote site can signi�cantly reduce the
application's CPUtime/WallTime ratio [3, 4]. For this reason, when setting up a data
production at remote sites one has to consider the network throughput, available storage
and CPU slots. When there are few remote sites involved in the data processing, the
load can be tuned manually and simple heuristic may work, but, as the number of sites
grows and the environment is constantly changing (site outage, �uctuations of network
throughput and CPU availability), an automated planning of work�ows becomes needed.

As an intuitive example of optimization let us consider a situation when a given
dataset can be either processed locally, or can be sent to a remote site. Depending on
transfer overhead it may appear to be optimal to wait for free CPU slots at the local
site and process all the data there, or send a smaller fraction of the dataset for remote
processing. Commonly used heuristics such as �Pull a job when a CPU slot is free� will
not provide an optimization with respect to an overall processing makespan.

Another example arises from a work�ow optimization which was done for inclusion
of the ANL computational facility into the Cloud based data production of the STAR
experiment [5]. In this case, and due to the lack of local storage at the site for bu�ering,
the throughput of a needed direct on-demand network connection between BNL and ANL
was not su�cient to saturate all the available CPUs at the remote site. An optimization
was achieved by feeding CPUs at ANL from two sources: directly from BNL and through
an intermediate site (PDSF) having large local caching and with better connectivity to
ANL. This example illustrates an e�cient use of indirect data transfers which cannot be
guessed by simple heuristics. A general illustration of distributed resources used for data
production and their interconnection is given at Figure 1.

Scheduling of computational jobs submitted by users (user analysis) has even more
degrees of possible optimization: selection between multiple data sources, grouping of
jobs that use the same input �les. This case becomes even more complex due to a poor
predictability of the user analysis jobs. However, the main question for optimization
remains the same as for the examples above: How to distribute a given set of tasks over
the available set of resources in order to complete all the tasks within minimal time?

Problems of scheduling, planning and optimization are being commonly solved with
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Figure 1: Schema of data production in the Cloud.

the help of Constraint Programming (CP) [6]. It is a form of declarative programming
which is widely used in scheduling, logistics, network planning, vehicle routing, produc-
tion optimization etc... In the next sections we will introduce our Constraint Satisfac-
tion Problem (CSP) formulation for a data production at multiple sites and provide a
simulation-based evaluation of the proposed model.

2 Model formulation, assumptions and search approach

A Constraint Satisfaction Problem (CSP) consists of domain variables, domains (a set
of possible values of a variable) and constraints in form of mathematical expressions
over variables. A solution to CSP is a complete assignment of values to variables which
satis�es all the constraints. An optimal solution is the one with minimal/maximal value
of a target function of variables.

We will introduce only the core concepts of our CSP formulation and search algo-
rithms, omitting detailed mathematical expressions. The following input parameters are
necessary to de�ne our CSP:

Computational Grid (see Figure 1) is described by directed weighted graph where
nodes are computational sites c with a given number of CPUs cpuc and storage
space diskc; edges are network links l with weight slowdownl which is the time
required to transfer a unit of data (slowdownl = 1

throughputl
). A dedicated storage

facility, such as HPSS, can also be modeled as a node with cpuc = 0.
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Set of jobs. Each job j has a durationj, it needs one input �le of inputSizej, produces
one output �le of outputSizej, input �le is placed at inputSourceNodesj and output
�le must be transferred to one of outputDestinationNodesj.

Our goal is to create a schedule of jobs at computational sites, transfers over links and a
placement of �les at storages for a given computational Grid and a set of jobs. In order
to solve this problem the variables of our model de�ne the resource selection and timing

of each task:

Resource selection variables de�ne a node ProcessingNodej where the job j will be
executed and a transfer path for each �le f (either input or output of a job). The
transfer path is described by a set of boolean variables Xfl where true means that
a �le f will be transferred over a link l and false means the opposite.

Time variables are: Jsj is a start time of a job j, Tsfl is a start time of a transfer of
a �le f over a link l, Fsfc is a start time of a placement of a �le f at a node c,
Fdurfc is a duration of a placement of a �le f at a node c.

2.1 Model assumptions

Two important assumptions which are reused in the current model were proven in a
previous work on global planning of data transferring in Grid [1].

The �rst assumption states that the entire set of jobs (queue) can be incrementally
scheduled by subsets (chunks) without signi�cant lose of optimality. Such an approach
helps to reduce a search space and thus improve the planner performance. Moreover,
planning for shorter periods and more frequent generation of plans (or replanning) pro-
vides the required level of adaptability to changing environment (outage of resources,
�uctuating network bandwidth, etc).

The second assumption states that a network link can be modeled as an unary resource
with no loss of generality. In other words, in our model we consider that only one �le can
be transferred over a link at a time. The measurements [1] have shown, that a sequential
transfer of a set of �les does not require more time then a parallel transfer of the same
set of �les over the same link.

2.2 Search overview

We use an incomplete search which can provide a suboptimal solution of required quality
within a given time limit because the �nal goal is to create a planner that can process
requests online. For a better search performance the overall problem is divided into two
subproblems and the search is performed in two stages:

1. Planning Stage: instantiate a part of variables in order to assign resources for each
task.

(a) Assign jobs to computational nodes.

(b) Select transfer paths for input and output �les.

(c) Estimate a makespan for a given resource assignment estMakespan.
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(d) Find a solution for the subproblem with a minimal estimated makespan.

2. Scheduling stage: de�ne a start time for each operation.

(a) De�ne the order of operations.

(b) Put cumulative constraints on resources in order to avoid their oversaturation
at any moment of time.

(c) Find a solution with a minimal makespan which is the end time of the last
task.

2.3 Constraints at the planning stage

At the planning stage the problem is to assign tasks (computational jobs and �le transfers)
to resources (computational nodes and links) in such a way that the set of tasks could be
completed within minimal time. For this goal, an estimated makespan estMakespan is a
target function for minimization. It is de�ned as maximal time required by each resource
to process all the tasks assigned to it.

For each job we have to assign a transfer path for an input and an output �le which
can be de�ned by the following constraints (see Figure 2):

1. An input �le has to be transferred from one of its sources over exactly one link.

2. An output �le has to be transferred to one of its destinations over exactly one link.

3. An intermediate node (neither source, destination nor selected for the job execution)
either has exactly one incoming and outgoing transfer or is not on a transfer path:
∃ incoming transfer ⇔ ∃ outgoing transfer.

4. There must exist exactly one incoming transfer of an input �le and exactly one outgo-
ing transfer of an output �le at the node which was selected for the job execution.

5. A �le can be transferred from/to each node at most once.

In addition, we use constraints for loop elimination similarly as it is described in [7].

2.4 Constraints at the scheduling stage

At the scheduling stage the problem is to assign a start time for each task. The following
constraints on order of tasks are implemented:

• An outgoing transfer of a �le from a node can start only after an incoming transfer
to that node is �nished. The �rst transfer of an input �le from its source and the
�rst transfer of an output �le from the processing node are exceptions from this
constraint.

• A job can start only after the input �le is transferred to the selected processing
node.

• An output �le can be transferred only after the job is �nished.
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Figure 2: An example of a transfer path. Illustration for constraints 1-4 in section 2.3.

Table 1: Variables and parameters used in cumulative constrains on resources.

Task Start Duration Usage Limit
Job Jsjc durationj 1 cpuc

Transfer Tsfl sizef · slowdownl 1 1
File placement Fsfc Fdurfc sizef diskc

• A reservation of space for a �le at a node is made when a transfer to that node
starts.

• A �le can be deleted from the start node of a link after the transfer is �nished.

• A reservation of space for an output �le is made at the processing node when the
job starts.

• An input �le can be deleted from a processing node after the job is �nished.

Cumulative constraints are widely used in Constraint Programming for description of
resource usage by tasks. Each cumulative constraint requires that a set of tasks given
by start times, durations and resource usage, never require more than a resource limit at
any time. In our case we use three sets of cumulative constraints: for CPUs, storages
and links (see Table 1).

3 Simulations

The constraint satisfaction problem was implemented using MiniZinc [8] and Gecode [9]
was used as a solver. The timelimit was set to 3 minutes for both planning and scheduling
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stages. The simulations were running under Windows 8 64-bit on a computer with Intel
i5 (4 cores) 2.50 GHz processor and 6 GB of memory installed. The Gecode solver was
running in a parallel mode using 4 threads.

Two sets of simulations were performed for testing of the proposed model. In both
cases the simulated environment consisted of 3 nodes: a central storage HPSS (cpuHPSS =
0) which was the single source for input �les and the single destination for output �les,
a local processing site and a remote processing site. The slowdown of links between the
central HPSS and the local site was set to 0, which means that transfer overheads to/from
the local site are negligible comparing to a job duration in both sets of simulations.
The number of CPUs at processing nodes and slowdown of links between the central
HPSS and the remote node were set-up di�erently for each set of simulations. Storage
constraints were not considered in these simulations. Four di�erent scheduling strategies
were compared:

Local: All the jobs are submitted to the local site only. This strategy was used as a base
line for comparison against other strategies.

Equal CPU load: Jobs are distributed between nodes with the goal to maintain an
equal ratio of job duration per CPU. Each input �le is transferred prior to the start
of a job. At each node jobs are executed in input order.

Data transferred by job: Each CPU pulls a job from the queue when it is idle, then
it has to wait for an input transfer before the job execution starts.

Optimized: This strategy is based on the model proposed in this paper.

In the �rst set of simulations the main idea was to evaluate di�erent scheduling strate-
gies in a setup where overheads of an input and an output transfers to a remote site taken
together are comparable to the job duration. Obviously, in such environment transfer
overhead can signi�cantly in�uence the overall makespan. The number of CPUs at both
local and remote sites was set to 10 and the slowdown from/to remote node was set to 1
(one time unit to transfer one unit of size). Several testing sets of jobs were created using
a random number generator. For each job an input size was equal to a random value in
interval 1..20 of size units. An output size and a job duration were proportional to the
input size with a random factor close to 1 and 2 respectively.

Results of the �rst set of simulations are presented at Figure 3. The plot shows the
dependence of a makespan on a number of jobs (bunch) scheduled in one experiment. As
it can be seen at the plot, maintaining equal CPU load at local and remote sites (Equal
CPU load) increases the makespan more then twice; while scheduling with consideration
of a transfer overhead (Optimized) reduces the makespan by 15% compared to local only
processing (Local).

In the second set of simulations the slowdown of the links to/from the remote site
was increasing in each simulation proportionally to a slowdown factor. The parameters
of jobs were taken from logging system of the STAR experiment's data production at
computational site KISTI (South Korea) [10]. The average job duration was 3,000 minutes
and average time of transfer was 5 and 10 minutes to/from the remote site respectively (in
the simulations where the slowdown factor = 1). Then, in further simulations the transfer
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Figure 3: Results of testing simulations. In the simulated environment the I/O transfer
overheads to a remote site are comparable to a job duration. The �Equal CPU load�
heuristics failed to decrease the makespan using remote resources, while the proposed
global planning approach (Optimized) has decreased the makespan by 15%.

times increase proportionally to the slowdown factor. In the simulated environment 80%
of CPUs were available at the local site and 20% at the remote site. 2,000 of jobs were
scheduled stepwise by subsets (chunks) of 200.

The plot at Figure 4 shows the gain in a makespan delivered by di�erent schedul-
ing policies compared to the job execution at the local site only. The curves shows the
performance of the scheduling policies when an overhead of transfer to the remote site
increases proportionally to the slowdown factor. When the transfer overhead becomes
signi�cant both heuristics (�Equal CPU load� and �Data transferred by job�) fail to pro-
vide an e�cient usage of the remote resources (the makespan improvement goes below
zero). Negative makespan improvement means that, in this case, it would be faster to
process all the data locally than to distribute it between several sites relying on the
heuristic. The proposed global planning approach (Optimized) systematically provides a
smaller makespan and adapts to the increase of transfer overheads better then the other
simulated heuristics. It was able to provide a positive gain in makespan by using remote
resources even when the transfer overhead is comparable to a job duration.

4 Conclusion

A model for scheduling of data production over Grid was formulated in form of constraint
satisfaction problem and solved using constraint programming.

Testing simulations has shown that in an environment, where a remote site has the
same CPU number as a local site, but the data transfer overhead is comparable to a job
duration, maintaining equal CPU load at local and remote sites increases the makespan
more then twice; while scheduling with consideration of a transfer overhead can reduce
the makespan by 15% compared to local only processing.
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Figure 4: Results of simulations for real data production. Three strategies were evaluated
and compared to a ideal local production. The optimized solution (our model) clearly
provides the highest gain.

The simulations based on data extracted from log �les of batch and data management
systems of the STAR experiment has shown that the proposed global planning approach
systematically provides a smaller makespan and adapts to the increase of transfer over-
heads better then the other simulated heuristics.

The proposed approach can provide an optimization and an automatic adaptation to
�uctuating resources with no need for manual adjustment of a work�ow at each site or
tuning of heuristics.

The future development of global planning for data processing in Grid is ongoing. In
future we plan to test this approach on problems of larger size (more nodes, CPU's and
links) and improve the search performance in order to enable online scheduling in real
environment.
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Abstract. Recently developed formalism of random unitary operations enables us to study the
asymptotic dynamics of a large class of open quantum systems with unprecedented accuracy.
In this work we focus on the general solution of the asymptotic dynamics of an ensemble of
identical quantum systems, each associated with �nite-dimensional Hilbert space and local free
Hamiltonian. These systems interact with each other by random binary collisions, which are
well separated in time. We derive equations which determine the attractor space for such type
of open quantum system for a general binary interaction Hamiltonian and discuss the case in
which the free Hamiltonian commutes with the interaction Hamiltonian. Next, we choose the
interaction between systems to have a form of a well known partial swap quanum gate. We
show, that the asymptotic state satis�es the requirements of SSC (symmetric state consensus)
de�ned in [7]. For a factorizable initial state we next show that the reduced asymptotic state of
single system has the form of an weighted avarage of the initial states of systems

Keywords: Quantum network, asymptotic evolution, quantum consensus, collision model

Abstrakt. Nedávno vyvinutý formalismus náhodných unitárních operací nám dovoluje studium
asymptotické dynamiky velké t°ídy otev°ených kvantových systém· s d°íve nevídanou p°esností.
V této práci se zam¥°ujeme na obecné °e²ení asymptotické dynamiky souboru identických sys-
tém·, kaºdý s p°íslu²ným Hilbertovým prostorem a lokálním volným Hamiltoniánem. Tyto
systémy spolu náhodn¥ interagují binárními kolizemi, které jsou odd¥lené v £ase. Odvodíme
rovnice, které ur£ují atraktorový prostor pro tento typ otev°ených kvantových systém· pro
obecný binární interak£ní Hamiltonián a diskutujeme p°ípad, kdy volný Hamiltonián komutuje
s interak£ním Hamiltoniánem. V dal²ím kroku zvolíme za konkrétní interakci dob°e známé kvan-
tové hradlo partial swap. Ukáºeme, ºe asymptotický stav spl¬uje poºadavky SSC de�novaného
v [7]. Pro faktorizovatelný po£áte£ní stavu dále ukáºeme, ºe redukovaný asymptotický stav
p°íslu²ející jednomu systému má tvar váºeného pr·m¥ru po£áte£ních stav· systém·.

Klí£ová slova: Kvantové sít¥, asymptotická evoluce, kvantová shoda, kolizní model
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1 Introduction

Classical networks received a lot of attention in past decades as they are able to describe
complex systems as the internet or social groups [1, 2]. Classical network is consisted of
a set of nodes, often called agents, each node representing a single system. These nodes
are connected by edges, which represent a certain type of interaction between agents.
Quantum network [3, 4, 5] is a generalization of classical network, in which classical
systems, which are represented by nodes, are replaced by quantum systems.

A recently developed formalism of random unitary operations (RUO) [6] enables us
to analytically study open quantum systems, i.e. quantum systems which undergo a non-
unitary time evolution (usually due to interaction with an external system or because of
lack of knowledge about system), after su�ciently large amount of time of evolution. As
quantum networks are open quantum systems, we are thus able to study their asymptotic
properties with unprecedented accuracy.

In many application of both classical and quantum systems, one needs to reach a
consensus within a given network, i.e. the situation, in which all agents have certain
properties identical [7]. These could be the expectation values of some observable, the
state of agent etc.

Starting with a network consisted of N ≥ 2 quantum systems equipped with Hilbert
space H = Cd, d ∈ N (so-called qudits) with identical free Hamiltonian H, we let qudits
to intract with each other by a sequence of random binary interactions. These interactions
have the form of partial-swap interactions. We show that for an arbitrary initial state
ρ(0), the asymptotic state after n � 1 interactions ρ∞(n) meets the conditions of SSC
(Symmetric State Consensus) introduced in [7]. Moreover, if the initial state is the
product state, the reduced single qudit asymptotic state is found as the homogenization
of the initial states of all qudits with free evolution.

This work is organized as follows. In section 2 we introduce random unitary operations
(RUO), we sum up their basic properties and show the method of �nding their asymptotic
evolution. In section 3, we focus on the case of binary collisions in an ensemble of identical
systems. In section 4 we apply results from section 3 on the case of partial swap quantum
gate. We �nd the asymptotic state and show that it ful�ls the requirements of SSC.
Furthermore we discuss the form of the reduced asymptotic state of a single system for
the factorized initial state. The summary of this work is given in section 5.

2 Attractor method for dynamics generated by RUO

Assume a quantum system associated with a �nite dimensional Hilbert space H and
let us denote B(H ) the Hilbert space of all operators acting on the Hilbert space H
(equipped with Hilbert-Schmidt scalar product. One step of evolution is given by the
RUO Φ : B(H ) → B(H ) whose action on the system initially prepared in a general
mixed state ρ can be written in the form

Φ(ρ) =
n∑
i=1

piUiρU
†
i (1)
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with unitary operators Ui and probability distribution {pi}ni=1. RUO Φ is a quantum
operation with Kraus operators de�ned by Ki =

√
piUi. It belongs to the class of trace-

preserving unital quantum operations leaving the maximally mixed state invariant. From
a physical point of view, RUO takes into account our lack of classical knowledge which
unitary evolution the system undergoes and incorporates in incoherent manner all ex-
clusive unitary paths of evolution represented by di�erent unitary operators Ui properly
weighted with probabilities associated with all these paths.

The evolution of the system results from repeated applications of RUO Φ. Starting
from the initial state ρ(0), the n-th step of the iterated dynamics reads ρ(n) = Φ(ρ(n−1)).
In general, the operator Φ is neither hermitian nor normal linear map and consequently
a diagonalization of RUO Φ in some orthonormal basis is not guaranteed. Fortunately,
the latter does not apply to the asymptotic part of evolution and one can exploit the fact
that the asymptotic regime of the evolution takes place in the so-called attractor space
Atr(Φ) ⊂ B(H ) constructed as

Atr(Φ) =
⊕
λ∈σ|1|

Ker(Φ− λI). (2)

The attractor spectrum σ|1| denotes the set of all eigenvalues λ of Φ with |λ| = 1. For
a given λ ∈ σ|1| the corresponding kernel Ker(Φ − λI) is constructed as the solution of
attractor equations

UiXλ,jU
†
i = λXλ,j ∀i. (3)

Any state in the asymptotic regime, i.e. for large number of iterations n, takes the form

ρ∞(n) =

Dλ∑
λ∈σ|1|,i=1

λnTr
[
ρ(0)X†λ,i

]
Xλ,i, (4)

where Dλ = dim[Ker(Φ− λI)] and {Xλ,i|i ∈ {1, . . . , Dλ}} forms an orthonormal basis of
the subspace Ker(Φ− λI). Apparently, attractors solving equations (3) are not a�ected
by the particular form of the probability distribution {pi} provided that pi 6= 0. As a
direct consequence, the asymptotics of given RUO is independent on particular values pi
as long as they are di�erent from zero.

At this point we have to stress that attractors are not, in general, density operators, i.e.
they do not represent states. This can cause di�culties in analysis of asymptotic dynamics
like �xed points, decoherence-free subspaces. To overcome this obstacle one may employ
the so-called pure-state method [8]. Without going into details we recapitulate its main
points. Let us denote {|φα,jα〉} the orthonormal basis of common eigenstates of unitaries
{Ui}, i.e.

Ui|φα,jα〉 = α|φα,jα〉 ∀i, (5)

where index jα takes into account a degeneracy of common eigenvalue α. Any matrix
from the span of {|φα,jα〉〈φβ,jβ |} with �xed product αβ = λ, i.e.

X =
∑

αβ=λ,jα,jβ

Aα,jαβ,jβ
|φα,jα〉〈φβ,jβ |, (6)
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satis�es equations
UiXU

†
j = λX ∀i, j (7)

and consequently belongs to the subspace of attractors corresponding to the eigenvalue
λ of RUO Φ. On the contrary, any operator satisfying (7) can be decomposed into com-
mon eigenvectors as (6). Attractors which can be constructed from common eigenvectors
are called p-attractors. As they satisfy more restricting set of equations (7) they do not
constitute the whole attractor space. In particular, the identity operator is an attrac-
tor but not a p-attractor (except the trivial case of an unitary evolution). The space
of attractors always contains, as a minimal subspace, the span of p-attractors and the
identity operator. Surprisingly, in some nontrivial cases this minimal subspace forms the
whole attractor set and asymptotic dynamics can be analyzed easier. Indeed, assume the
orthogonal projection π onto the subspace of common eigenstates of unitaries {Ui}. Let
π̃ be its orthogonal complement projection satisfying π + π̃ = I. Both projections are
�xed points of quantum operation (1), they both reduce the random unitary operation
(1) and the asymptotic dynamics after su�ciently number of iterations of the state ρ(0)
can be written as

ρ(n� 1) = Un
i πρ(0)π

(
U †j

)n
+

Tr[ρ(0)π̃]

Tr π̃
π̃, (8)

for any pair of indices i, j. In this case the asymptotic evolution can be understood as an
incoherent mixture of the unitary dynamics inside the subspace of common eigenstates
and the maximally mixed state living on the orthogonal complement of this subspace.
We often encounter the special case σ|1| = {1}, which further simpli�es the asymptotic
evolution given by (8) to the form

ρ∞ = πρ(0)π +
Tr [ρ(0)π̃]

Tr[π̃]
π̃. (9)

In such situation any initial quantum state ρ(0) evolves towards the stationary state (9).

3 Binary interactions within scope of RUO

Formalism introduced in the last section is in many situations too general to work with, it
is thus convenient to adapt it to �t a particular case. Suppose we have at our disposal an
ensemble of N qudits. These qudits interact with each other by binary interaction. The
nature of these interactions is such that there exists a time resolution ∆t within which
maximally one (random) pair of qudits interacts. All interactions are thus separable
in time, but otherwise they are uncontrollable. Let the interaction Hamiltonian during
collision between systems i and j be H int

ij . Our goal in this section is to �nd connection
of the asymptotic evolution of such ensamble in which each qudit is equipped with free
Hamiltonian H0 and the same ensamble without considering the free Hamiltonian of
qudits.

Let us �rst study the ensemble without considering the free Hamiltonian of qudits.
The total Hamiltonian during collision of qudits i and j can be thus written as

Hij = H int
ij .
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A single evolution step is according to previous section described by a RUO Φ1 de�ned
as

Φ1(ρ) =
∑
ij

pijV
int
ij ρ(V int

ij )† + p0ρ (10)

with
V int
ij = exp

[
i∆tH int

ij

]
.

The last component of (10) re�ects the fact, that no collision must occur within the time
resolution ∆t. For the solution of the asymptotic dynamics of such system, one needs to
�nd the attractor space Atr(Φ1) by solving equations (3). According to [6], all attractors
of such system correspond to the eigenvalue λ = 1. We thus have

Atr(Φ1) = Ker[Φ− I] = Span{X1,1, . . . X1,m}.

The asymptotic evolution has thus form

ρ∞ =
m∑
i=1

Tr
[
ρ(0)X†1,i

]
X1,i. (11)

In the second case, the total Hamiltonian during collision of qudits i and j has the
form

Hij =
N∑
k=1

Hk +H int
ij ,

where Hk is de�ned by
Hk = I⊗k−1 ⊗H ⊗ I⊗N−k

with H = H† being the operator on Cd and I being the identity operator on Cd. A single
evolution step is according to previous section described by a RUO Φ2 de�ned as

Φ2(ρ) =
∑
ij

pijVijρ(Vij)
† + p0U0ρU

†
0 (12)

with

Vij = exp [i∆tHij] , U0 = exp

[
N∑
k=1

Hk

]
.

Let us de�ne following operators:

u0 = exp[i∆tH],

Uij = exp[i∆t(Hi +Hj +H int
ij )]u†⊗2

0 .

These operators satisfy Vij = UijU0. It is easy to show, that operator X ∈ B(H ) satis�es
equations (3) with λ = 1 if and only if it satis�es the following equations:

U †ijXUij = X, ∀i, j,
U0XU

†
0 = λX

(13)
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for certain |λ| = 1. All solutions of these equations form the attractor space Atr(Φ2).
Unlike in previous case, the particular attractors correspond to di�erent eigenvalues λ.
We thus denote all solutions of equations (13) with �xed λ as Xλ,k. The asymptotic state
then satis�es (4). One could think that the �rst set of these equations determines the
attractor space and the latter set determines the eigenvalues of particular attractors. This
is however true only if the free Hamiltonians comute with the interaction Hamiltonian,
i.e. when

[
Hi +Hj, H

int
ij

]
= 0. If this is not the case, the latter set of equations can

narrow the set of operators found by the �rst set of equations.
The situation is furthermore simpli�ed, when the free Hamiltonian commutes with

the interaction Hamiltonian, i.e. when
[
Hi +Hj, H

int
ij

]
= 0. One can notice, that in this

situation, we have

Uij = V int
ij . (14)

This implies that the attractor spaces of Φ1 and Φ2 are identical. One can thus make use
of the solution for the asymptotic evolution (11) of Φ1 and write the asymptotic state in
the form

ρ∞(n) =
m∑
i=1

Tr
[
ρ(0)X†1,i

]
Un

0 X1,i(U
†
0)n. (15)

By solving the asymptotic dynamics of Φ1 one thus in general solves the asymptotic
dynamics of Φ2, which is given as a free evolution of the asymptotic state of Φ1.

4 Asymptotic evolution of partial swap interactions

In this section we study the asymptotic dynamics of an ensemble of N qudits equipped
with local free Hamiltonian H, which interact with each other via partial-swap interac-
tions [9, 10].

Partial swap interaction was introduced by Buºek et. al. in [9, 10] as a mean to
study thermodynamical properties of system of qubits. Althought it was de�ned as the
operator acting on pair of qubits, its generalization to the operator acting on pair of
qudits is straightforward. We consider a one-parameter family of operators U (ϕ)

jk acting
non-trivially on pair of qudits j and k according to the following formula:

U
(ϕ)
jk = eiϕ cosϕ Ijk + ie−iϕ sinϕ Sjk (16)

with Ijk being the identity operator on qudits j and k and Sjk being the swap operator
on qudits j and k acting as

Sjk(|ψ1〉 ⊗ · · · ⊗ |ψj〉 ⊗ · · · ⊗ |ψk〉 ⊗ · · · ⊗ |ψN〉) =

= |ψ1〉 ⊗ · · · ⊗ |ψk〉 ⊗ · · · ⊗ |ψj〉 ⊗ · · · ⊗ |ψN〉 .

Operator (16) thus partially swaps the state of qudits j and k, hence its name. Partial
swap possesses a number of interesting properties. For our purpose, the most important
is the fact that partial swap commutes with an arbitrary local free Hamiltonian H [10].
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The previous section enables us to use this fact to solve the asymptotic dynamics of RUO
Φ(ϕ) de�ned as

Φ(ϕ)(ρ) =
∑
jk

pjkV
(ϕ)
jk ρ(V ϕ

jk)
† + p0U0ρU

†
0 . (17)

with V (φ)
jk = U0U

(φ)
jk To �nd the asymptotic state ρ∞(n), we �rst �nd the attractor space

of the RUO Φ
(ϕ)
PS de�ned as

Φ
(ϕ)
PS(ρ) =

∑
jk

pjkU
(ϕ)
jk ρ(Uϕ

jk)
† + p0ρ. (18)

RUO (18) represents partial swap interactions without considering local free Hamilto-
nian H. The attractor equations (3) are signi�cantly simpli�ed when transfered to the
equations for attractor elements. For this purpose, we de�ne the following notation:

X ij
kl := 〈ij|X|kl〉

with {|i〉 |i ∈ {0, . . . , d − 1}} forming orthonormal basis of Cd. This notation takes into
account only those qudits, on which the operator (16) acts nontrivially. The indicies of
other N − 2 qudits are omitted for sake of simplicity. With the help of this notation,
the attractor equations (3) for operators (16) can be tranfered to equations for matrix
elements:

Xkl
ij = X lk

ji . (19)

Any operatorX ∈ B(H ), whose elements for any pair of qudits satisfy (19) is an attractor
corresponding to eigenvalue λ = 1 of RUO (18). From the form of equations (19) one can
see, that the attractors are a totally symmetric operators with respect application of the
swap operators Sjk for any j, k. Let us denote i = (i1, . . . , iN) with ik ∈ {0, . . . , d − 1}.
Operators constituting the orthogonal basis of the attractor space corresponding to the
RUO (18) can be denoted as X i

j . They are de�ned as

X i
j =

1

N !

∑
π∈SN

|π(i)〉 〈π(j)|

with SN being the set of all permutations on the set {1, . . . , N}. However, in the set
{X i

j |i, j} it contains a lot of duplicate operators. For �xed i and j, the operators X i
j and

X
π(i)
π(j) are identical for arbitrary π ∈ SN . A quick calculation reveals, that dimension of

the attractor space Atr(ΦPS) is

dim (Atr(ΦPS)) =

(
d2 +N − 1

N

)
.

After discarding the duplicates and orthonormalization, we arrive to the orthonormal
basis of the attractor space {Y1, · · · , Y(d

2+N−1
N )
}. The state for n� 1 has thus the form

ρPS∞ (n) =

(d
2+N−1
N )∑
i=1

Tr[ρ(0)Y †i ]Yi (20)
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From the formalism developed in the previous section, we are immediately able to write
the state of the RUO (17) for n� 1 as

ρ∞(n) =

(d
2+N−1
N )∑
i=1

Tr[ρ(0)Y †i ]Un
0 YiU

†n
0 . (21)

As all operators Yi are symmetric with respect to an arbitrary permutation and the second
set of equations (13) holds, this state is clearly symmetric with respect to an arbitrary
permutation and it thus satis�es the de�nition of SSC [7] for any initial state ρ(0). If the
initial state is in the form

ρ(0) = ρ1 ⊗ · · · ⊗ ρN ,

then after a lenghty, but not complicated calculation, one arives to the result

ρ(k)
∞ (n) =

1

N
un0

(
N∑
i=1

ρi

)
u†n0 (22)

with ρ(k)
∞ (n) = Trk[ρ∞(n)], where Trk[·] is a partial trace over all systems excluding system

k. The reduced asymptotic state of a single system is thus found as a free evolution of a
state, which arises as an one system reduction of homogenization of an initial state ρ(0).

5 Conclusion

In the previous sections we introduced the RUO model which enables us to calculate the
asymptotic dynamics of a large class of open quantum systems analytically. Afterwards
we focused on the case of an ensemble of qudits, which evolve acording to local free
Hamiltonian H and undergo random binary collisions, which are described by interaction
Hamiltonian H int

ij . Main result of this section are the attractor equations (13) which
describe the asymptotic state of the ensemble. For the case, when the free Hamiltonian
commutes with the interaction Hamiltonian, these results imply, that the asymptotic
state of such ensemble is givem by free evolution of the asymptotic state (11).

Regarding partial swap interactions, we derived the form of the asymptotic state of
such interactions (21) and showed, that it satis�es the de�nition of SSC introduced in [7].
For factorizable initial state, we have found a simple expression (22) for the asymptotic
state of a single system.

There are still open questions regarding partial swap concerning its connection to
thermalization processes in interacting quantum system. It is easy to see, that the oper-
ators which form an orthonormal basis of the attractor space of arbitrary RUO form an
complete set of the integrals of motion of the corresponding RUO. From the properties
of the attractors, one can easily see, that the asymptotic state can be written as a gen-
eralized thermal state (at least in the limit of its parameters). Thermalization of qudits
and its connection with partial swap will be focused in the future research.
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Abstract. This article concerns with the bifurcation problem for an equation −4u + λu +
g(λ, u) = 0 with an interior unilateral condition. A form of a solution of the variation inequality

is found and regularity of the solution around the obstacle is discussed.

Keywords: bifurcation, Laplace equation, unilateral condition

Abstrakt. Tento £lánek se zabývá bifurkací pro rovnici −4u + λu + g(λ, u) s jednostrannou

podmínkou na £ásti vnit°ku oblasti, na které rovnici °e²íme. Je nalezen tvar °e²ení a dokázána

regularita v okolí vnit°ní hranice.

Klí£ová slova: bifurkace, Laplaceova rovnice, jednostranna podminka

1 Introduction

Let Ω,ΩU ⊂ R2 be open sets and suppose ΩU ⊂⊂ Ω, i.e. ΩU ⊂ Ω. Moreover, let ∂ΩU be
of a class C2 and Ω,ΩU be a simply connected sets. Situation is scetched on the Figure
1.

Figure 1: Area

We de�ne a map g(λ, ξ) : R×R→ R which satis�es for p > 1 following growth conditions:

∃C1, C2 ∀λ ∈ R ∀ξ ∈ R : |g(λ, ξ)| ≤ C1(1 + |ξ|
p
2 ),∣∣∣∣∂g∂λ(λ, ξ)

∣∣∣∣+

∣∣∣∣∂g∂u(λ, ξ)

∣∣∣∣ ≤ C2(1 + |ξ|
p
2 ). (1)

Then N : (λ, u) → g(λ, u) and Ñ : (u, λ) → g′(λ, u) are continuous operators from
the space R × Lp(Ω) to the space L2(Ω). For the derivatives of g with respect to u, a
symbol g′(λ, u) will be used. Moreover, we suppose that g(λ, u) and its derivatives satisfy
additional conditions:

∀λ ∈ R : g(λ, 0) = g′(λ, 0) = 0.

∗This work was supported by the Grant Agency of the Czech Technical University in Prague, grant
No. SGS13/217/OHK4/3T/14.
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We consider a problem with unilateral interior conditions on the set ΩU :

4u+ λu+ g(λ, u) = 0 on Ω\ΩU , u = 0 on ∂Ω, (2)

u ≥ 0, 4u+ λu+ g(λ, u) ≤ 0 on ΩU , u · (4u+ λu+ g(λ, u)) = 0 on ΩU .

A weak formulation of this problem is a variational inequality:

u ∈ K, λ ∈ R :

∫
Ω

∇u · ∇(ϕ− u)− (λu+ g(λ, u))(ϕ− u) ≥ 0, ∀ϕ ∈ K, (3)

where the set K is a convex cone:

K := {ϕ ∈ W 1,2
0 (Ω)| ϕ ≥ 0 a.e. on ΩU}.

In the following text, we will work with this weak formulation of the problem.

2 Idea of this paper

We will prove that the �rst eigenvalue of the Laplace operator on the set Ω\ΩU with the
homogenous Dirichlet boundary condition is a bifurcation point of the inequality (3).
Using the Dancer theorem, we will �nd a sequence (λn, un) which satisfy

(λn, un) ∈ R×W 1,2
0 (Ω\ΩU) :

∫
Ω\ΩU

∇u·∇v−(λnun+g(λn, un))v dx = 0 ∀v ∈ W 1,2
0 (Ω\ΩU),

(4)
where

λn → λ0, un → u0,
un
‖un‖

→ −u0,

and −u0 is the eigenfunction corresponding to the eigenvalue λ0. We will show that the
functions un extended by zero on the set ΩU are for su�ciently large n solutions of the
inequality (3) and consequently, λ0 is a bifurcation point of the inequality (3).

3 Bifurcation of the Laplace equation

3.1 Theorems and lemma used for the proof of the main theorem

We formulate the problem (4) as an operator equation on the space W 1,2
0 (Ω\ΩU) with

the scalar product and norm de�ned as:

〈u, v〉 =

∫
Ω\ΩU

∇u · ∇v dx ∀u, v ∈ W 1,2
0 (Ω\ΩU),

‖u‖ =

∫
Ω\ΩU

|∇u|2 dx ∀u ∈ W 1,2
0 (Ω\ΩU).

We consider a nonlinear problem on the set Ω\ΩU .

4u+ λu+ g(λ, u) = 0 on Ω\ΩU , (5)
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u = 0 on ∂Ω ∪ ∂ΩU .

We will �nd a weak solution of this equation which is an element of the spaceW 1,2
0 (Ω\ΩU):

u ∈ W 1,2
0 (Ω\ΩU) :

∫
Ω\ΩU

−∇u · ∇ϕ+ λuϕ+ g(λ, u)ϕ dx = 0 ∀ϕ ∈ W 1,2
0 (Ω\ΩU). (6)

When u ∈ W 1,2
0 (Ω\ΩU) is a solution of (6), then 4u ∈ L2(Ω). It is because the

equation (5) holds in the distributive sense. We rewrite this equation in the form
−4u = λu + g(λ, u). The function λu + g(λ, u) ∈ L2(Ω\ΩU), which implies that
4u ∈ L2(Ω\ΩU).

We de�ne two new operators A and N as follows:

A : W 1,2
0 (Ω\ΩU)→ W 1,2

0 (Ω\ΩU), N : R×W 1,2
0 (Ω\ΩU)→ W 1,2

0 (Ω\ΩU),

〈Au, v〉 =

∫
Ω\ΩU

u ·v dx, 〈N(λ, u), v〉 =

∫
Ω\ΩU

g(λ, u) ·v dx ∀u, v ∈ W 1,2
0 (Ω\ΩU). (7)

Using these operators the equation (6) can be formulated as an operator equation:

u− λAu−N(λ, u) = 0 (8)

De�nition 1. Characteristic value of the operator A : W 1,2
0 (Ω) → W 1,2

0 (Ω) is a number
λ ∈ R such that

∃u ∈ W 1,2
0 (Ω\ΩU), u 6= 0 :

λAu = u.

The function u is said to be an eigenfunction to the characteristic value λ.

Lemma 1. The �rst characteristic value of the operator A is simple and positive.

Proof. The equation for characteristic value can be written in an integral form:∫
Ω\ΩU

λu · v dx =

∫
Ω\ΩU

∇u · ∇v dx ∀v ∈ W 1,2
0 (Ω\ΩU).

This is weak formulation of the eigenvalue equation for the Laplace operator. The lowest
number λ for which the solultion exists is positive and for this value the equation has a
unique solution [3].

We denote the �rst characteristic value of the operator A as λ0. The �rst eigenfunction
correspondent to this characteristic value will be denoted as u0 and is a solution of the
equation: ∫

Ω\ΩU
−∇u0 · ∇ϕ+ λ0u0ϕ dx = 0 ∀ϕ ∈ W 1,2

0 (Ω\ΩU).

This eigenfunction does not change sign for a.a. x ∈ Ω\ΩU [3].
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De�nition 2. The point λ̂ is called a bifurcation point of the equation (8) if for any
neighbourhood of (λ̂, 0) ∈ R ×W 1,2

0 (Ω\ΩU) there is a solution (λ, u) ∈ R ×W 1,2
0 (Ω\ΩU)

of (8) with u 6= 0.
The point λ̂1 is called a bifurcation point of the inequality (3) if for any neighbourhood of
(λ̂1, 0) ∈ R×W 1,2

0 (Ω) there is a solution (λ, u) ∈ R×W 1,2
0 (Ω) of (3) with u 6= 0.

In the following theorem we consider general operators A and N on a Hilbert space
H:

Theorem 1. Let the operators A : H → H be a compact linear operator, N : R×H → H
be a nonlinear compact operator, λ0 be a simple characteristic value of the operator A,
u0 be the eigenfunction corresponding to the characteristic value λ0. Moreover let for any
bounded setM⊂ R the operator N satisfy a condition:

lim
‖u‖→0

N(λ, u)

‖u‖
= 0 uniformly for all λ ∈M.

Denote S the closure of all solutions of the equation (8) with u 6= 0, i.e.

S = {(λ, u) | u 6= 0, u is a solution of (8)}.

Then (λ0, 0) ∈ S, i.e. λ0 is a bifurcation point of the equation (8). Denote C the com-
ponent of S which contains (λ0, 0). Then C consists of two connected sets C+, C−, C =
C+ ∪ C− such that

C+ ∩ C− ∩B((λ0, 0); ρ) = {(λ0, 0)} and C± ∩ ∂B((λ0, 0); ρ) 6= 0,

where B((λ0, 0); ρ) is a ball with su�ciently small radius ρ. The sets C+ and C− are
either both unbounded or

C+ ∩ C− 6= {(λ0, 0}.

For more information see e.g. [1], Dancer theorem. During a proof of main theorem
the Hopf lemma will be also used:

Lemma 2. Let Ω̂ be a bounded domain in Rn and u is a function which satis�es 4u ≥ 0
on the set Ω̂. Let x0 ∈ ∂Ω̂ be such that

• u is continuous at x0,

• u(x0) > u(x) for all x ∈ Ω̂,

• u satisfy the interior sphere condition, i.e there exists a ball B ⊂ Ω̂ with x0 ∈ ∂Ω.

Then the outer normal derivative u at x0, if it exists, satis�es the strict inequality

∂u

∂~n
(x0) > 0.

For proof see [2]. For the boundary ∂Ω̂ at least of a class C2 the interior sphere
condition is automatically ful�lled for all points x0 ∈ ∂Ω̂.
To prove a local regularity of the solution of the equation (6) the regularity theorem will
be used.
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Theorem 2. Let Ω̂ ⊂ R2 be an open subset and u is a solution of the equation 4u = f
on the set Ω̂ with the homogenous Dirichlet condition. Moreover, let ∂Ω̂ ∈ Ck+1 and
f ∈ W k,2(Ω̂). Then u ∈ W k+2,2(Ω̂) and

‖u‖k+2,2 ≤ C(‖u‖k,2 + ‖f‖k,2).

Proof can be found in e.g. [2].

3.2 Main theorem

Theorem 3. The �rst eigenvalue λ0 ∈ R of the Laplace operator on the domain Ω\ΩU

with homogenous Dirichlet boundary condition is a bifurcation point of the inequality (3).
Let u0 be an eigenfunction correspondent to the eigenvalue λ0. There exists a sequence
(λn, un) of solutions of (6) such that

un → 0, λn → λ0,
un
‖un‖

→ −u0,

and for su�ciently large index n the functions un extended with zero on the set ΩU are
solutions of the inequality (3).

Proof. The operators A, N de�ned in (7) satisfy assumption of the Theorem 1, λ0 is a
simple characteristic value of the operator A. The meaning of the sets C± in the Dancer
theorem 1 is the following. In the �rst set C+ there are solutions of the equations (6)
bifurcating in the direction +u0, in the second set C− bifurcating in the direction −u0.
Concretely, let us consider a two sequences (λn, u

+
n ) ∈ C+ resp. (λn, u

−
n ) ∈ C− such

that
lim
n→∞

u+
n = 0, lim

n→∞
u−n = 0, lim

n→∞
λn = λ0.

Then the limits of the normalized functions u±n /‖un‖ are

lim
n→∞

u+
n

‖un‖
= +u0, lim

n→∞

u−n
‖un‖

= −u0.

We will work with the functions from the set C− and denote them simply as un, i.e.
un := u−n .
We de�ne the prolongation ũn for the functions un

ũn =

{
un if x ∈ Ω\ΩU

0 if x ∈ ΩU .

The functions ũn are elements of the Sobolev space W 1,2
0 (Ω). Moreover, because ũn = 0

on ΩU for all n ∈ N, it holds ũn ∈ K for all n ∈ N. We will prove that the functions ũn
are solutions of the inequality (3), i.e. that it holds

ũ ∈ K :

∫
Ω

∇ũn · ∇(ϕ− ũn)− (λnũn + g(λn, ũn))(ϕ− ũn) ≥ 0 ∀ϕ ∈ K.
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We divide the integral into two parts - integration over the set Ω\ΩU and integration over
the set ΩU . The functions ũn have a support on the set Ω\ΩU therefore the integral over
the set ΩU is zero and we can write:

ũn ∈ K :

∫
Ω

∇ũn · ∇(ϕ− ũn)− (λnũn + g(λn, ũn))(ϕ− ũn) =

=

∫
Ω\ΩU

∇ũn · ∇(ϕ− ũn)− (λnũn + g(λn, ũn))(ϕ− ũn)

∀ϕ ∈ K.

Because 4u ∈ L2(Ω\ΩU) we can use Green theorem and write the integral as∫
Ω\ΩU

−(4ũn + λnũn + g(λn, ũn))(ϕ− ũn) +

∫
∂Ω∪∂ΩU

∂ũn
∂~n

(ϕ− ũn) dS.

The functions ũn solve the equations 4ũn + λnũn + g(λn, ũn) = 0 almost everywhere on
the set Ω\ΩU , hence, the �rst integral is equal to zero. Furthermore, the functions ũn
and ϕ satisfy:

ũn = 0 on ∂Ω ∪ ∂ΩU ∧ ϕ = 0 on ∂Ω ∧ ϕ ≥ 0 on ∂ΩU .

The integral over the boundary then reduces to the expression:∫
∂Ω∪∂ΩU

∂ũn
∂~n

(ϕ− ũn) dS =

∫
∂ΩU

∂ũn
∂~n

ϕ dS.

We will prove later that the functions χũn are elements of the space W 3,2(Ω′), where Ω′

is a subset of Ω\ΩU :
Ω′ ⊂⊂ (Ω\ΩU) ∧ ∂Ω′ ∩ ΩU = ΩU ,

and has a boundary of the class C2 and χ is a cut-o� function on the set Ω′. We will also
prove later that ∥∥∥∥ un

‖ un‖
+ u0

∥∥∥∥
3,2,Ω′

→ 0. (9)

Then ∂un
∂~n

has a meaning in the classical sense for all x ∈ Ω′ and converges uniformly on
the set Ω′ to the normal derivative of the function −u0. To determine the sign of the
normal derivative ∂ũ0

∂~n
on the set ∂ΩU we will use the Hopf lemma 2. Ful�lment of the

�rst assumption of this lemma will be proved later. We will prove now the ful�lment
of the second assumption. Because −u0 = 0, and for all x ∈ Ω′ is −u0 < 0 the second
assumption is ful�lled. Furthermore,

4(−u0) = −λ0(−u0) ≥ 0.

The interior ball condition is ful�lled automatically, because ∂ΩU ∈ C2. Now we can use
the Hopf lemma to conclude that

∃ε > 0 :
∂(−u0)

∂~n
(x) > ε ∀x ∈ ∂ΩU . (10)
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Because the normal derivative

1

‖ũn‖
∂ũn
∂~n
→ (−∂u0)

∂~n
,

uniformly on the set ΩU , for su�ciently large index n it holds

∂ũn
∂~n

(x) > 0, ∀x ∈ ∂ΩU ⇒
∫
∂ΩU

∂ũn
∂~n

ϕ dS ≥ 0. (11)

Thus the functions ũn are solutions of the variational inequality (3) and λ0 is a bifurcation
point of the inequality (3).

To �nish the proof, it remains to prove (9). For an arbitrary Lipschitz set Ω̃ ⊂ R2 the
space

W 1,2(Ω̃) ↪→ Lp(Ω̃), ∀p ∈ (1,∞).

Let us remind that when g(λ, u) satisfy �rst growth condition in (1) then N : u→ g(λ, u)
is a continuous operator from the space Lq(Ω) to L2(Ω).
We consider a set Ω′′ such that

Ω′′ ⊂⊂ Ω′ ⊂⊂ (Ω\ΩU) ∧ ∂Ω′′ ∩ ∂ΩU = ∂ΩU .

Moreover, let ∂Ω′′ ∈ C2. We de�ne a smooth function χ which has the property

(∀x ∈ Ω′′)(χ(x) := 1) ∧ (∀x ∈ (Ω\Ω′))(χ := 0).

The function χ does not depend on the index n. We consider on the set Ω′ the functions

(unχ) : Ω′ → R : unχ(x) := un(x)χ(x) for a.a.x ∈ Ω′.

which are solutions of the equation

4(χun) = un4χ+4unχ+ 2∇un ·∇χun = 4χ−λnunχ− g(λn, un)χ+ 2∇un ·∇χ, (12)

unχ = 0 on ∂ΩU ∪ ∂Ω′.

The r.h.s. of this equation is an element of the space L2(Ω\ΩU). For further purposes,
let us denote

f̂n(ûn, λ) := un4χ− g(λn, un)χ+ 2∇un · ∇χ.

On the set Ω′′ it holds g(λn, un) = f̂(λn, ûn).
The functions ûn = unχ are elements of the set W 1,2

0 (Ω\ΩU) and are de�ned on the set
with the boundary of a class C2. Theorem 2 about regularity can be applied to the
equation (12) to obtain

4ûn = f̂n ∈ L2(Ω′)⇒ 4ûn ∈ L2(Ω′)⇒ ûn ∈ W 2,2(Ω′).

Because W 2,2(Ω′) ↪→ C0,α(Ω′) for a suitable α ∈ (0, 1), the functions ûn are on the set Ω′

Hölder continous and bounded.
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Now we suppose that g′(λ, u) satis�es the growth conditions (1). Then derivative of
function g(λ, u(x)) with respect to spatial variables x is an element of the space L2(Ω′)

∀u ∈ W 2,2(Ω′) :∫
Ω′

∣∣∣∣ ∂∂xi g(λ, u)

∣∣∣∣2dx =

∫
Ω′

∣∣∣∣∂g∂u(λ, u)

∣∣∣∣2∣∣∣∣ ∂u∂xi (x)

∣∣∣∣2 ≤ ∫
Ω′

∣∣∣∣(1 + |u|r+1)
∂u

∂xi

∣∣∣∣2dx =

=

∫
Ω′

∣∣∣∣∣(1 + |u|r+1)2

∣∣∣∣ ∂u∂xi
∣∣∣∣2
∣∣∣∣∣ dx ≤ C

∫
Ω′

∣∣∣∣ ∂u∂xi
∣∣∣∣2 dx ≤ C‖u‖1,2,Ω′ <∞ ⇒

⇒ (∀i ∈ {1, 2})
(
∂

∂xi
(g(λ, u(x))) ∈ L2(Ω′)

)
⇒ g(λ, u(x)) ∈ W 1,2(Ω′). (13)

This result can be used to prove higher regularity of solution. Because ûn ∈ W 2,2(Ω′)
and g(λn, ûn) ∈ W 1,2(Ω′), it holds that

f̂n = (un4χ− λnunχ− g(λn, un)χ+ 2∇un · ∇χ) ∈ W 1,2(Ω′).

As χ has a support on the set Ω′, the functions f̂n have supports also on the set Ω′. The
function ûn is a solution of the equation 4ûn = f̂n, and from Theorem (2) it results that
ûn ∈ W 3,2(Ω′). Because W 3,2(Ω′) ↪→ C1,α(Ω′) the normal derivative is on the set Ω′ well
de�ned in the classical sense. Similarly it can be proved that û0 ∈ W 3,2(Ω′).
The last step is to prove that the functions ûn/‖ûn‖ converge to the function u0 in the
norm of the space W 3,2(Ω′). We can use the estimate from Theorem 2

‖un‖W 3,2(Ω′) ≤ C
(
‖un‖W 1,2(Ω′) + ‖f‖W 1,2(Ω′)

)
.

The function u0 must satisfy the equation

4(u0χ) = λ0u0 +4χu0 +∇u0 · ∇χ, u0 = 0 on ∂Ω′. (14)

Similarly the functions ûn are solutions of the equations

4(unχ) = λnun + g(λn, un) +4χun +∇un · ∇χ, un = 0 on ∂Ω′. (15)

Our goal is to �nd that ûn/‖ûn‖ → u0 in the norm W 3,2(Ω′). We will divide the equation
(15) by ‖ûn‖ and add to the equation (14) to obtain

4
[(

un
‖un‖

+ u0

)
χ

]
− (4χ)

(
un
‖un‖

+ u0

)
− λn

(
un
‖un‖

+ u0

)
χ+ (λn − λ0)u0χ−

−gn(λn, un)

‖un‖
χ−∇

(
un
‖un‖

+ u0

)
· ∇χ = 0, (16)

ûn = 0 on ∂Ω′.

The equation can be written in the form

4
[(

un
‖un‖

+ u0

)
χ

]
= fn, un = 0 on ∂ΩU ∪ ∂Ω′,
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fn := λn

(
un
‖un‖

+ u0

)
χ− (λn − λ0)u0χ+

gn(λn, un)

‖un‖
χ+∇

(
un
‖un‖

+ u0

)
· ∇χ.

To prove the convergence, we will use the estimate from Theorem (2)∥∥∥∥( un
‖un‖

+ u0

)
χ

∥∥∥∥
3,2,Ω′

≤ C

(∥∥∥∥( un
‖un‖

+ u0

)
χ

∥∥∥∥
1,2,Ω′

+ ‖fn‖1,2,Ω′

)
.

The �rst term on the r.h.s. is simple, because the sequence un/‖un‖ converges inW 1,2
0 (Ω)

norm to the function −u0. The function χ is smooth and can be estimated by a constant
(we will omit the subscript 1,2,Ω′)∥∥∥∥( un

‖un‖
+ u0

)
χ

∥∥∥∥ ≤ C1

∥∥∥∥ un
‖un‖

+ u0

∥∥∥∥→ 0.

The proof that ‖fn‖ → 0 is more complicated∣∣∣∣∣
∣∣∣∣∣
(

un
‖un‖

+ u0

)
4χ− λn

(
un
‖un‖

+ u0

)
χ+ (λn − λ0)u0 −

gn(λn, un)

‖un‖
−

−∇
(

un
‖un‖

+ u0

)
· ∇χ‖

∣∣∣∣∣
∣∣∣∣∣ ≤

≤
∥∥∥∥( un
‖un‖

+ u0

)
4χ
∥∥∥∥+ λn

∥∥∥∥( un
‖un‖

+ u0

)
χ

∥∥∥∥+ |λn − λ0|‖u0χ‖ −

−‖gn(λn, un)‖
‖un‖

+

∥∥∥∥∇( un
‖un‖

+ u0

)
· ∇χ

∥∥∥∥ ≤
≤ C2

∥∥∥∥( un
‖un‖

+ u0

)
χ

∥∥∥∥+ λnC3

∥∥∥∥( un
‖un‖

+ u0

)
χ

∥∥∥∥+ C4|λn − λ0|‖u0‖ −

−C5
‖gn(λn, un)‖
‖un‖

+ C6

∥∥∥∥∇( un
‖un‖

+ u0

)∥∥∥∥ .
First three term converge to zero. For the fourth term we have to prove that nonlinear
term containing g(λ, u) converges to zero. We only know, that

‖un‖ → 0 ⇒
∫

Ω\ΩU

g(λn, un)

‖un‖
v dx→ 0, ∀v ∈ W 1,2

0 (Ω).

We want to prove that also derivatives of g(λ, u(x)) with respect to x converges to zero.∫
Ω′

∂

∂xi

(
g(λn, un)

‖un‖

)
vdx =

∫
Ω′

∂

∂u

(
g(λn, un)

‖un‖

)
∂u

∂xi
vdx =

∫
Ω′

∂u
∂xi

‖un‖
∂

∂u
(g(λ, un))v dx.

The L2 norm of a fraction ∥∥∥∥ ∂u∂xi 1

‖un‖

∥∥∥∥
2

≤ ‖∇un‖2

‖un‖
≤ C,
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is bounded. We can estimate∫
Ω′

∂u
∂xi

‖un‖
∂

∂u
(g(λn, un))v dx ≤

(
ess sup
x∈Ω′

g′(λn, un(x))

)∫
Ω′

‖ ∂u
∂xi
‖2

‖un‖
‖v‖2 dx ≤

≤ C

(
ess sup
x∈Ω′

g′(λn, un(x))

)
‖v‖1,2 → 0,

where we used the condition (∀λ ∈ R) (g′(λ, 0) = 0) and Hölder and Poincare inequality.
The convergence to zero of the last term in (16) can be proved as follows∥∥∥∥∇( un

‖un‖
+ u0

)∥∥∥∥ ≤ λn

∥∥∥∥( un
‖un‖

+ u0

)
χ

∥∥∥∥+ |λn − λ0‖‖u0‖+
‖g(λn, ûn)‖
‖un‖

→ 0.

The Poincare inequality was used again. The conclusion is that the normalized solutions
on the set Ω′ are convergent in the W 3,2(Ω′) norm and their limit is the function −u0.
The convergence in the Hölder norm follows from the Morrey's inequality∥∥∥∥ un

‖un‖
+ u0

∥∥∥∥
C1,α(Ω′)

≤
∥∥∥∥ un
‖un‖

+ u0

∥∥∥∥
3,2,Ω′

→ 0.

The functions un converge in the C1,α(Ω′) norm for a suitable α to the function −u0,
hence, (9) is proved which �nishes the proof.
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Abstract. We study the Schrödinger operator with a harmonic oscillator and imaginary cubic
oscillator potential and focus on its pseudospectral properties. The summary of known results
about the operator and its spectrum is provided and we emphasize the importance of examining
its pseudospectrum as well. This is achieved with employing scaling techniques and treating
the operator using semiclassical methods. The existence of pseudomodes very far from the
spectrum is proven and as a consequence, the spectrum of the operator is unstable with respect
to small perturbations. It is shown that its eigenfunction form a complete set in the Hilbert
space, however, they do not form a Riesz basis.

Keywords: pseudospectrum, harmonic oscillator, imaginary qubic potential, PT -symmetry,
semiclassical method

Abstrakt. Studujeme Schrödinger̊uv operátor s potenciálem harmonického oscilátoru a ima-
ginárńıho kubického oscilátoru a zaměřujeme se na jeho pseudospektrálńı vlastnosti. Shrnujeme
známé výsledky o tomto operátoru a jeho spektru a zd̊urazňujeme d̊uležitost studia i jeho pseu-
dospektra. Toho je dosaženo aplikaćı škálovaćıch technik a zkoumáńım operátoru využit́ım
semiklasických metod. Je dokázána existence pseudomód̊u velmi daleko od spektra a jako
d̊usledek je spektrum operátoru nestabilńı v̊uči malým poruchám. Ukazujeme, že jeho vlastńı
funkce tvoř́ı úplnou množinu v Hilbertově prostoru, avšak netvoř́ı Rieszovu bázi.

Kĺıčová slova: pseudospektrum, harmonický oscilátor, imaginárńı kubický potenciál, PT -symetrie,
semiklasická metoda
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Abstract. This paper aims to �nd the minimum sample size of the camera reference image set

that is needed to build a sensor �ngerprint of a high performance. Today's methods for building

sensor �ngerprints do rely on having a su�cient number of camera reference images. But, there

is no clear answer to the question of how many camera reference images are really needed?

In this paper, we will analyze and �nd out how to determine the minimum needed number of

reference images to remove the mentioned uncertainty. We will introduce a quantitative measure

(a stop-criterion) stating how many photos should be used to create a high-performance sensor

�ngerprint. This stop-criterion will directly re�ect the con�dence level that we would like to

achieve. By considering that the number of digital images used to construct the camera sensor

�ngerprint can have a direct impact on performance of the sensor �ngerprint, it is apparent that

this, so far underestimated, topic is of major importance.

Keywords: image ballistics, source camera veri�cation, pattern noise, PRNU, �ngerprint perfor-

mance, laplace distribution

Abstrakt. Tento £lánek si klade za cíl nalézt minimální velikost mnoºiny referen£ních fo-

togra�í, která je pot°eba k vybudování silného otisku fotoaparátu. Dne²ní metody se spoléhají

na dostate£ný po£et referen£ních snímk· kamery, ale nep°iná²í jasnou odpov¥¤ na otázku, kolik

snímk· je ve skute£nosti pot°eba. V tomto £lánku budeme analyzovat a zji²´ovat, jak ur£it min-

imální pot°ebný po£et referen£ních snímk· a tím odpov¥d¥t na tuto otázku. Zavedeme kvantita-

tivní opat°ení (stop-kritérium) ur£ující, kolik fotogra�í by m¥lo být pouºito k vytvo°ení silného

otisku sníma£e. Toto stop-kritérium bude p°ímo odráºet úrove¬ spolehlivosti, které chceme

dosáhnout. Toto téma je velmi d·leºité, a£koli je v literatu°e velmi podce¬ováno. Pon¥vadº

to z kolika snímk· je otisk senzoru vytvo°en má vliv na úsp¥²nost jeho detekce na testovaných

obrázcích.

Klí£ová slova: obrazková balistika, ov¥°ení zdrojové kamery, ²um senzoru, PRNU, úsp¥²nost

otisku, Laplaceova distribuce
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Abstract. This paper discusses �nalization of the new data acquisition system (DAQ) of the

COMPASS experiment at CERN and mainly focuses on description of development process and

interaction with users. The new DAQ is developed to replace old DAQ written originally for the

ALICE experiment and works together with upgrade of readout hardware. It uses extensively

possibilities of state of the art �eld programmable gate arrays (FPGA) technology. The new

DAQ software is based on state machines and C++ with usage of the QT framework, the DIM

library, and the IPBus library. System is presently in its �nal stage of preparation.
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Abstrakt. Tento £lánek se v¥nuje dokon£ovacím pracem na systému pro sb¥r dat experimentu

COMPASS v CERN a zam¥°uje se hlavn¥ na popis interakce s uºivatelem. Nový systém je vyví-

jen s cílem nahradit starý systém p·vodn¥ vytvo°ený pro experiment ALICE a pracovat spole£n¥

s vylep²ením vy£ítávacího hardwaru. Rozsáhle vyuºívá moºnosti nejmodern¥j²ích FPGA tech-

nologií. Nový systém sb¥ru dat je postaven na stavových automatech a jazyce C++ s pouºitím

Qt frameworku, knihoven DIM a IPBus. Systém je momentáln¥ ve �nálním stádiu p°íprav.

Klí£ová slova: sb¥r dat, Qt, GUI, FPGA

1 Introduction

This paper presents structure and user interfaces of the new data acquisition software
package designed to work together with new upgraded structure of readout chain of the
COMPASS experiment at CERN, but focuses mostly on its interaction with user, develop-
ment process as whole and last steps of development in particular. For more information
about design please see [6, 8, 7]. COMPASS [10] is a �xed target experiment at CERN
which in previous years had a usual data rate of approximately 1500MB/s during ap-
proximately 10 second on-spill with 45 second o�-spill. Its present DAQ system was built
during years 1999-2001. The Data Acquisition and Test Environment(DATE) [2], origi-
nally developed for the ALICE at CERN, was used to control DAQ and event building
in old system and its graphical user interface was used as base for designing of the new
one.
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Development of the new DAQ software and hardware was started to improve reliability
and speed of system. Both parts has been developed in parallel, but full cooperation and
regular communication was kept as they are closely dependent on each other. Main idea
of hardware upgrade is to use FPGA technology for event building purposes and thus
reducing number of used computers to just eight. Hardware event building was previously
tried out by the CDF experiment [3] at Fermilab and the NA48 experiment [12, 13] at
CERN. Both these experiment went back to software event-building due to problems
either with reliability or �exibility,but now we have possibility to make reliable, �exible
and cost-e�ective hardware event-building thanks two improvements in FPGA technology.
The new software have to cope with challenges linked to control of such new hardware
event-building network and allow user to operate whole system e�ciently.

2 Used technologies

DAQ software package of big experiments can be fairy complex system and as such uses
many di�erent kind of technologies. Used technologies are, in this paper, divided to three
groups for sake of lucidity. Hardware technologies are in the �rst group. The second
group is composed from programing languages and frameworks. The last group contains
communication libraries.

2.1 Hardware technologies

The FPGA technology is key feature of the new DAQ. FPGA chips are special integrated
circuits whose behavior can be changed in the �eld by uploading a new �rmware. These
chips are usually equipped with many high speed serial links, they are cost e�ective,
and reliable in these days. This, together with high speed DDR3 memory, optical �ber
transceivers, and fast Ethernet for control purposes, has made possible to create DAQ
module for event-building.

2.2 Used programing languages and frameworks

DAQ system have to address many di�erent aspects, thus there are many di�erent lan-
guages used. C++ was chosen as language for core processes as they need to be fast
and have good control of used resources. It is supported by MySQL for database ac-
cess and Python with bash scripts for minor tasks. PHP, HMTL, javascript, and AJAX
have been used for creation of web-based con�guration interface. The Qt framework, a
cross-platform application framework, has been used for all main graphical user interfaces
(GUIs) and to speed up development of core applications. Some support GUIs, written
in Tool Command Language (TCL), were taken from old DAQ and reused in the new
one.

2.3 Used communication libraries

There are two kinds of communication in new DAQ and for each di�erent libraries are
needed. The �rst one is communication between processes. The Distributed Management
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System (DIM) library has been used for this purpose. Request to use this library came
out from initial studies as it is widely used in the COMPASS experiment. The DIM
is a multi-platform library that serves for an asynchronous 1 to many communication
through the Ethernet. It was originally developed for the DEPHI experiment at CERN.
The second type is communication with FPGA DAQ modules. The IPBus package is used
for this communication. It was developed for the level one trigger update of the CMS
experiment. This package consists of �rmware part and software part. The �rmware part
mediates access to registers and memory of a FPGA card through Ethernet when properly
loaded. The software part is implemented in C++ and contains all classes needed for a
connection to the interface of the �rmware part.

3 Design of the new DAQ

The new DAQ system, as is shown in �gure 1, can be divided to three main sections:

• detectors, frontends and preprocessing modules,

• main DAQ hardware event-building network,

• readout computers, DAQ software and data storage.

3.1 Detectors, frontends and preprocessing modules

Detector setup of the COMPASS compose from di�erent kinds of tracking detectors,
calorimeters and detectors for particle identi�cation. These detectors have around 300
000 channels which are read out by various frontend cards. Frontend cards concentrate
these channels to approximately 1000 links which are connected to CATCH, HGeSiCa
or GANDALF data-concentrator module. Part of modules are then connected directly
to next stage and part are connected to Slink multiplexer or TIGER VXS modules for
future data concentration. This part of system is in the same form as it was in previous
DAQ.

3.2 Main DAQ hardware event-building network

This part was the most challenging one from hardware point of view. Software event-
building network running on 50 computers has been exchanged for hardware event-
building on eight new DAQ FPGA modules with multiplexer �rmware and one module
with switch �rmware. New DAQ module is based on VIRTEX6 XC6VLX130T FPGA
middle size chip. It is equiped with 4 GB of DD3 memory, 1 Gb ethernet, and 16 serial
links.

3.3 Readout computers, DAQ software and data storage

The last part incorporate eight servers with special PCI-e card called spillbu�er to which
the optical �ber from the switch is connected. Event data are temporary stored in bu�er of
spillbu�er. Then they are read out by slave readout process and stored on RAID10 array
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Figure 1: The new DAQ architecture
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of 8 harddisks, before transferee to The CERN Advanced STORage manager (CASTOR)
for long term storage. All main DAQ processes are running on these computers.

DAQ software is divided to six processes: Master, Slave-readout, Slave-control, Con-
trol GUI, MSGLogger, and MSGBrowser.

3.4 Sections interconnections and synchronization

All sections are connected to trigger control system (TCS), which is responsible for sharing
informations about collected events and synchronization. Inner COMPASS Ethernet
network is used for control and communication between �rst and third section. This
network is used for all other computers in the experimental too. Dedicated network is
used for all IPBus communication between second and third section.

4 Development process of the new DAQ

Development process of DAQ for bigger experiments is complicated process, thus it is
necessary to divide it to several steps and set some milestones. The �rst milestone
was creation of basic communication prototype. The next step was simple readout test
without additional layers. One DAQ module with multiplexer �rmware has been added
in the third step. One more layer has been added to setup in fourth step. Last milestone
is the full system test. All intermediate steps are shown in �gure 2. More information
about intermediate steps can be found in [6, 8, 7].

5 Finalization of the new DAQ

Finalization is done with full setup, but instead with smaller one composed of 5 MUXes,
one SWITCH and 2 readout engine computers. It have to prove that system is reliable
and can readout messages with high enough rate. In this phase detector experts are
incorporated to development process as they are needed both for check of consistency of
processed date and testing of graphical user interface(GUI). Input from users is extremely
important for �nalization of GUI design. The DAQ was in this phase at time of �nalization
of this paper.

6 User interfaces

This section is dedicated to description of new user interfaces. They are used to provide
access to di�erent aspects of a DAQ. Those aspects are:

• con�guration,

• control,

• monitoring.
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Figure 2: Prototype steps

The �rst interface is web interface written in php with use of javascript and AJAX.
This interface is used to change con�guration of system. It is divided to several pages
with di�erent tasks from small thinks like description of FPGA registers up to de�nition
of connections between detectors, multiplexers, switch, and computers.

The second interface for users is the one of the run control GUI program. It is the
most important one because it will be used by both experts and normal collaboration
members on a shift duty. It is written in C++ with use of Qt framework. It compose
mainly from main run control window shown in �gure 3, link overview window shown in
�gure 4, and load window shown in �gure 5.

The main run control window serves for control of the state of system and for moni-
toring of processes' state, FPGA's status, trigger control system status, DAQ computers
status, and event size.

Link overview window is representation of system layers. It is composed from sub-
widgets which are dynamically created during start of the window. One can track errors
to their origin, check details of data �ow, or activate/deactivate ports from this window.

The last of the listed windows is load window in which user can look at speci�c
detector and see all information about its connection chain in DAQ, but main task of this
window is di�erent. It is used to issue load command to service named con�g server. This
service than loads all necessary settings to selected device. These settings are extracted
from the frontend database.
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Figure 3: Main run control window

Figure 4: Link overview window

Main monitoring interface shown in �gure 6 is called message browser. It is written
in C++ with use of Qt framework. This interface is used only for monitoring purposes.
It can work in online mode, in which it gathers messages directly from running processes,
or in o�ine mode, in which it gets messages from database. Users can use �lters to select
just speci�c messages.
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Figure 5: Load window

Figure 6: Message browser
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7 Conclusion

Demands and restriction on the new data acquisition system were extracted from initial
studies and discussion in collaboration of the COMPASS experiment at CERN. The new
DAQ software and hardware has been prepared based on these demands and restrictions.
The �rst full version of software package has been tested and used during preparation for
winter 2014 data taking. Complete DAQ setup is in �nal stage of preparation at time
of �nalization of this paper. Tests performed so far proved viability of the new system,
thus the system was approved for usage in winter 2014 data taking.
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Abstract. The variability in kernel methods is done by kernel functions. These functions are

parameterized and, therefore, in application it is necessary to deal with the choice of parameter.

This article deals with scheme for the choice of parameter in kernel PCA with Gaussian and

exponential kernel function. Our theoretical approach comes from the study of properties of

rounding kernels in �nite arithmetics used in software implementation. This theoretical concept

is then tested on two-level classi�cation system which is represented by kernel principal com-

ponent analysis and quadratic discriminant analysis. It is used for diagnostics of Alzheimer's

disease.
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Abstrakt. Jádrové metody poskytují uºivateli velkou variabilitu díky moºnosti volby jádrové

funkce. Tyto funkce jsou parametrizované a proto je nutné p°i jejich pouºití vy°e²it otázku

vhodné volby t¥chto parametr·. Tento £lánek se zabývá schématem pro volbu parametru v já-

drové PCA s Gaussovskou a exponenciální jádrovou funkcí. Teoretický p°ístup vychází ze studie

vlastností jader p°i zaokrouhlování v kone£né aritmetice, která se pouºívá v softwarových imple-

mentacích výpo£etních prost°edí. Teoretický koncept je následn¥ testován na dvouúrov¬ovém

klasi�ka£ním modelu, který je sloºen z analýzy hlavních komponent a kvadratické diskrimina£ní

analýzy. Model je pouºit pro diagnostiku Alzheimerovy choroby.

Klí£ová slova: Gaussovská jádrová funkce, exponenciální jádrová funkce, parametrická studie,

zaokrouhlování, jádrová PCA, whitening, kvadratická diskrimina£ní analýza, diagnostika, leave-

one-out k°íºová validace

1 Introduction

Kernel-based methods represent popular and well established tools for various data min-
ing tasks.

Let {(x1, y1), ..., (xn, yn)} is a set of observations xi ∈ X and modeled property yi ∈ Y ,
n ∈ N. The principle of kernel methods is to embed another Hilbert space H between the
input space X and the output space Y and perform a dot-product-based methods there.
A connection between distances in spaces X and H is done via so called kernel functions
k : X × X → H. The Hilbert space H and the kernel function k are so constructed that

∗The paper was created under the support of grant SGS11/165/OHK4/3T/14 CTU in Prague
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the followig equation holds k(xi,xj) = 〈xi, xj〉, where 〈·, ·〉 is a dot-product in H. The
original set of data {x1, ...,xn} is consequently transform into so called kernel matrix K,
which is de�ned as (K)ij = k(xi,xj),∀i, j ∈ {1, ..., n}. For more detailed description see
[1] and [2].

Exaples of kernel functions can be found in [1] and [2]. In general, these functions are
parameterized and, therefore, in application it is necessary to deal with the choice of this
parameter. In this paper we restrict our attention to the following two exponential-based
kernel functions

• exponential kernel with parameter σ > 0

k(xi,xj) = exp

(
−‖xi − xj‖2

σ

)
, (1)

• Gaussian kernel with parameter σ > 0

k(xi,xj) = exp

(
−‖xi − xj‖22

2σ2

)
, (2)

and �nd some general rules for choosing their parameter σ.
There is a �nite arithmetic in computers: �xed and �oating point systems with �nite

representation. We suppose �nitness of �oating point mantisa and create a model for
choice of parameter σ on it. The main idea is to use the following expansion of exponential
function

exp(x) =
∞∑
k=0

xk

k!

for the kernel functions (1), (2) as model for rounding error in software �nite arithmetics
and contract the set of possible values for parameter σ > 0 to relevant ones. The algo-
rithmic details are left out.

The �nal stage is testing our theoretical approach on Alzheimer's disease diagnos-
tics. The two-level classi�cation system, kernel principal component analysis (PCA) and
quadratic discriminant analysis (QDA), is used for this task.

2 Properties of Exponential and Gaussian Kernel

Necessary theoretical background is developed in this section. First of all, the considera-
tion is done for exponential kernel, and then the results are reformulated for the Gaussian
kernel.

For simplicity of notation, we write dij instead of ‖xi − xj‖2. Additionaly, from now
on, n̂ denotes the set {1, ..., n}, N0 = N∪ {0}, σ ∈ R, σ > 0, dmax = max{dij|i, j ∈ n̂, i 6=
j} and dmin = min{dij|i, j ∈ n̂, i 6= j}.
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2.1 Properties of exponential kernel function

Let us begin with properties of simple exponential kernel function.

De�nition 1. The �nite exponential kernel ke of order N ∈ N0 ∪ {∞} is given by

ke(xi, xj;N, σ) =
N∑
k=0

(−1)k

k!

(
dij
σ

)k
.

De�nition 2. The accuracy of the �nite exponential kernel of order N ∈ N0 is de�ned
by

a(ke(xi, xj;N, σ)) =
= | ke(xi, xj;N + 1, σ)− ke(xi, xj;N, σ)| =

=
1

(N + 1)!

(
dij
σ

)N+1
(3)

Proposition 1. Let σ > dij. Then for the following series
∞∑
k=0

(−1)kak =
∞∑
k=0

(−1)k

k!

(
dij
σ

)k
,

it holds

(i) the sequence (ak)
∞
k=0 is positive and strictly monotonically decreasing, a0 = 1,

(ii) the series
∞∑
k=0

(−1)kak is convergent,

(iii) the partial sum satis�es∣∣∣∣∣
∞∑
k=0

(−1)kak −
N∑
k=0

(−1)kak

∣∣∣∣∣ ≤ 1

(N + 1)!

(
dij
σ

)N+1

.

Proof.

(i) When σ > dij then
dij
σ
< 1 and ak+1

ak
=

dij
σ

1
(k+1)

< 1 for all k ∈ N0.

(ii) Convergence implies from Leibnitz criterion and (i).

(iii) In the case of convergence, we can directly estimate
∣∣∣∣ ∞∑
k=0

(−1)kak −
N∑
k=0

(−1)kak
∣∣∣∣ =∣∣∣∣aN+1 +

∞∑
k=1

(−1)kaN+1+k

∣∣∣∣ ≤ aN+1. The last inequality holds from the fact that the

sum
∞∑
k=1

(−1)kaN+1+k < 0.

Proposition 1 states that the �nite exponential kernel ke is an approximation of proper
exponential kernel (1) and that the accuracy (3) is upper estimation of an error of this
approximation.
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De�nition 3. Let σ > dij and 1 > ε > 0 be a counting error. The minimum order of ke
is given by Ñ = min{N ∈ N0|a(ke(xi, xj;N, σ)) < ε}.

Theorem 1. Let 1 > ε > 0 be a counting error, σ > dij, Ñ ∈ N0, and ke(xi, xj; Ñ , σ) be
a �nite exponential kernel.

(i) The ke has a minimum order Ñ = 0 if and only if σ ∈
(
dij

1
ε
;∞
)
.

(ii) The ke has a minimum order Ñ > 0 if and only if σ ∈
(
dij Ñ+1

√
1

ε(Ñ+1)!
; dij Ñ

√
1

εÑ !

〉
.

Proof. The members (ak)∞k=Ñ+1
of the series ke(xi,xj;∞, σ) =

∞∑
k=0

(−1)kak =
∞∑
k=0

(−1)k
k!

(
dij
σ

)k
are nonnegative and strictly monotonically decreasing, and therefore they are not counted
if and only if it holds

∣∣∣(−1)Ñ+1aÑ+1

∣∣∣ = 1

(Ñ + 1)!

(
dij
σ

)Ñ+1

< ε.

By solving this inequality we obtain

σ > dij Ñ+1

√
1

ε(Ñ + 1)!

The above formula is lower bound of each interval; the �rst one is
(
dij

1
ε
;∞
)
, the second

is
(
dij

.

√
1
ε2!
; dij

1
ε

〉
and so on.

According to the assumption on σ and ε, the intervals are meaningful and thus we
have the assertion of the Theorem 1.

2.2 Properties of exponential Kernel Matrix

Next, let us turn to kernel matrix K. In what follows, Ke stands for the kernel matrix K
based on �nite exponential kernel, (Ke)ij = ke(xi,xj;Nij, σ)

De�nition 4. A kernel matrix Ke, (Ke)ij = ke(xi, xj; Ñij, σ) for all i, j ∈ n̂, has a
minorder N ∈ N if

(i) (∀i, j ∈ n̂)(i 6= j)(Ñij is a minimum order of ke),

(ii) (∀i, j ∈ n̂)(i 6= j)(Ñij ≥ N),

(iii) (∃i, j ∈ n̂)(i 6= j)(Ñij = N).

De�nition 5. A kernel matrix Ke has a maxorder N ∈ N0 if

(i) (∀i, j ∈ n̂)(i 6= j)(Ñij is a minimum order of ke),

(ii) (∀i, j ∈ n̂)(i 6= j)(Ñij ≤ N),
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(iii) (∃i, j ∈ n̂)(i 6= j)(Ñij = N).

De�nition 6. A kernel matrix Ke has an exaorder N ∈ N0 if

(i) (∀i, j ∈ n̂)(i 6= j)(Ñij is a minimum order of ke),

(ii) (∀i, j ∈ n̂)(i 6= j)(Ñij = N).

Theorem 2. Let 1 > ε > 0 be a counting error, σ > dmax, Ke, (Ke)ij = ke(xi, xj; Ñij, σ)

for all i, j ∈ n̂, is a kernel matrix, and Ñij are minimum orders.

Ke has a minorder N ∈ N if and only if σ is in interval
(
dmin

N+1

√
1

ε(N+1)!
; dmin

N

√
1
εN !

〉
∩ (dmax;∞).

Proof. The proof is straightforward veri�cation that σ from the introduced interval ful�ls
the conditions (i), (ii) and (iii) from the De�nition 4:

(i) Directly implies from the assuption of the theorem.

(ii) Property (∀i, j ∈ n̂)(i 6= j)(Ñij ≥ N) can be equivalently formulated using Theo-

rem 1 into (∀i, j ∈ n̂)(i 6= j)
(
σ ≤ dij

N

√
1
εN !

)
. Therefore σ ≤ dmin

N

√
1
εN !

.

(iii) We apply Theorem 1 on the condition (∃i, j ∈ n̂)(i 6= j)(Ñij = N) and rewrite

it as follows (∃i, j ∈ n̂)(i 6= j)
(
σ ∈

(
dij N+1

√
1

ε(N+1)!
; dij

N

√
1
εN !

〉)
. To ful�ll this

condition, σ has to be in the interval
(
dmin

N+1

√
1

ε(N+1)!
; dmax

N

√
1
εN !

〉
.

Combining conditions from (ii) and (iii) with the assupmtion σ > dmax, we obtain the
assertion of the Theorem.

By analogy, we can formulate and prove following Theorems.

Theorem 3. Let 1 > ε > 0 be a counting error, σ > dmax, Ke, (Ke)ij = ke(xi, xj; Ñij, σ)

for all i, j ∈ n̂, is a kernel matrix, and Ñij are minimum orders.

Ke has a maxorder N ∈ N if and only if σ is in interval
(
dmax

N+1

√
1

ε(N+1)!
; dmax

N

√
1
εN !

〉
∩

(dmax;∞).

Theorem 4. Let 1 > ε > 0 is a counting error. Ke has an exaorder 0 if and only if σ is
in interval

(
dmax

1
ε
;∞
)
.

Theorem 5. Let 1 > ε > 0 is a counting error. Ke has an exaorder 1 if and only if σ is

in interval
(
dmax

√
1
ε2!
; dmin

1
ε

〉
.
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Figure 1: Leave-one-out cross validation error for QDA with Gaussian Kernel PCA with
two (uppet) and seven (bottom) components. The dashed vertical lines represents the
intervals based on dmin.

2.3 Properties of Gaussian kernel matrix

The thoughts are the same as in Section 2.2, and therefore only the conclusion is presented
in the following part.

Theorem 6. Let 1 > ε > 0 be a counting error, σ > dmax√
2
, Kg, (Kg)ij = kg(xi, xj; Ñij, σ)

for all i, j ∈ n̂, is a kernel matrix, and Ñij are minimum orders. Kg has

(i) a minorder N ∈ N if σ is in interval(
dmin√

2
2N+2

√
1

ε(N+1)!
; dmin√

2
2N

√
1
εN !

〉
∩
(
dmax√

2
;∞
)
,

(ii) a maxorder N ∈ N if σ is in interval(
dmax√

2
2N+2

√
1

ε(N+1)!
; dmax√

2
2N

√
1
εN !

〉
∩
(
dmax√

2
;∞
)
,

(iii) an exaorder 0 if σ is in interval
(
dmax√

2

√
1
ε
;∞
)
,

(iv) an exaorder 1 if σ is in interval
(
dmax√

2
4

√
1
2ε
; dmin√

2

√
1
ε

〉
.

3 Two Level Classi�cation System

The theory build in previous section will be tested on two-level classi�cation system. A
kernel-based principal component analysis (PCA) [1] is used for the reduction of dimen-
sionality of the problem in the �rst part, whereas the quadratic discriminant analysis
(QDA) [3] is performed to the analysis itself. We will touch only a few aspects of the
kernel-based PCA and QDA in this section.
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3.1 Kernel PCA

Kernel PCA is extension of classical PCA [6]. In general, PCA is a transformation of
data into new coordinate system which is de�ned by eigenvectors.

The eigenvalue decomposion is in classical PCA done from covariance matrix C =
1
n

n∑
i=1

xix
′
i of centered data satysfying

n∑
i=1

xi = Op,1,xi ∈ X = Rp,1. (4)

Let (v1, ...,vp) denote the eigenvectors of matrix C and (λ1, ..., λp) detones the consecutive
eigenvalues. The transformation matrix A of old coordinates X into new one Z = AX,
where X = (x1, ...,xn), is de�ned as A = (v1, ...,vp), where λ1 ≥ λ2 ≥ ... ≥ λp holds for

eigenvalues. Instead of using matrix A, normalized matrix W =

(
v1√
λ1
, ..., vp√

λp

)
can be

used in the case of data whitening [1].
There is shown in [1] that doing kernel PCA is equivalent to doing classical PCA with

kernel matrix K instead of covariance matrix C. The centering operation (4) can be done
in kernel PCA by following transformation of kernel matrix K called kernel whitening

K̂ = K− 1

n
In,nK−

1

n
KIn,n +

1

n2
In,nKIn,n.

Finally, the kernel PCA is done by eigenvalue decomposion of the matrix K̂.

3.2 Quadratic Discriminant Analysis

The principal of QDA algorithm [3] is to approximate the data from di�erent classes by
normal distributions. The classi�cation of new observation is then made by calculating
the probability of pertinence to every class and choosing the one with the maximum
value.

Let us assume that we have M classes Ci, i ∈ M̂ , with distributions fi(x),x ∈ X =
Rp,1. The goal is to decompose X into N sets Ai, X = ∪Mi=1Ai. The classi�cation rule is
then given by formula

x ∈ Ci ⇔ x ∈ Ai. (5)

Finding the optimal decomposition is equivalent to �nding the minimum of functional

L =
M∑
i=1

∫
Ai

M∑
j=1

πjfj(x)dx, (6)

where πj is a priori probability of class Cj. There is shown in [3] that the classi�cation
rule (5) with respect to the functional (6) gives following condition for classi�cation

(x ∈ cj)⇔
((
∀t ∈ M̂

)
(j 6= t) (πtft(x) > πjfj(x))

)
Where normal probability distribution fj ∼ N(µj,

∑
j) is used in the case of QDA.
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Figure 2: Leave-one-out cross validation error for QDA with Gaussian Kernel PCA with
�ve and eight components. The dashed vertical lines represents the intervals based on
dmin.

4 Experimental Part

4.1 Alzheimer's Disease Diagnostics

With increasing life expectancy across the world, the number of elderly people with
dementia is growing rapidly. Dementia is characterized by irreversible and progressive
decline of cognitive functions interfering with common activities of daily living and social
and working skills. It has many causes. The most common neurodegenerative disor-
der is Alzheimer's disease (AD). Other frequent diseases with dementia include vascular
dementia, frontotemporal lobar degeneration and dementia with Lewy bodies.

The treatment of AD is the most e�ective in the initial phase. Therefore it is of a great
importance to identify patients with AD among the whole spectrum of dementia diseases
accurately and early. The correct diagnosis of AD in the incipient stages is di�cult.
Clinicians can diagnose probable AD based on clinical �ndings. AD is considered de�nite
if both clinical and histopathological evidence are present. Clinical accuracy for AD
according to the National Institute of Neurological and Communicative Sisorders and
Stroke and Alzheimer's Disease and Related Disorders Association (NINCDS-ADRDA)
criteria is 80 % at the experienced centers and decreases in less trained physicians. There
is no single diagnostic test for AD or most of other types of dementia. The new revised
research criteria for AD have introduced biological markers as supportive features in
the diagnosis of AD [5]. They include magnetic resonance imaging, cerebrospinal �uid
biomarkers and positron emission tomography (PET). However, single photon emission
tomography (SPECT) of the brain is more widely available and cheaper than PET.
Since the diagnostic accuracy estimates is bellow prerequisite 80 % level required by the
Reagan Biomarker Working Group. 99M Tc-HMPAO SPECT identi�es diagnosed AD
with moderate sensitivity (77 - 80%) and speci�city (65 - 93%) [5]. Therefore SPECT
of the brain is not recommended investigation for AD according the European and US
guidelines [5],[4]. This modality should be used in an unclear case after clinical and
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structural imaging work up. Therefore there is space to increase the diagnostic potential
of this functional neuroimaging to detect AD correctly, especially in the earliest stages.

4.2 Data Description

Two groups of patients (AD/CN) were investigated via 19m F-deoxyglucose radiomarker
of brain aktivity using SPECT technique. Patient scans were represented as 3D matrces of
size 79x95x69 which were space normalized using SPM-7 techique [7],[8]. Intensity maps
were also normalized to obtain nonnegative intensities with unit patient sums. First
group conists of 38 Alzheimer's diseased patients (AD). The second group consists of 56
Control normal patients (CN). Space and intensity normalizations enable to use voxel-
by-voxel analysis of patient and group di�erences, where every patient is represented by
intensity vector of length 517 845, which makes statistical analysis di�cult in general.
But our methodology is based only on patient-by-patient distances, which form a single
distance matrix of size 94 x 94.

4.3 Methodology of Data Processing

The diagnostics of 3D SPECT images was divided into two parts. In the �rst step, the
Kernel PCA was processed on the whole dataset to obtain principal components and new
coordinates of the data. Calculations were performed for a wide variety of parameters of
exponential and Gaussian kernels. This allowed us to study the dependence of result on
choice of parameters. The next step was the own classi�cation performed by QDA with
leave-one-out cross validation. All calculations were performed in MATLAB environment.

Finally, we study the dependency of the leave-one-out cross validation error on the
choice of the sigma parameter.

4.4 Analysis of Results

We used from one to eleven components for QDA. Results for selected number of com-
ponents used are on Figures 1 and 2.

All �gures have the same structure. The x-axis represents the log10 σ, whereas the y-
axis represents the leave-one-out cross validation error for QDA with the selected number
of Kernel PCA components with Gaussian kernel. The grey area denotes the exaorder
0 and 1 from Theorem 6 (iii) and (iv). The vertical solid lines are bouindaries dmin and
dmax and the dashed lines represents the intervals based on Theorem 6. The minorder
intervals (i) are used in Figure 1 and the maxorder intervals (ii) in the Figures 2.

5 Conclusion

It can be seen from the Figures, that our model for the choice of parameter is able to
describe changes of results. The general model for the choice of the parameter can be
state as follows:
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(i) The most interestin region is interval
〈
dmin/

√
2, dmax/

√
2
〉
for Gaussian kernel and

interval 〈dmin, dmax〉 for exponential kernel. We recomend to equidistantly search it
with respect to the size of the dataset.

(ii) Otherwise, we do not recomend to use sigma from the intervals with exaorders

one and zero. This is
(
dmax√

2
4

√
1
2ε
;∞
)
for Gaussian kernel and

(
dmax

√
1
2ε
;∞
)
for

exponential kernel.

(iii) For the choice of σ from the area between (i) and (ii) we can state that higher the
σ, lower the interesting of result. Because of it we recomend to

(a) start with smaller σ,
(b) take as many of them as you can with respect to the maxorder or minorder

intervals and stress the smaller ones.

For example, you can take geometric means of intervals (i) or (ii) from Theorem 6
for Gaussian kernel and geometric means of intervals from Theorem 2 or Theorem
3.

(iv) For the rest interval use again the equidistant search with respect to the size of
dataset.
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Numerical Simulation of NAPL Vapor
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Abstract. This paper deals with the simulation of NAPL vapor transport driven by gas �ow in

porous medium. The mathematical model describing this phenomenon combines mass balance

equations with the Darcy law and the ideal gas equation of state. In order to solve the governing

equations, a numerical scheme based on the �nite volume method is derived. Finally, some of

our numerical results computed by this scheme are presented.

Keywords: porous medium, vapor transport, �nite volume method

Abstrakt. Tento p°ísp¥vek se zabývá simulací transportu par látek typu NAPL proudícím

plynem v porézním prost°edí. Tento jev je popisován matematickým modelem, který spo-

juje zákon zachvání hmoty s Darcyho rychlostí a stavovou rovnicí ideálního plynu. Pro °e²ení

získaných rovnic je metodou kone£ných objem· odvozeno numerické schéma, jehoº výsledky jsou

v záv¥ru prezentovány.

Klí£ová slova: porézní prost°edí, transport par, metoda kone£ných objem·

1 Introduction

Flow of gases in porous medium and transport of contaminants driven by this �ow is
a part of a variety of complicated natural processes and, for this reason, it has been
researched and simulated for years. In our research, this contaminant is NAPL (Non-
Aqueous Phase Liquids) vapor. The NAPLs are liquids that do not easily dissolve in
water, e.g., gasoline or TCE.

The conservation laws describing the previous phenomenon cannot be solved numer-
ically simply by applying, for example, the standard Galerkin �nite element method
because such an approach results in non-physical behavior of the numerical solution.
Therefore, we test an approach combining the �nite element method with �nite volume
method that is described in [4] for a di�erent type of problems; it seems, however, to
work in our case as well.

∗This work is partly supported by the project �Development and Validation of Porous Media Fluid

Dynamics and Phase Transitions Models for Subsurface Environmental Application� Kontakt II LH14003

of Czech Ministry of Education, Youth and Sports.
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2 Mathematical Model

We consider NAPL vapor transport driven by gas �ow in soil. By the term 'gas', we
denote the �rst component of the whole mixture of the two gases. Typically, it will be
air. The governing equation for the �ow of the mixture in a rectangular domain Ω ⊂ R2

is derived ([7], [9]) by substituting the Darcy velocity of the mixture,

u = − 1

µ
k (∇p− ρg) , (1)

into the continuity equation of the mixture

φ
∂ρ

∂t
+∇ · (ρu) = F, (2)

where µ [ kg

m·s ] is the dynamic viscosity, k =

(
k1 k2

k3 k4

)
[m2] the permeability tensor,

g =

(
g1

g2

)
[m
s2

] the gravitational acceleration vector, p [Pa] the pressure, ρ [ kg
m3 ] the density,

φ [−] the porosity, t [s] the time and F [ kg

m3·s ] the sink/source term of the mixture.
The state variables of the NAPL vapor as well as the gas are assumed to be related

by the ideal gas equation of state. Therefore, the pressure and density of the mixture
satisfy the ideal gas equation of state in the form

ρ = p
M

RT
, M =

(
Xn

Mn

+
Xg

Mg

)−1

, (3)

where Mn and Mg [ kg

mol
] are the molar weights of the NAPL vapor and gas, respectively;

Xn and Xg [−] the mass fractions of the NAPL vapor and gas (Xn + Xg = 1), respec-
tively, in the mixture. R [ J

K·mol
] denotes the gas constant and T [K] the thermodynamic

temperature.
Equation (3) will be used in the form

ρ = p
Mg

RT

1

1 +Xn

(
Mg

Mn
− 1
) . (4)

Carrying out the time di�erentiation in (2), we get the following equation for the
unknown pressure p and mass fraction Xn

φ
∂ρ

∂p

∂p

∂t
+ φ

∂ρ

∂Xn

∂Xn

∂t
+∇ · (ρu) = F, (5)

where ρ is de�ned by (4) and u by (1).
The NAPL vapor transport within the mixture is assumed to be governed by the

continuity equation in the form

φ
∂ (Xnρ)

∂t
+∇ · (Xnρu−Dρ∇Xn) = Rn,
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where D [m
2

s
] denotes the di�usion coe�cient and Rn [ kg

m3·s ] the sink/source term of the
NAPL vapor. Carrying out the time di�erentiation and substituting for the derivative of
the density from (2), we obtain

φρ
∂Xn

∂t
+∇ · (Xnρu−Dρ∇Xn)−Xn∇ · (ρu) = Rn − FXn. (6)

Again, ρ is de�ned by (4) and u by (1).
The mass concentration cn [ kg

m3 ] of the NAPL vapor and mass fraction Xn are related
by the equation cn = Xnρ.

Equations (5) and (6) are considered for t ∈ I = [tini, t�n], and they are subject to the
initial conditions

p(x, tini) = pini(x), x ∈ Ω, (7)

Xn(x, tini) = Xn,ini(x), x ∈ Ω (8)

and boundary conditions

p|Γp,Dir = pp,Dir and (ρu)|Γp,Neu · n = qp,Neu; (9)

Xn|ΓX,Dir = XnX,Dir, (Xnρu−Dρ∇Xn)|ΓX,Neu · n = qX,Neu and ∇Xn|ΓX,per · n = 0; (10)

where Γp,Dir ∪Γp,Neu = ∂Ω and Γp,Dir ∩Γp,Neu = ∅; ΓX,Dir ∪ΓX,Neu ∪ΓX,per = ∂Ω, ΓX,Neu ⊂
Γp,Neu, and ΓX,Dir, ΓX,Neu, ΓX,per are pairwise disjoint. The symbol n stands for the unit
outward normal with respect to the boundary.

In this contribution, the points in Ω are denoted by (x, y) if the spatial coordinates
need to be distinguished (g1 and g2 correspond to x and y, respectively); otherwise, they
are denoted simply by x ∈ Ω.

3 Numerical Solution

In order to solve problem (5)�(10), the author derived two di�erent numerical schemes
based on the �nite volume method, the explicit and semi-implicit one. In this contribu-
tion, however, only the second one is discussed. Deriving it, we follow the ideas in [4]
and [5].

The unknown functions p and Xn are approximated employing the classical �nite
element space based on the linear Lagrange elements ([2]), where the domain Ω is covered
by the triangulation T = {T e}NT

e=1 depicted in Figure 1a, where NT is the number of
triangles in T . Each vertex xi of the triangulation is associated with the basis function
ϕi. Further, we use the node-centered dual mesh of �nite volumes V = {Vi}NV

i=1 based
on the Voroni diagrams ([4], [5] and [8]), where NV denotes the number of nodes in T .
This mesh will be described later on. Finally, the time interval I is divided by a strictly
increasing sequence (tn)Nt

n=0, where t0 = tini and tNt = t�n.
We shall use the following notation:

• X = {xi}NV
i=1 is the set of all vertices in the triangulation T ;
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• Λe = {i|xi ∈ T e};

• Λi = {j|(∃T e ∈ T )(xi ∈ Λe ∧ xj ∈ Λe)} \ {i};

• Λe
i = Λe ∩ Λi;

• Λb
i = Λi ∩ {j|xj ∈ ∂Ω};

• Λi,j = {e|i ∈ Λe ∧ j ∈ Λe};

• Λn
i = {e|xi ∈ Λe};

• xi,j is the midpoint of the line segment connecting the vertices xi and xj;

• xe is the circumcenter of the triangle T e;

• Γei,j is the line segment connecting the vertices xe and xi,j;

• Γbi,j is the line segment connecting the boundary vertices xi and xi,j;

• Γi =
⋃
j∈Λi

⋃
e∈Λi,j

Γei,j;

• Γbi =
⋃
j∈Λb

i
Γbi,j for xi ∈ ∂Ω;

• xei,j is the midpoint of Γei,j;

• xbi,j is the midpoint of Γbi,j;

• Λb
p,Neu,i =

{
j ∈ Λb

i |xbi,j ∈ Γp,Neu

}
;

• Λb
X,Neu,i =

{
j ∈ Λb

i |xbi,j ∈ ΓX,Neu

}
;

• V e
i = Vi ∩ T e;

• f(xi) = fi, where the possible time coordinate is omitted;

• f(xi,j) = fi,j, where the possible time coordinate is omitted;

• f(xei,j) = f ei,j, where the possible time coordinate is omitted;

• f(xbi,j) = f bi,j, where the possible time coordinate is omitted;

• fe is the constant value of f on T e ∈ T ;

• f eB is the value of f in the barycenter of T e ∈ T , where the possible time coordinate
is omitted;

• f(tn) = fn, where f = f(t);

• Xe
i,j denotes the special upwind term de�ned in Section 3.3;

• τ = t�n−tini
Nt

if the sequence (tn)Nt
n=0 is arithmetic.
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(a) Primary (solid) and dual

(dashed) mesh.

x [m]

y [m]

0 1.0

1.0
Γp,Dir

Γp,Neu

Γp,Neu

Γp,Neu

(b) Boundary conditions for p.

x [m]

y [m]

0 1.0

1.0
ΓX,Dir

ΓX,Neu

ΓX,per

ΓX,Neu

(c) Boundary conditions forXn.

Figure 1: Meshes and boundary conditions.

The preceding notation is used for scalar (f) as well as for vector-valued (f) functions.
The �nite volume Vi associated with the vertex xi is de�ned as the open set surrounded

by the piecewise linear curve Γi (i.e., ∂Vi = Γi) for xi /∈ ∂Ω and by the piecewise linear
curve Γi∪Γbi (i.e., ∂Vi = Γi∪Γbi) for xi ∈ ∂Ω. The dual mesh of �nite volumes is depicted
in Figure 1a.

The numerical schemes are based on the following local mass balance equations derived
by integrating equations (5) and (6) over the volume Vi and applying the Green formula:∫

Vi

φ
∂ρ

∂p

∂p

∂t
+

∫
Vi

φ
∂ρ

∂Xn

∂Xn

∂t
+

∫
∂Vi

ρu · n =

∫
Vi

F, (11)

∫
Vi

φρ
∂Xn

∂t
−
∫
∂Vi

Xnρu · n +

∫
Vi

ρu · ∇Xn +

∫
∂Vi

(Xnρu− ρD∇Xn) · n =

∫
Vi

Rn −
∫
Vi

FXn.

(12)

In order to compute the integrals in (11) and (12), we substitute the functions ∂ρ
∂p
, p,

∂ρ
∂Xn

, Xn, ρ, u, F and Rn by approximations from our �nite element space (except for u,
they are standard, e.g., p =

∑
i piϕi) and employ the following approximation techniques

(the possible time coordinate is omitted):

•
∫
Vi
f(x) dx

.
=
∑

e∈Λn
i
|V e
i | fi, where |V e

i | denotes the area of V e
i ;

•
∫
Vi
f(x) · g(x) dx

.
=
∑

e∈Λn
i
|V e
i |f eB · geB;

•
∫

Γi
f(x) ·n dx

.
=
∑

j∈Λi

∑
e∈Λe

i,j

Γei,j
f ei,j ·ne

i,j, where
Γei,j

 denotes the length of

the line segment Γei,j and ne
i,j the unit outward normal with respect to Γei,j;

•
∫

Γb
i
f(x) ·n dx

.
=
∑

j∈Λb
i

Γbi,j
f bi,j ·nb

i,j for xi∈∂Ω, where
Γbi,j

 denotes the length

of the line segment Γbi,j and nb
i,j the unit outward normal with respect to Γbi,j.

The approximation of the Darcy velocity u and the function Xn in the �rst part of
the last integrand on the left-hand side of equation (12) requires more careful treatment;
it will be discussed further. We also assume that the permeability tensor and porosity
take constant values ke and φe, respectively, on each triangle T e ∈ T .

Now, we can put together the aforementioned numerical scheme.
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3.1 Semi-Implicit Scheme

If equations (11) and (12) are considered at time tn+1, the time derivatives are approx-
imated by the backward �nite di�erences, some terms (they are chosen heuristically)
from time tn+1 are approximated at time tn in order to get a system of linear algebraic
equations for the unknown values pn+1

i and Xn+1
n,i , the approximation techniques above

mentioned are applied, and the boundary conditions (9) and (10) are considered, we
obtain the following system of equations for n = 0, 1, . . . , Nt − 1:∑
e∈Λn

i

|V e
i |φe

(
∂ρ

∂p

)n
i

pn+1
i − pni
τ

= −
∑
e∈Λn

i

|V e
i |φe

(
∂ρ

∂Xn

)n
i

Xn+1
n,i −Xn

n,i

τ
+
∑
e∈Λn

i

|V e
i |F n+1

i

−
∑
j∈Λi

∑
e∈Λi,j

Γei,j
 ρe,ni,j ue,n+1

i,j · ne
i,j −

∑
j∈Λb

p,Neu,i

Γbi,j
 qb,n+1

p,Neu,i,j

(13)

for i = 1, 2, . . . , NV , xi /∈ Γp,Dir;

pn+1
i = pn+1

p,Dir,i for i = 1, 2, . . . , NV , xi ∈ Γp,Dir; (14)

∑
e∈Λn

i

|V e
i |φeρni

Xn+1
n,i −Xn

n,i

τ
= −

∑
e∈Λn

i

|V e
i |F n+1

i Xn+1
n,i +

∑
j∈Λi

∑
e∈Λi,j

Γei,j
 ρe,ni,j Xe,n+1

n,i,j ue,ni,j · ne
i,j

+
∑

j∈Λb
X,Neu,i

Γbi,j
Xb,n+1

n,i,j qb,n+1
p,Neu,i,j −

∑
e∈Λn

i

|V e
i | ρni u

e,n
B · ∇X

e,n+1
n

−
∑
j∈Λi

∑
e∈Λi,j

Γei,j
 ρe,ni,j ne

i,j ·
(
Xe,n+1
i,j ue,ni,j −De

i,j∇X
e,n+1
n,i,j

)
−
∑

j∈Λb
X,Neu,i

Γbi,j
 qb,n+1

X,Neu,i,j +
∑
e∈Λn

i

|V e
i |Rn+1

n,i

(15)

for i = 1, 2, . . . , NV , xi /∈ ΓX,Dir;

Xn+1
n,i = Xn

n+1
X,Dir,i for i = 1, 2, . . . , NV , xi ∈ ΓX,Dir. (16)

The upwind term Xe,n+1
i,j and the approximation of the velocity u are de�ned in

Sections 3.3 and 3.2, respectively. Computing the term ue,n+1
i,j , ρe,n+1

i,j is approximated

by pe,n+1
i,j

(
∂ρ
∂p

)e,n
i,j
. Remark that the sums over the boundary nodes are correct because

ΓX,Neu ⊂ Γp,Neu and Λb
p,Neu,i = Λb

X,Neu,i = ∅ for xi /∈ ∂Ω.
The initial conditions are

p0
i = pini,i, X

0
n,i = Xn,ini,i for i = 1, 2, . . . , NV . (17)

This system is solved by the DGESVX subroutine from LAPACK ([1]). This sub-
routine equilibrates the matrix of the system in order to reduce its condition number
�rst, then solves the system via the LU decomposition, and �nally applies the iterative
re�nement.
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3.2 Approximation of Velocity u

The approximation of the Darcy velocity u should be carried out very carefully because
it results in an additional numerical �ux. If, for example, the pressure p and density
ρ are both approximated in the aforementioned �nite element space and substituted to
formula (1), than, due to (3), the velocity which is nonzero under hydrostatic conditions
is obtained.

In our numerical schemes, we employ the method ([3] and [6]) that approximates the
velocity u on a triangle T e ∈ T as

u|T e = − 1

µ
ke

[
∇
(
p̃+ h̃

)
− h̃x

(
1
0

)]
, (18)

where

h(t, x, y) =

∫ y

y1

−g2ρ̃(t, x, s)ds and hx(t, x, y) =

∫ y

y1

−g2
∂ρ̃

∂x
(t, x, s)ds. (19)

In these formulas, the tilde denotes the standard �nite element approximation of the
function, and y1 is the y-coordinate of the vertex that corresponds to the point (0, 0)
if the triangle T e is mapped to the reference triangle with the vertices (0, 0), (0, 1) and
(1, 0) and the local coordinates (ξ, η) by a map de�ned as the inversion of the mapping

x = x(ξ, η) =
3∑
i=1

xiϕi(ξ, η) and y = y(ξ, η) =
3∑
i=1

yiϕi(ξ, η),

where (xi, yi) is the vertex of T e, and ϕi is the basis function associated with the i-th
vertex of the reference triangle.

Using this approximation, we also assume that g1 = 0.

3.3 Types of Upwind

If the NAPL vapor spreads mainly by convection, the term Xn in Xnρu in equation (6)
requires a special treatment in order to prevent the numerical solution from oscillating
non-physically. This treatment is carried out by means of a suitable de�nition of the term
Xe,n+1
i,j in equation (15). We test the options mentioned in [4] and [5] (the exponential

upwind was modi�ed by the author), where the number γei,j is de�ned as

γei,j = De
i,j∇ϕj(xei,j) ·

∑
k∈Λe

i

Γei,k
ne

i,k,

and

P e
i,j =

Γei,j
uei,j · ne

i,j

γei,j

is an analogy of local Peclet number. Here, we list only the options used in Section 4.
All of the values in the de�nitions of γei,j and P

e
i,j are from time tn.
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• Full upwind

Xe
i,j =

{
Xn,i, u

e
i,j · ne

i,j ≥ 0

Xn,j, u
e
i,j · ne

i,j < 0
.

• Exponential upwind

For γei,j > 0, we de�ne

Xe
i,j = Xn,i(1 + θ)−Xn,jθ,

where

θ =

−
ω(P e

i,j)

1+P e
i,jω(P e

i,j)
,
P e

i,j

 ≤ 10−5

− 1
P e
i,j

+ 1
exp(P e

i,j)−1
,
P e

i,j

 > 10−5

and

ω(x) =
1

2!
+
x

3!
+
x2

4!
+
x3

5!
;

otherwise, the full upwind is used.

4 Numerical Results

In this section, the results of one of our numerical simulations are presented. The sim-
ulation was performed by the scheme described in Section 3, where the term Xe,n+1

i,j in
equation (15) was de�ned by the exponential upwind option in Section 3.3.

The domain Ω was of the form (0, 1)× (0, 1), where the units are [m], and there were
41 nodes on each side of the spatial mesh (see Figure 1a). The time step was τ = 0.01.
The permeability tensor k was always a scalar multiple of the identity, i.e., k = k̃I, k̃ is
spatial dependent. The values of the physical constants used are listed in Table 1. The
values of porosity and permeability are from [10].

The following initial and boundary conditions and k̃ and φ were considered (the
division of ∂Ω is depicted in Figure 1):

• pp,Dir(t, x, y) = pref + 5 · 104;

• qp,Neu(t, x, y) =

{
1, if y = 0

0, otherwise
;

• XnX,Dir is computed from cn,ref and
pp,Dir;

• qX,Neu(t, x, y) = 0;

• pini(x, y) = pref exp
(
Mgg2y

RT

)
;

• Xn,ini(x, y) = 0;

• values of k̃ = k0 are depicted in
the background of Figures 2a�2d;

• φ(x, y) = φ2−φ1
k̃2−k̃1

(k̃ − k̃1) + φ1.

The numerical results are shown in Figures 2a�2d. We can see that the NAPL vapor
really spreads like a wave.
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parameter value unit

µ 1.81 · 10−5 kg ·m−1 · s−1

Mg 0.02896 kg ·mol−1

Mn 0.13139 kg ·mol−1

R 8.3144621 J ·K−1 ·mol−1

T 288.15 K

g1 0 m · s−2

g2 −9.81 m · s−2

F 0 kg ·m−3 · s−1

parameter value unit
pref 101325 Pa

Rn 0 kg ·m−3 · s−1

cn,ref 3 · 10−2 mol ·m−3

φ1 0.339 −
φ2 0.433 −
k̃1 1.726 · 10−9 m2

k̃2 2.012 · 10−10 m2

D 10−5 m2 · s−1

Table 1: Values of physical parameters.

(a) p and u at time t = 0.5 s. (b) cn at time t = 0.02 s.

(c) cn at time t = 0.2 s. (d) cn at time t = 0.4 s.

Figure 2: Numerical results. The arrows indicate the direction and magnitude of u. The
shades in the background of the �gures are the values of k̃ ('k0').
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5 Conclusions

The numerical scheme derived in Section 3 seems to solve the governing equations without
producing non-physical oscillations in the NAPL vapor concentration. Therefore, the
results can be compared with experimental data, and the approach on which the scheme
is based may be employed on more complex equations.
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Abstract. A new way to treat the problem of electricity markets analytically is proposed
here. We consider several electricity producers and a central authority of an independent system
operator (ISO). We model such con�ict situation in a standard way as a bi-level non-cooperative
Nash game, where ISO is a leader player and producers are considered as followers. Using
analytical formula for a solution to the ISO problem [1], we provide a detailed analysis of the
problem of a producer. We conclude by providing the conditions for existence of the best
response, which is then described by an explicit formula. We note that the topology of the
electricity dispatch network is not considered at the moment.

Keywords: electricity markets, bi-level Nash games

Abstrakt. V této práci je p°edstaven nový p°ístup k modelování trhu s elekt°inou. Uvaºujeme
n¥kolik producent· elekt°iny a nezávislého systémového operátora (ISO). Tuto kon�iktní situaci
modelujeme standardn¥ jako dvouúrov¬ovou nekooperativní Nashovu hru, kde ISO je uvaºován
jako lídr a producenti jako jeho následovníci. S pouºitím analyického °e²ení ISO problému
[1], jsme provedli detailni rozbor problému producenta. Získali jsme podmínky pro existenci
jeho optimální akce, která je pak popsána explicitním vzorcem. Poznamenáváme, ºe topologie
elektrické rozvodné sít¥ není zde není uvaºována.

Klí£ová slova: trhy s elekt°inou, dvouúrov¬ové Nashovy hry

1 Introduction

The modelling of the electricity networks is a very current topic, since in the last two
decades they were privatized in many countries. The ultimate aim of such movement
was to enhance the e�ectiveness of electricity production and distribution, and so natu-
rally also electricity markets were founded, typically at the national level. Later, these
markets were consolidated; soon there will be just one pan-European electricity market.
Moreover, also an operational requirements of the so-called smart grids, i.e., electricity
dispatch networks with non-stable wind and solar power plants of various scales, are
newly considered. Thus, many practical and at the same time scienti�cally interesting
questions arose within this area.
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Further, we consider only the electricity market itself, omitting all the problems con-
cerning electricity dispatch network. We may observe that such market can not run
in the same way as, for instance, stock market. Indeed, electricity is a special kind of
commodity which is hard to store e�ectively. Thus, either all the produced electricity
is consumed at the very same moment, or we undergo high economic losses (either by
overproduction, or by possible black-out). On that account market has to be regulated
by an Independent System Operator (denoted by ISO in the sequel), which is typically
a state company. Then, all the electricity producers and consumers participating in the
market have to obey the decisions of ISO. This fact is the very novelty when modelling
such market and has important mathematical consequences.

From the point of view of producers and consumers, the electricity market may be
modelled as a non-cooperative Nash game. However, the presence of ISO makes this
problem much more complicated. In general, such bi-level problem is a special kind of
Equilibrium Problem with Equilibrium Constraint (EPEC), where the lower-level leader
problem, i.e., ISO problem in our case, is considered as an equilibrium constraint for
the upper-level problem, which is a Nash game of producers and consumers [5]. Since
this explicit dependence on the solution of ISO problem does not preserve any convexity,
we can not use the classical Nash theorem for existence of solution to EPEC in general.
Then, some more assumptions are needed [2], or only a more speci�c setting with just
two players may be considered [3].

In this article, we avoid the general problem of EPEC, and analyse the problem of the
electricity market directly. We have already shown [1] that under a very natural assump-
tions the ISO problem possesses one solution on general. In this article, we substitute
this solution of lower level problem directly into the upper level problem, avoiding all
these previously mentioned di�culties. Finally, a discussion of the obtained results is
provided. Further, we denote

* D > 0 the overall energy demand.

* N be the set of producers (N being its cardinal, N > 1).

* qi ≥ 0 represents the non-negative production of i-th producer, i ∈ N

* ai, bi ≥ 0 are coe�cients of i-th producer bid function aiqi + biq
2
i

For q ∈ RN
+ we denote by q−i ∈ RN−1

+ vector q−i = (q1, . . . , qi−1, qi+1, . . . , qN).

2 ISO's Problem

Based on the bids of all producers, the aim of the ISO is to minimize the total cost
of production, taking into account that the demand has to be satis�ed. Each producer
provides to the ISO a quadratic bid function aiqi+ biq

2
i given by non-negative parameters

ai, bi ≥ 0. This bid cost function may di�er from the real cost function of producer i.
The ISO, knowing the bid vectors a = (a1, · · · , aN) ∈ RN

+ and b = (b1, · · · , bN) ∈ RN
+

provided by producers, computes q = (q1, . . . , qN) ∈ RN
+ in order to minimize the total
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generation cost, that is to solve the following optimization problem

ISO(a,b)

min
q

∑
i∈N

(aiqi + biq
2
i )

s.t.


qi ≥ 0, ∀i ∈ N∑
i∈N

qi = D

for positive overall demand D > 0. Then, it is a well-known fact that this problems
admits at least one solution. Nevertheless, the market problem can be ill-posed if the
solution set of ISO(a,b) contains more than one point, see e.g. [4]. In [2, 3] the uniqueness
of the response of the ISO(a,b) comes from the hypothesis that producers are bidding
true quadratic function with bi > 0, thus implying the strict convexity of the objective
function of ISO(a,b) problem. Since in our work, we allow linear bid of a producer, even
eventually of all of them, an additional assumption is needed to guarantee uniqueness of
solution of ISO(a,b) problem. On that account, we add equity property assumption

(H) (ai, bi) = (aj, bj) =⇒ qi = qj

which is supposed to hold for all i, j ∈ N . This assumption acctualy formalize that
ISO makes no di�erence among producers. Let us remark that the optimization problem
ISO(a,b) assuming (H) is as follows

ISO(a,b)+(H)

min
q

∑
i∈N

(aiqi + biq
2
i )

s.t.


qi ≥ 0, ∀i ∈ N
(ai, bi) = (aj, bj)⇒ qi = qj,∀i, j ∈ N∑
i∈N

qi = D

and therefore all the following results concerns this formulation of the problem, even
though we will speak about the problem ISO(a,b) and hypotesis (H) separately.

To analyse this problem further, we introduce index set mapping Na(λ)

Na(λ) = {i ∈ N|ai < λ} ⊂ N .

This set represents, for a given price λ, the subset of producers being "in the money".
Then we de�ne several critical parameters of ISO(a,b), namely a critical market price
λc(a, b), a critical value of the overall demand Dc(a, b), and a set of producers bidding
critical (linear) bids N c(a, b) ⊂ N

λc(a, b) = min
i∈N ,bi=0

ai

N c(a, b) = {i ∈ N| ai = λc(a, b), bi = 0} (1)

Dc(a, b) =
∑

i∈Na(λc(a,b))

λc(a, b)− ai
2bi



184 M. Pi²t¥k

For the case of Na(λc(a, b)) = ∅, i.e., ai ≥ λc(a, b) for all i ∈ N , we put Dc(a, b) = 0.
If there is not any producer bidding linear function, i.e., we have bi > 0 for all i ∈ N ,
we set λc(a, b) = Dc(a, b) = +∞. For the cardinality of N c(a, b) we use the notation
N c(a, b) = |N c(a, b)|.

These critical parameters have clear economic meaning. First, λc(a, b) denotes the
minimum price such that at least one linearily bidding producer (bi = 0) will participate
in the market. Since such producer can provide arbitrary amount of electricity at this
price, λc(a, b) is also the highest possible price in the market. Then, Dc(a, b) will be later
identi�ed with the overall amount of electricity produced by sub-critical producers, i.e.,
those participating in the market having bi > 0, see the proof of Theorem 2.3. Finally,
N c(a, b) is the set of all the critical producers that may possibly participate in the market.
Next, we denote λm(a) = mini∈N ai.

Remark 2.1. (a) From the de�nition of λc(a, b) we clearly have that ai < λc(a, b) im-
mediately implies bi > 0. This means that if the linear term of the bid of producer i is
strictly smaller than the critical market price, then this producer is bidding quadrati-
cally.

(b) We note that condition Dc(a, b) = 0 means that no sub-critical producer, i.e. producer
bidding bi > 0, will participate in the market, cf. the meaning of Dc(a, b) discussed
above. Moreover, this condition may be equivalently stated as λm(a) = λc(a, b).

Next, we de�ne ∆ =
{

(a, b, λ) ∈ R2N+1
+ |λm(a) < λ ≤ λc(a, b)

}
(considering sharp in-

equality for the case of λc(a, b) = +∞) and function F : ∆→ R+ as

F (a, b, λ) =
∑

i∈Na(λ)

λ− ai
2bi

, (2)

We note that for λ > λc(a, b) formula (2) is ill-posed because there exists i ∈ N c(a, b) ⊂
Na(λ) such that bi = 0, and that by the de�nition of ∆ we have Na(λ) 6= ∅.

Consider any (a, b) ∈ R2N
+ �xed. As an immediate consequence of the de�nition of F

we have

lim
λ→λm(a)

F (a, b, λ) = 0, ,

lim
λ→+∞

F (a, b, λ) = +∞ if λc(a, b) = +∞,

F (a, b, λc(a, b)) = Dc(a, b) if λc(a, b) < +∞

Moreover, for any (a, b) ∈ R2N
+ function λ → F (a, b, λ) is continuous and piece-wise

linear on [λm(a), λc(a, b)[ and aditionally it possesses monotonicity property playing an
important role in the sequel.

Lemma 2.2. For any (a, b) ∈ R2N
+ function λ→ F (a, b, λ) is strictly increasing.

A technical proof of this Lemma is included in [1]. This lemma justi�es the following
de�nition of function λ(a, b,D) : R2N

+ ×]0,+∞[→ R+

λ(a, b,D) =

{
λ ∈ R+ s.t. F (a, b, λ) = D if D ∈]0, Dc(a, b)[

λc(a, b) if D ≥ Dc(a, b)
(3)
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For any (a, b) ∈ R2N
+ function λ(a, b,D) is continuous and piece-wise linear in D owing

to the same properties of F (a, b, λ). Next, we state a convenient implicit formula for the
unique solution q(a, b,D) to the convex minimization problem ISO(a,b) assuming (H).

Moreover, in [1] we shown that for any �xed con�guration of bids of producers (a, b) ∈
R2N

+ , function λ(a, b,D) assign to each demand D > 0 the respective market marginal
price of the production.

Theorem 2.3. Let D > 0, then for (a, b) ∈ R2N
+ such that λc(a, b) > 0, the regula-

tor's problem ISO(a,b) admits a unique solution q(a, b) obeying the equity property (H).
Moreover, this optimal solution is given by

qi(a, b,D) =


λ−ai
2bi

if ai < λ

D−Dc(a,b)
Nc(a,b)

if ai = λ, bi = 0

0 if ai > λ, or ai = λ, bi > 0

(4)

with λ = λ(a, b,D) determined by (3).

This theorem was shown in a detail in [1]. The main idea is to use KKT system
corresponding to ISO(a,b), and by a detailed analysis show that it possesses only one
solution. In general, λ(a, b,D) is not a smooth function, but we may compute several
directional derivatives easily. This is our main technique to tackle the problem of a
producer in the next section.

3 Producer's problem

In this section we stress the point of view of a particular producer denoted by i ∈ N . We
assume that the set of all producers N is �xed and we suppose that the true production
cost function of producer i ∈ N is given by Aiqi + Biq

2
i with coe�cients Ai ≥ 0 and

Bi > 0 being known only to producer i. All the following results may be extended to
Bi = 0, but to avoid several technical issues we omit it here. We argue that Bi = 0 is
not realistic since the real marginal cost of electricity production is increasing in qi. Now,
producer i ∈ N aims to maximize his pro�t πi(a, b,D) given by

πi(a, b,D) = (ai − Ai) qi(a, b,D) + (bi −Bi) qi(a, b,D)2 (5)

manipulating his own strategic variables ai, bi ≥ 0 with the rest of variables (a−i, b−i) ∈
R2N−2

+ kept �xed. In other words, the i-th producer's problem Pi(a−i, b−i, D) reads

Pi(a−i, b−i, D) π̃i := sup
ai,bi≥0

πi(ai, a−i, bi, b−i, D).

Then, the solution to this problem, i.e., the best response of producer i ∈ N , provides
him with a clear instruction how to bid in the modelled market situation. We consider the
overall demand D as a parameter and our aim is to provide a full discussion of solution
to Pi(a−i, b−i, D) with respect to the value of this parameter. This closely corresponds to
the actual needs of producers in the real-world electricity markets. Generally they have
only some expectations on the overall demand D, and so they consider several possible
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scenarios with various values of D thus yielding di�erent optimal bid functions. To this
end the statement of the forthcomming and concluding Theorem 3.7 is presented in terms
of the overall electricity demand D.

Finally, we explicitly state that we search only for a solution to Pi(a−i, b−i, D) such
that πi(a, b,D) > 0, that is we assume that producer will not participate in the market
otherwise. Indeed, since we model only one time period here, it makes no sense to
participate in the market having non-positive pro�t.

At the moment, since the strategic variables (a−i, b−i) ∈ R2N−2 of the other producers
are supposed to be �xed, we have to abandon the previous symmetry of the notation.
There are several variables describing the (potential) situation in a market without pro-
ducer i ∈ N ., i.e., a market consisting only of producers in N \ {i}: we de�ne

λc(a−i, b−i) = min
j∈N\{i},bj=0

aj,

and similarly also the other critical parametersN c(a−i, b−i),D
c(a−i, b−i) of E-ISO(a−i, b−i, D).

In the same manner, we may de�ne function F (a−i, b−i, λ) and derive market price
λ(a−i, b−i, D) in analogy to (3). Meaning of all these reduced variables fully corresponds
to the case of the full market de�nitions. We note that also Theorem 2.3 is valid for
the setting of E-ISO(a−i, b−i, D). Having such a notation established, we illustrate the
in�uence of the i-th producer's bid on the market price λ(a, b,D).

Lemma 3.1. Consider demand D > 0 and bid vector (a, b) ∈ R2N
+ . Then

(a) λ(a, b,D) ≤ λ(a−i, b−i, D),

(b) ai ≤ λ(a, b,D) if and only if ai ≤ λ(a−i, b−i, D),

(c) if bi > 0, then, ai < λ(a, b,D) if and only if ai < λ(a−i, b−i, D).

Note that all the statements in this section will be given without a proof, an interested
reader can found the details in the forthcomming publication.

Although this lemma can appear to be only a technical issue, it has some straightfor-
ward economical interpretations:

(a) part (a) states that the price in the market including producer i is always less or
equal to the price in the market without producer i

(b) part (b) enlightens that if producer i considers to enter the market with a bid (linear
or quadratic) lower than the present marginal price (in the market without him) then
the modi�cation of the market price due to his participation to the market can not
make him out of the money.

(c) part (c) means that if producer i is in the money with a quadratic bid in the market
including him, then the price in the market without him would be strictly higher
than the linear coe�cient of his bid.

Next, we show what values of (ai, bi) ∈ R2
+ are of potential interest for the i-th

producer.
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Theorem 3.2. Assume D > 0 and take (a−i, b−i) ∈ R2N−2
+ . Then, considering the

unique solution q(a, b,D) to the regulator's problem E-ISO(a,b,D), the i-th producer pro�t
πi(a, b,D) satis�es one of the following statements:

(a) for ai ≤ λ(a−i, b−i, D) and bi > 0,

πi(a, b,D) =
λ(a, b,D)− ai

4b2i

[
aibi − 2Aibi + aiBi + λ(a, b,D)(bi −Bi)

]
, (6)

(b) for ai < λ(a−i, b−i, D) and bi = 0 (and so ai = λc(a, b) and N c(a, b) = {i}),

πi(a, b,D) = (λc(a, b)− Ai)(D −Dc(a, b))−Bi(D −Dc(a, b))2, (7)

(c) for ai = λ(a−i, b−i, D) and bi = 0 (and so ai = λc(a, b) and i ∈ N c(a, b)),

πi(a, b,D) = (λc(a, b)− Ai)
D −Dc(a, b)

N c(a, b)
−Bi

(
D −Dc(a, b)

N c(a, b)

)2

, (8)

(d) for ai > λ(a−i, b−i, D) it holds πi(a, b,D) = 0

Note that the di�erent cases of Theorem 3.2 are described in terms of comparison
between ai and λ(a−i, b−i, D) thus independently of the value of λ(a, b,D), which is not
known when producer i wants to decide his bid (ai, bi). Let us now emphasize, through
the following corollary, that as soon as the linear coe�cient Ai of the production cost
function of the i-th producer is greater than the price λ(a−i, b−i, D) in the market without
producer i, then there is no bid (ai, bi) for producer i ensuring him positive pro�t.

Corollary 3.3. For any D > 0, (a−i, b−i) ∈ R2N−2
+ and Ai ≥ λ(a−i, b−i, D), the i-th

producer's pro�t is non-positive, that is πi(a, b,D) ≤ 0.

Next we introduce a level of production

q̃i(a−i, b−i) =
λc(a−i, b−i)− Ai

2Bi

(9)

having a signi�cant economic meaning for producer i ∈ N .

Remark 3.4. Let (a−i, b−i) ∈ R2N−2, ai = λc(a−i, b−i) and bi = 0 be �xed for some i ∈ N .
Then, if we consider qi in (5) as a free variable for the moment, the pro�t of producer
i is given by πci (qi) : qi → (λc(a−i, b−i) − Ai) qi − Bi q

2
i . Then, the maximum of πci (qi)

is attained for qi = q̃i(a−i, b−i), thus corresponding to a kind of ideal production rate for
producer i. This follows from Bi > 0, then for production quantity higher than q̃i(a−i, b−i)
the additional production cost will be higher than the respective additional gain. Finally,
we note that q̃i > 0 and πci (q̃i) > 0 provided Ai < λc(a−i, b−i).

Further, we investigate only values of (ai, bi) ∈ R2
+ such that assumptions of Theorem

3.2 (a), (b) and (c) are satis�ed. Otherwise, the i-th producer's pro�t would be non-
positive and we assume that under such conditions the producer will not enter the market
at all. Then, we characterize conditions for the existence of a solution to Pi(a−i, b−i, D),
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determine this solution and show that it is unique. Some more preliminary notation is
necessary. We introduce two more quantities of electricity production being signi�cant
for producer i ∈ N :

qmi (a−i, b−i) =
λm(a−i)− Ai

2Bi +m+(a−i, b−i, λm(a−i))
, (10)

qci (a−i, b−i) =
λc(a−i, b−i)− Ai

2Bi +m−(a−i, b−i, λc(a−i, b−i))
. (11)

Lemma 3.5. For any (a−i, b−i) ∈ R2N−2
+ it holds qmi (a−i, b−i) < q̃i(a−i, b−i) and q

c
i (a−i, b−i) <

q̃i(a−i, b−i). Moreover, we have qmi (a−i, b−i) < qci (a−i, b−i) provided Ai < λc(a−i, b−i).

Now, recall that function f : R → R is quasiconcave if for all x, y ∈ R and all
u ∈ [x, y] it holds f(u) ≥ min{f(x), f(y)}. Moreover, function f : R → R is strictly
quasiconcave if it is quasiconcave and for all x, y ∈ R, x 6= y and all z ∈]x, y[ we have
f(z) > min{f(x), f(y)}.

Proposition 3.6. Let (a−i, b−i) ∈ R2N−2
+ , D > 0 and bi = 0 be �xed. Then, πi(ai, a−i, 0, b−i, D)

is strictly quasiconcave in ai on [0, λ(a−i, b−i, D)[, and problem

P̂i(a−i, b−i, D) sup
ai∈[0,λ(a−i,b−i,D)[

πi(ai, a−i, 0, b−i, D)

admits a solution if and only if one of the following alternatives holds:

(a) Ai < λ(a−i, b−i, D) < λc(a−i, b−i) (implying λm(a−i) < λ(a−i, b−i, D)),

(b) λm(a−i) < λ(a−i, b−i, D) = λc(a−i, b−i) and q
c
i (a−i, b−i) > D −Dc(a−i, b−i).

Moreover, if a solution exists, it is unique. Denoting it by ãi, it is given by
ãi = λm(a−i) if D ≤ qmi (a−i, b−i),

ãi − Ai
2Bi +m−(a−i, b−i, ãi)

≤ D − F (a−i, b−i, ãi) ≤
ãi − Ai

2Bi +m+(a−i, b−i, ãi)
if D > qmi (a−i, b−i),

(12)
and satis�es ãi ∈ [λm(a−i), λ

c(a−i, b−i)[. Moreover, the respective maximal pro�t is pos-
itive, πi(ãi, a−i, 0, b−i, D) > 0. Additionally, if a solution does not exist, then πi(a, b,D)
is strictly increasing in ai on [0, λ(a−i, b−i, D)[.

It may occur that there is no maximizer in problem Pi(a−i, b−i, D), i.e., the best
response of producer i ∈ N does not exist. However, if the supremum of the pro�t π̃i
de�ned in Pi(a−i, b−i, D) is positive, a sequence of bids (ãki , b̃

k
i )k is said to be a limiting

best response of producer i if it yields the optimal pro�t π̃i, i.e.,

lim
(ãki ,b̃

k
i )→(ãi,b̃i)

πi(ã
k
i , a−i, b̃

k
i , b−i, D) = π̃i. (13)

In such a situation we will present in the forthcomming theorem one bounded limiting
best response, thus providing a limiting best response strategy to producer i ∈ N . Then,
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we call π̃i a limiting pro�t, and the respective production quantity will be referred to
as a limiting production quantity. Next, we introduce the �nal theorem of this article
discussing (existence of) the best response of producer i ∈ N with respect to various
values of the overall electricity demand D > 0 and bid functions of other producers
(a−i, b−i) ∈ R2N−2

+ kept �xed. In this setting we de�ne q0i (a−i, b−i) = F (a−i, b−i, Ai)
provided Ai ≤ λc(a−i, b−i), thus allowing reformulation of Corollary 3.3 in terms of pro-
duction quantity.

Theorem 3.7. Let D > 0, (a−i, b−i) ∈ R2N−2
+ for some i ∈ N and consider the problem

Pi(a−i, b−i, D) π̃i := sup
ai,bi≥0

πi(ai, a−i, bi, b−i, D). (14)

If Dc(a−i, b−i) > 0 then either Ai ≥ λc(a−i, b−i) and π̃i ≤ 0, or one of the following
alternatives holds:

(a) if D ∈]0, q0i (a−i, b−i)] then π̃i ≤ 0,

(b) if D ∈]q0i (a−i, b−i), D
c(a−i, b−i) + qci (a−i, b−i)[ then π̃i > 0 and there is a unique best

response (ãi, b̃i) given by ãi ∈ [λm(a−i), λ
c(a−i, b−i)[ satisfying (12) and b̃i = 0,

(c) if D ∈ [Dc(a−i, b−i)+qci (a−i, b−i), D
c(a−i, b−i)+ q̃i(a−i, b−i)] then π̃i > 0 and a limiting

best response (ãki , b̃
k
i )k is given by ãki ↗ λc(a−i, b−i) and b̃

k
i = 0,

(d) if D ∈]Dc(a−i, b−i)+q̃i(a−i, b−i),+∞[ and D 6= Dc(a−i, b−i)+(N c(a−i, b−i)+1) q̃i(a−i, b−i)
then π̃i > 0 and a limiting best response (ãki , b̃

k
i )k is given by ãki ↗ λc(a−i, b−i) and

b̃ki ↘ 0 satisfying

ãki = λc(a−i, b−i)−
2Bib

k
i

Bi + bki
q̃i(a−i, b−i), (15)

(e) if D = Dc(a−i, b−i) + (N c(a−i, b−i) + 1) q̃i(a−i, b−i) then π̃i > 0 and there is a unique
best response (ãi, b̃i) = (λc(a−i, b−i), 0).

For Dc(a−i, b−i) = 0 all these alternatives are still valid provided qci (a−i, b−i) := 0.

Having Dc(a−i, b−i) = 0, i.e., λm(a−i) = λc(a−i, b−i) due to Remark 2.1 (b), and
Ai < λc(a−i, b−i), it holds q0i (a−i, b−i) = F (a−i, b−i, Ai) ≤ F (a−i, b−i, λ

c(a−i, b−i)) =
F (a−i, b−i, λ

m(a−i)) = 0 with regards to Lemma 2.2, thus alternatives (a) and (b) can
not occur since we put qci (a−i, b−i) := 0. Thus, only alternatives (c), (d) and (e) of the
theorem have to be considered for the case of Dc(a−i, b−i) = 0. Note that qci (a−i, b−i) was
not previously de�ned once λm(a−i) = λc(a−i, b−i), see (11).

We note that the presentation of the statement of Theorem 3.7 closesly corresponds
to a real-world needs of electricity producers, which look for the optimal bid function
considering several scenarios with vairous values of electricity demand D.
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4 Conclusion

This article closely follows the ideas developed already in [1]. We found a new way how
to treat the modelling of the electricity markets. Using the analytic formula for the ISO
problem, we are able to �nally resolve analytically even the problem of a producer, thus
obtaining Theirem 3.7. This way we have a complete picture of the best bidding strategy
for the considered producer.

The proposed way of research seems to be truly promissing. Further extensions of this
model may directly lead to more realistic results, whereas such an analytical approach
will still make these model ameanable to a detailed examination. This is however beyond
the scope of this article.
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Abstract. This paper focuses on the topic of adaptive knowledge testing. The concept of testing
is brie�y reviewed as well as the structure of Bayesian networks, which are used to control test.
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Abstrakt. Tento £lánek se v¥nuje tématu adaptivního testování znalostí. Je p°iblíºen koncept
testování a struktura bayesovských sítí, které jsou k n¥mu vyuºívány. Zna£ná pozornost je
v¥nována zp·sobu sb¥ru dat pomocí testu znalostí, který je zde analyzován. �lánek p°iná²í
psychometrický rozbor testu a prokazuje, ºe je vhodným nástrojem pro sb¥r dat. Výsledky
testu jsou shrnuty a následn¥ jsou sesbíraná data vyuºita k tvorb¥ bayesovké sít¥ modelující ná²
p°ípad. Na záv¥r na této síti demonstrujeme zp·sob adaptivního testování.
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1 Introduction

Educational testing plays an important role in the modern society. Every person partici-
pates in a large number of tests that are used to prove di�erent qualities through his/her
life. While tests vary in their questions, style, thoroughness, and improve over time with
more elaborate questions and better sets of questions, the way of testing itself does not
change much. There is usually a large set of possible questions which are adequate to
be asked but only a �xed subset is selected for a single version of the test. Reasons for
this are obvious as it is not possible to force an examinee to answer hundreds or even
thousands of questions. It is possible to pick questions at random but that could lead
to �lucky� and �unlucky� selections of di�ering di�culties. Other methods for selecting
questions can be used but there will always be a large amount of questions which were
not included in the test.

One way of solving problems mentioned above is Computerized Adaptive Testing
(CAT). It is a knowledge-based testing concept where the examinee is not required to
answer all questions from the question pool. Questions for the examinee are selected
by the computer based on his/her previous answers and the data set modelled from
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many previous respondents. It means that there is no �xed version of the test and every
individual gets his/her test crafted while answering questions. This concept provides a
way to obtain a measurement of student's abilities with the reasonably high accuracy
and con�dence, but require fewer responses, less time and have positive e�ect on the
examinee's morale as, typically, the student should answer about a half of questions
correctly. It is also possible to take the advantage of a large question pool as every
questions which has a signi�cant information value is asked for some examinees and on
the other hand question with no or small information value are asked less often.

Examples of a successful adaptive testing deployment are TOEFL language exam and
GRE � graduate record examination [5].

2 Adaptive Testing and Bayesian Networks

CAT can be divided into two phases: model creation and testing. In the �rst one the
model of the system is created while in the second one the model is used to actually test
the examinees. There are many di�erent model types which can be used for adaptive
testing but in this paper we are going to focus on the Bayesian networks only.

Bayesian network is a conditional independence structure. It consists of the follow-
ing: A set of variables and a set of directed edges between them which form a directed
acyclic graph (DAG). Each variable has a list of mutually exclusive possible states. The
conditional probability distribution is de�ned for each variable with its parents in the
conditioning part (variable A with parents B1,B2,...,Bn has the conditional probability
table P (A|B1, B2, ..., Bn))

1. For example the structure in the Figure 2 is a graphical
representation of a Bayesian network (probability tables are not shown).

The goal of the model creation is to describe the relations between questions and
student abilities. In order to construct a Bayesian network it is necessary to identify
random variables. There are two types of variables. The �rst type is an observed variable
which is a response to an individual question. Collection of these variables is called a test
model. The second type is an unobserved, student model, variable. This type of variables
corresponds to abilities of the examinee and since there is no way of direct measurement
of these variables they cannot be observed. For the �rst type, there is a variable for every
question. For the second type, there is no exact rule how to create these variables. One
way of creating them is expert knowledge where an expert describes a set of abilities and
what abilities he/she is expecting to play a part in each question. This forms connections
to create a DAG. To �nish a Bayesian network creation it is necessary to add initial
values into conditional probability tables. It is again usually done be an expert. In order
to re�ect data it is necessary to perform a �tting. This step is called learning and it can
be done with di�erent machine learning algorithms.

When the network is set up as described it is possible to use it for predictions. The
theory behind the use of Bayesian networks is quite extensive and we will bring only
a brief overview of the most important mechanism2. There are two main key points
in the calculations with Bayesian network. The �rst one is evidence. Evidence e is

1Note that the variables with no parents have the table in the form P (A)
2Detailed explanations and further reading can be found for example in [3] or [1]
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a piece of information we obtained (in our case as an answer to a question) about the
variable A. This information �xes the state of the variable A. This corresponds to setting
probabilities of states of the variable A to zeros except for the state i. The second key
point is a belief updating (also called inference). It allows us to propagate the information
obtained as evidence through the network and also to evaluate marginal probabilities for
a single variable. There are di�erent methods for inference but in general they all consists
of repeated steps of multiplications of potentials3 and marginalizations of variables. It
is usually performed over the junction tree constructed from the network. One of the
inference mechanisms is the lazy propagation which takes advantage of local structures
in the network to improve the e�ciency of calculations [4].

3 Test design

In order to perform our research with CAT we collected data as an input for a further
analysis and the test creation. The paper test for high school students was designed
to serve this need. The test focuses on mathematical knowledge and it is intended for
students attending last two years of high schools. The test was revised and updated
several times before it reached its �nal state.

It is essential to note that this test is not meant for student school quali�cation and
no grades which would in�uence student's school results are given.

During the assessment of the test the analysis of common mistakes was performed.
Based on this analysis questions were further broken down into sub-questions and every
sub-question was graded separately. This step was performed to provide a neater scope
of separation and better connection of responses to student's abilities. Each sub-question
is graded with 0-4 points and each question consist of 1-3 (in one case 8) sub-questions.

In addition to answers to problems information about students is collected. This
includes mostly some personal factors as sex, age, and grades from mathematics, physics,
and chemistry from the recent period. These factors will be used to better di�erentiate
between students and to better predict their performance as well as to verify the validity
of the test.

Feedback for students

To increase the motivation of students the test results are stored online and every student
can view his/her performance. The comparison with the rest of the test sample is provided
(in the form of quantiles). The idea is to provide students with re�ection of their abilities.
A website was designed to meet these needs and if the student enters his/her email in
the test he/she is noti�ed when the result is uploaded. It is then possible for the student
to display the result. There is also a utility on the website which allows one to enter
additional information missing in the test (or unavailable during the �lling time) such as
the �nal exam grades.

The �nal shape of the test, respondents

There are 29 questions in the �nal version of the test which are divided into 55 sub-
questions. The maximal score is 100 points. There is a time limit of 45 minutes (it has to

3To clarify: probability tables are special case of potentials, tables during the course of operation
need not be probability tables (sum to 1 etc.).
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�t one high school lesson). To this date the test was answered by 110 students from two
Prague's high-schools in the age of 16 - 20. More students should attend the test in the
year 2014/2015. There were 33 men and 63 women in total, the remaining 11 students
did not provide the sex.

4 Test assessment

In the following section psychometrics analysis methods from [6] are summarized. Results
of the analysis is presented as well.

True scores and reliability

The goal of the test is to measure variables from the student model described in the sec-
tion 2 and to use these to predict answers to other questions. As always the measurement
process is obstructed with measurement errors. The error is caused by many di�erent
factors (the examinee could have a bad day, be ill, guess the answer, or get distracted
while solving a single problem,. . . ) and it is reasonable to expect them to have an im-
portant in�uence. The value obtained as a measurement x of the variable X is called a
raw score and is in the form

x = τ + e

where τ is the true score and e is an additive error.
There is an obvious question whether the raw score is in�uenced more by the true

score or the error. For many measurements the maximum-likelihood estimator of the
error is the variance of many consecutive measurements of the same factor. In our case
it proves to be impractical to measure one person multiple times and it is not as well
possible to use the variance of many di�erent examinees as their true values most likely
di�er. The variability of scores in the data set is then caused by actual di�erences between
examinees (di�erent true scores) as well as errors. It is usually expected that the data
set satis�es homoskedasticity condition4. With this assumption true scores and errors are
statistically independent and thus the observed variance σx is a sum of variances of true
scores στ and errors σe.

σx = στ + σe

The best possible situation is that the variance of the measured variable X is fully mod-
elled by true scores. This situation is very unlikely to happen. To determine the level of
the relationship we introduce the value called reliability which is de�ned as follows:

rxx =
στ
σx

=
στ

στ + σe

The higher the value the better. Unfortunately variables στ in the nominator as well as
σe in the denominator of the second fraction are hidden (unobservable) variables and as
such we are unable to evaluate their variance. The reliability has to be estimated with a
di�erent approach.

There are many possible approaches and we will elaborate more into one of them
which is known as Cronbach's alpha coe�cient only. The idea is that the items of the

4Homoskedasticity means that the size of an error is not correlated with the size of the measured
variable
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test are measuring the same factor and thus they should correlate with each other. The
amount of pair wise correlations for q questions is k = q(q−1)

2
. All these correlations are

put together in the Cronbach's alpha coe�cient which can be calculated as

rxx ≈ α =
n

n− 1

(
1−

∑n
i=1 σ

2
i

σ2
t

)
where σi is the variance of the ith item of the test, σt is the variance of the whole test and
n is the number of items in the test. The coe�cient should reach high values. According
to [2] any value below 0.5 means the test is of no use. To provide reasonable comparison
results it should be over 0.9.

For our data set the following values were calculated:
Cronbach's alpha for numeric classi�cation: α = 0.92
These values show reasonably high reliability of the test.

Normalization and standard scores

In order to use scores to distinguish between di�erent examinees raw scores have to be
transformed to standard scores. There are many di�erent types of standard scores and
all of them are obtained by a linear transformation of raw scores (note that it means that
the order of examinees is not changed by this kind of transformation) by the following
formula

x′ = µ′ + σ′
(x− µ)
σ

Where x′ is the transformed score, µ′ and σ′ are desired mean and variance values of
the standardized score, µ and σ are previous mean and variance values and x is the
raw score. To apply these transformations it is required that the raw score belong to
the Gaussian distribution (ideally with the mean value in the middle of possible scores).
Standardized scores di�er in the chosen parameters of µ′ and σ′ and some special selections
are generally recognized. The most commonly used is the z-score with the mean value 0
and the variance 1. Another well known standard score is the IQ score (µ′ = 100, σ′ = 15)
used mostly for intelligence testing. Other well known scores are also stens, stenines,
percentiles, and t-scores.

The set of scores obtained from our data set did not belong to Gaussian distribution.
The proof is displayed in the Figure 1 where it can be clearly seen that it does not even
�t the Gaussian distribution with the mean value 44.182 (instead of middle 50 points)
due to very low p-value. The solution to this problem is provided by the McCall's area
standardization [6] which transforms raw scores to the Gaussian distribution. This step
was performed at �rst and then scores were transformed to standardized score scales. To
illustrate these scales a short excerpt from whole scale tables for the z-score and the IQ
score is shown in the Table 1.

Table 1: Standardized scores
raw 0 10 20 30 33 36 46 56 66 76 86 93

z -2.61 -1.36 -0.59 -0.05 0 0.10 0.51 0.94 1.16 1.46 1.74 2.61
IQ 61 80 91 99 100 102 108 114 117 122 126 139

Validity

Another question it is important to ask is whether the test is actually measuring the factor
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Figure 1: Score frequency

it is supposed to measure (i.e. in our case if the score obtained re�ects mathematical
skills rather than for example the ability to read the question or the writing skill of the
examinee). This characteristic is called validity and there are many di�erent ways of
proving the test is valid. Most validity proofs come from outside the test. One way is
to let examinee to answer a new di�erent test measuring the same factor (ideally a test
which is already well established). Another way is to consult other factors known about
the examinee, which is what was performed in our case.

in addition to answers to problems student's grades from subjects (mathematics,
physics, and chemistry) were obtained. It is reasonable to expect a correlation between
these grades and the score reached. The correlation is present and its values are shown in
the following paragraphs. Because of this fact, although the complete validation would
require more thorough examination, it is expected that the test is valid.

Results

The Table 2 shows the reached scores divided by gender and school. It seems that
there is no obvious correlation between sex of the student and the score the student
obtained. This is supported by the calculation of the correlation which evaluated to
c(score, sex) = 0.03. With the null hypothesis that there is a correlation the statistical
test results in the p− value = 0.7572 disallowing the rejection of independence. Inter-
estingly there is a connection between the �lling of the name cell (some students did not
�ll their name) and their score where the correlation coe�cient is c(score, name) = 0.33
with p− value = 0.0004 which means that a person who �lled his/her name was likely
to score better in the test.

As mentioned above, the correlation between grades of the student and achieved score
was measured. Obtained values are shown in the Table 3. It is clear that these correlations
are as expected (a better grade (smaller) leads to a higher score - negative sign in the
correlation). Also the correlation with mathematics is the highest and chemistry is the
lowest with physics in the middle. This fact was not predicted and it is an interesting
although not surprising one.
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Table 2: Average score achieved in two high schools ("Na Praºa£ce" and "Arcus")

Na Praºa£ce Arcus Total

Total 46.68 42.76 43.86
Males 40.08 51.40 46.94
Females 54.86 42.53 45.27

Table 3: Correlations of the score with grades

Mathematics Physics Chemistry

Correlation with score -0.58 -0.44 -0.36
p-value 0.0000 0.0000 0.0004

Some questions were in the form of real life problems rather than mathematical prob-
lems. These questions were correlated with the score independently as well. The result
is displayed in the Table 4. In the �rst column it is possible to see that there is a strong
correlation with the total score. Also in this case there is not a strong correlation with
the sex of the student even though the value is a bit higher (in favour for men). More-
over the trend of correlations with grades is preserved but values are lower. It leads to
an assumption that students with worse grades from these subjects answered correctly
rather this kind of questions than other questions.

Table 4: Correlations of the real life problems with other factors

Score Female Mathematics Physics Chemistry

Correlation 0.72 -0.11 -0.36 -0.18 -0.17

5 Current Bayesian Network

Based on the data collected and the experience from the assessment of tests a Bayesian
network was created5. Its structure is displayed in the Figure 2. As explained above there
is a node for each sub-question (yellow/white) and there are 7 ability nodes (red/grey).
The abilities correspond to di�erent mathematical skills and are described in the Table 5.

Each question is connected to at least one ability (groups in the top part of the graph)
or more (groups in the bottom part of the graph). This network's design was based on
our expert knowledge and there were also initial probabilities inserted (not shown in
the Figure 2). The network is then learned using the Hugin's EM algorithm to update

5We use the Hugin environment to model the network and to perform calculations (www.hugin.com).
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Table 5: Skills present in the student model

S1 graphs (recognize functions, draw,...)
S2 points in the graph (�nd points, plot points, read from graph,...)
S3 monotonic functions (analysing, using for calculations,...)
S4 domains of functions
S5 function formulas (create, use)
S6 equations
S7 real-world problems
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probabilities to re�ect our data set. After this step probabilities associated with each
node, corresponding question/skill for an average student, can be viewed in Hugin.

The main goal is to use the Bayesian network for the adaptive testing. Once we have
the learned network we should be able to do this. The testing is performed in turns which
correspond to answers to questions. In every turn following steps are performed:

1. The question with the best information value is selected

2. The student responds to the question

3. The answer is inserted into the network as new evidence

4. Probabilities in the network are updated (inference is performed)

This sequence is repeated until a criterion is reached. Either we test for a �xed number
of questions or a determination goal could be set: the test is stopped when it reaches a
state where an examinee can be assigned a score (or group of students) with a certain
con�dence. Steps 3 and 4 from the list above are performed with the mechanisms outlined
in the Section 2. The second step is the task of the examinee. The remaining step 1 could
prove quite hard to perform. It is necessary to select the question which gives us the best
information value and allows us to di�erentiate the examinee from the rest of the group as
much as possible. The best candidates to select are questions which in the current state
of the network have probabilities close to the uniform distribution. Since these questions
are the hardest to predict and they provide the largest information gain as well.

Next we provide an example simulation of the testing process with the network in
Figure 2. First, the network is learned with the EM algorithm. Then, we select one
question with high information value - Q12 (P (Q12 = 0) = 0.4273, P (Q12 = 1) = 0.0909,
P (Q12 = 2) = 0.4818). In our simulation the student answers correctly to this question.
Inserted evidence modi�es the probabilities of other questions as well as the skill it is
attached to (S5). Updated probabilities of some of the variables are shown in the top
part of the Table 6. Probabilities are updated only for variables connected to the skill S5
where the probability of the student having this skill increased. The next question is Q32
(P (Q32 = 0) = 0.4633, P (Q32 = 1) = 0, P (Q32 = 2) = 0.5367). The student answers
this question incorrectly. The bottom part of the Table 6 shows updated probabilities.
In this case two skill nodes updated and as well are variables connected to them. In
both cases observed changes correspond with our expectations - correct answers yielding
higher probabilities for other correct answers and vice versa.

For more credible veri�cation it is necessary to collect more data and then perform
additional tests. It is planned to run the leave-one-out cross-validation which consist
of the following steps. First, a single observation (examinee's result) is removed from
the data set and the network is learned from the remaining data. The network then
simulates the testing. Questions are selected as described above and answers are fed from
the previously removed observation. The failure ratio is recorded as the relative ratio of
wrong predictions. This procedure is repeated for every observation (n times). The goal
is to have the average ratio over all examinees as low as possible. It would mean that the
network predicts examinees' answers correctly (makes only a small number of mistakes).
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Table 6: Changes in probabilities after inserting evidence e1(Q12 = 2) and then
e2(Q32 = 0). In skill variables (S2, S5, S6) states are h-have/hn-have not the skill.

P P (S5 = h|e1) P (Q9 = 1|e1) P (Q37 = 0|e1) PQ30 = 4|e1)
Before 18.35 58.60 61.82 32.93
After 34.30 66.69 53.85 41.05
P P (S2 = h|e1, e2) P (S6 = hn|e1, e2) P (Q24 = 0|e1, e2) PQ29 = 4|e1, e2)
Before 0.4313 0.6264 0.8000 0.3770
After 0.3695 0.9258 0.9490 0.2874

6 Conclusion

The most important result presented in this paper is the empirical proof that the test
brings valid data about examinees. It is possible to continue collecting data in the same
way. It is necessary to increase data volume to continue our work. Nevertheless, it was
already possible to construct a Bayesian network which seems to provide reasonable pre-
dictions. The following step is to prove this assumption with more elaborate procedures.
An additional software tool to perform the inference and to manage more advanced tasks
with the network is also being developed. It will allow us to do operations outside of the
Hugin environment in a controlled and speci�c way. This tool will be later used in the
implementation of a computerized version of the test in its adaptive form.
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Abstract. Molecular dynamics simulations for water were run using the TIP4P/2005 model for
temperatures ranging from 250 K to 600 K. The density pro�les and the surface tension were
calculated as a preliminary results. The surface tension values matched quite nicely with the
IAPWS correlation over wide range of temperatures. As a partial result, DL_POLY Classis was
successfully used for tests of the new computing cluster in the Institute of Thermomechanics.

This text is a short version of the one that will be presented at Experimental �uid me-

chanics 2014 in �eský Krumlov (18.11.2014 - 21.11.2014). Whole text subsequently published
in The European Physical Journal.

Keywords: Density gradient theory, nucleation, PC-SAFT, Cahn-Hilliard theory

Abstrakt. Provedli jsme simulace molekulární dynamikou pro vodu s pouºitím modelu TIP4P/2005
pro teplotu od 250 K do 600 K. Jako p°edb¥ºné výsledky jsme spo£ítali pro�ly hustot a povrchová
nap¥tí. Hodnoty povrchového nap¥tí dob°e korespondují s hodnotami IAPWS pro ²irokou ²kálu
teplot. Jako mezivýsledek jsme rozb¥hali a otestovali program DL_POLY na novém výpo£etním
klastru Institutu termomechaniky.

Tento text je krátkou verzí práce, která bude prezentována na konferenci Experimental

�uid mechanics 2014 v �eském Krumlov¥ (18.11.2014 - 21.11.2014). Celý text následn¥
publikován v ºurnálu The European Physical Journal.

Klí£ová slova: Gradientní teorie, nukleace, PC-SAFT, Cahn-Hilliardova teorie

1 Introduction

Water is perhaps the most studied substance in the world due to its importance in daily
life, industry or physical, chemical or biological processes. Due to its many anomalies
and non-standard behavior it is however very hard to model. The non-trivial phenomena
are caused by its polar character and consequently by its formation of hydrogen bonds.

Motivation of this work is to shed light on the discrepancies between experiments
and simulations, e.g. the second in�ection point of water [4], to reproduce measurements
of the surface tension of supercooled water as well as to enhance our theoretical work
concerning nucleation rates predictions [10] and capillary waves modeling [3].

In this paper the preliminary results are published as part of our newly formed simula-
tion group. Primary objective was to get the software executing the simulation procedure
working in our new cluster in the direction of our interests. We used DL_POLY Classic
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Table 1: Simulation parameters of TIP4P/2005 water molecule atoms: oxygen O, hydro-
gen H, mass-less charge M. m is molar mass, M charge in units of elementary charge, ε
and σ are Lennard�Jones parameters.

atom m (g/mol) M (e) ε (kJ/mol) σ (Å)
O 15.99940 0.000 0.77490 3.1589
H 1.00794 0.5564 � �
M 0.00000 -1.1128 � �

program on 4× 24 Intel(R) Xeon(R) CPU E5645 @ 2.40GHz CPUs, debugging and early
computations were executed on computer with 4 AMD Phenom(tm) 9600 Quad-Core
GPUs.

A water slab for various temperatures from 250 K towards the critical point (which
was not exceeded) stopping at T = 600 K was simulated. To have a relevant reference
point, we followed speci�cations of papers [11] and [12].

2 TIP4P/2005 model

There are many water models that are simple and ridig but describe the water properties
quite well. Perhaps the most universal one is the so-called TIP4p/2005 model, based on
TIP4P [6], which introduces an auxilliary atom M. This atom carries the negative charge,
is massless and close to oxygen atom (0.15 Å). The model is TIP4P/2005 was proposed
by Vega and Abascal [1] in 2005. They tried to combine good phase diagram of TIP4P
with target properies of SPC/E improving the melting point. It has been shown [14, 13]
that TIP4P/2005 behavior is even better than that of SPC/E. Therefore, in this work
we use the TIP4P/2005 model. Another extension TIP5P was proposed by Mahoney et
al. [8] to carry the negative charge on two auxiliary atoms. However, the performance is
not better than of TIP4P/2005.

TIP4P/2005 model includes Lennard�Jones interactions between oxygen atoms only;
hydrogens have negligible mass compared to them, which makes the simulation easier.
Other interaction is electrostatic which occurs between hydrogen H and charge M atoms.
TIP4P/2005 parameters are listed in Tab. 1.

3 Simulation methods

The simulation was performed as follows: �rst, a liquid cubic box of 1372 molecules was
run for 50 ps, then the z-size of the box was expanded to approximately 3× the original
proportion and run for 10 ns to provide reliable data for surface tension determination.
Sizes of the box were calculated depending on the NIST [7] values of the water saturated
liquid density for particular temperature. For supercooled region, a constant box size
corresponding to 300 K system was used. Periodic boundary conditions were used in all
directions. Timestep of the simulation was chosen as 2 fs (same as in [11]) with velocity
Verlet integrator. To maintain constant temperature, the Nosé�Hoover thermostat was
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used with relaxation constant 100 fs. Cuto�s of Lennard�Jones interactions and van der
Waals forces were set to 14.5 Å. For electrostatic interactions, direct Ewald method was
used, with automatic parameter optimization constant set to 10−5. Density was computed
as a histogram in z-direction in every step and averaging through the time. Examples of
the density pro�les converted to g/cm3 for 300 and 500 K can be seen in Fig. 1 depicted
by the solid lines. Snapshots of the simulations for two temperatures are shown in Fig.
ref�g2.
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Figure 1: Density pro�les ρ as functions of z-coordinate for systems having temperatures
T = 300 K and 500 K. Solid lines are time-averaged pro�les obtained from the simulations,
dashed lines are �ts of the right-hand pro�les (liquid - vapor) to the hyperbolic tangent
pro�le, Eq. (1).

The density pro�les were divided to two halves approximately in the centre of the
simulation box. One half of the density pro�le was subsequently �tted to a hyperbolic
tangent density pro�le model,

ρ(z) =
ρL + ρV

2
− ρL − ρV

2
tanh

(
z − z0
d

)
, (1)

where ρL and ρV are �tted bulk densities, z0 is the position of the Gibbs dividing surface
of the interface, d is the parameter for the thickness of the interface. The results of the �t
are depicted as the dashed lines in Fig. 1. The �tted values were used used to evaluate
the surface tension γ in the following manner:

γ =
Lz

2

(
Pzz −
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2

)
+ 12πεσ6(ρL − ρV)

2

×
∫ 1

0

∫ ∞
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)3s3 − s
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Figure 2: Snapshots of two con�gurations during the simulations for two temperatures,
a) T = 300 K and b) 550 K. Liquid cubes are in the middle, vapor is on the left and right
side (not so apparent for lower temperature).

In Eq. (2), Lz denotes the box size in z direction, Pii is the ii-th component of the pressure
tensor, ε and σ are the Lennard�Jones parameters for oxygen atom, and rc is the cuto�
for the Lennard�Jones potential. Their values as well as other model parameters are
summarized in Tab. 1. Second term in Eq. (2) corresponds to the Lennard�Jones tail
correction [2].

4 Results

Insipired by the work of Sakamaki et al. [11], molecular dynamics simulations of a water
slab enclosed by the vapor were performed for temperatures T = 250 K, 270 K, 275 K,
300 K, 350 K, 400 K, 450 K, 500 K, 550 K, and 600 K.

Given by the parameters stated in previous section, computations ran approximately
3 days if running on all 24 CPUs. Melting temperature for TIP4P/2005 is Tm = 249 K,
therefore even for lowest temperature of 250 K we did not encounter any of the liquid
water during the simulation.

Figure 2 shows an example of two con�gurations for two temperatures (300 K, 550 K).
The liquid phase persisted in the centre of the simulation box, while the vapor phase
gradually expanded into the vacuum space after the box got stretched in the z-direction.
As can be seen at low temperatures, the molecule escaping from the liquid phase into the
vapor phase was rather rare event. On the other hand at the elevated temperatures, the
vapor phase got signi�cantly denser.

Surface tension computed using Eq. (2) is shown in Fig. 3 as circles, the IAPWS
values [5, 7] are shown as a solid line. Simulated values nicely describe the reference data,
despite the disagreement with the bulk density values.
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Figure 3: Surface tension γ as a function of temperature T as predicted by this work,
computed using Eq. (2) (circles), compared to the IAPWS values [5, 7] (solid line).

5 Conclusions

In this work MD simulations were performed for water for various temperatures ranging
from 250 K to 600 K. As a water model TIP4P/2005 was used which is probably the
best rigid non-polarizable water model available at the moment. The surface tension was
computed as a preliminary result.

In future, we would like to perform more simulations in the supercooled region of
liquid water using the TIP4P/2005 and the SPC/E models to compare simulated results
with our recent experiments. [4].

Also, we would like to model the so-called capillary waves contribution to the surface
tension, i.e. to simulate, how the thermal motion of molecules a�ect (lower) the surface
tension for planar phase interface. New molecular simulations will support our theoretical
work [15, 9, 16, 10, 3].
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Abstrakt. �lánek informuje o postupu práce na vytvá°ení vzor· a p°íznakového prostoru pro
automatickou detekci známých struktur ve zdrojovém kódu softwarových projekt·, shrnuje kroky
provedené v posledním roce a p°edstavuje nové vzory a testovací datovou sadu. Ve svém záv¥ru
se £lánek v¥nuje formulaci nové skupiny p°íznak· a uvádí d·vody, které k tomuto kroku vedly.
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1 Introduction

Automated source code patterns recognition e�orts date back to 1998, when Antoniol et
al. [1] focused on detection of �ve structural design patterns [3, 9] in C++ source code.
This approach consisted of four steps: AOL (Abstract Object Language) representation
extraction, AOL representation parsing, class metrics extraction and pattern recognition.
In the third step, metrics were collected from AOL representation of each particular class
of the analyzed source code. These metrics comprised number of private/public/protected
attributes and operations, as well as number of associations, aggregations and inheritance.
Last step represented a multi-stage process in which a set of constraints were gradually
applied to collected observations in order to �lter required patterns.

Later In 2004, Guéhéneuc et al., inspired by Antoniol's work, continued on improve-
ment of feature space [4]. Guéhéneuc's team presented an improved metric space divided
into four categories: size (number of methods or �elds), �liation (number of parents
or children), cohesion (degree to which class features belong together), and coupling
(strength of associations among classes). Metrics were collected for individual classes
that participate in design patterns, with regard to the fact that each class can act in
di�erent role in various patterns. Based on metrics �ngerprints were introduced; each

∗This work has been supported by the grants SGS 11/167/OHK4/3T/14 and LA08015
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�ngerprint corresponded to a speci�c role of class in a particular design pattern, and
together they formed a set of rules for individual patterns. These rules were mined from
a repository, created from source codes of various software projects.

Ferenc et al., in contrast to Guéhéneuc, used machine learning algorithms to detect
design pattern as a whole instead of individual classes [2]. They formulated a list of
predictors for each design pattern to depict its unique properties. During the learning
process predictor values were collected from ASG representation of source code, conse-
quently decision trees and backpropagation neural networks were used to create model
�les with acquired knowledge.

Lerthathairat and Prompoon came up [5] with the idea to classify a given source
code to clean, bad, or ambiguous using standard software metrics [6] and fuzzy logic.
Moreover they presented a design of tool for suggestion of refactoring techniques for
ambiguous code.

Our approach [7, 8, 10, 11] is to classify individual classes as patterns that could (but
not neccessarily do) represent fragments of design patterns. We believe that if a part of
given software project is composed from well designed data types (classes), then these
particular classes could together form a higher-level stucture - a design pattern, which
might be revealed in the subsequent analysis. In other words, we intend to detect well
designed data types (design pattern fragments, UML stereotypes) in source code over
poorly designed classes (a noise); However, in contrast to [5] we have more than one
classi�cation pattern for the �clean� (well designed) code.

2 Materials and methods

2.1 Previous work

2.1.1 Pattern identi�cation

In the year 2013, a number of software projects was examined and representatives of
well-designed classes (data types) were identi�ed. Consequently, a list of patterns was
introduced. This list contained 11 patterns including: adapter, bean, builder, composite,
constant, dao, decorator, factory, proxy, utility, and worker. For detailed explanation of
these patterns see [10].

2.1.2 Data sets collection

Later, training and testing data sets were prepared. Training data set consisted of 175
java source �les that were selected from di�erent open source projects or design pattern
tutorials. A special e�ort was devoted to cover a wide range of possible implementations of
each pattern. Testing data sets were represented by three open source projects: JaHoCa,
JHotDraw, and AndEngine. Files in all mentioned sets were manually examined and
classi�ed. For detailed explanation of data sets see [7].
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2.1.3 Feature space de�nition and collection

After acquisition of data, a metric space was developed; it contained over 40 features in
four categories: expression, statement, member, and relation. Brief description of features
can be found in [10], for more detailed information see [8]. Collection of features from
source code was also a non-trivial task, an abstract syntax tree (AST) representation
of source code was utilized and two di�erent approaches for AST querying were imple-
mented. Brief description of feature collection using XQuery and Groovy can be found
in [11].

2.1.4 Classi�ers implementation

In 2014, more than ten classi�ers were implemented by Matej Mojze² and Josef Smolka.
These classi�ers comprised, for example, of: Linear Discriminant Analysis (LDA), Sup-
port Vector Machines (SVM), K-Nearest Neighbours (KNN), Parzen Discriminant Anal-
ysis (PDA), or Desission Tree (DT). In order to reduce feature space dimensions sub-
models were introduced. Since there were 240 − 1 sub-models, it was hardly possible to
search systematically for the optimal one. Therefore FSA heuristic has been used for
�nding the best sub-model; the heuristic has been applied repeatedly for each classi�er
and best results from each run have been recorded. Finally, a list of frequently used
features in the most successful submodels has been created. In the general the member
fatures performed the best. The list together with classi�ers explanation can be seen in
[8].

2.1.5 Software design and development

Paralelly to conducted research a cross-platform tool for source code analysis of Java
software projects was developed. Requirements for mentioned tool were formulated in [10]
together with tool design in which four main tool components were proposed: collector,
classi�er, validator and launcher.

Currently all four major components are implemented and the tool is functional.
User is provided with both text and graphical interface, where he can specify a location
of project for validation, or locations of train and test projects for classi�cation; user can
also choose a method of feature collection, required validator, or classi�er. Data of each
project are collected into the ProjectObservation class instance which serves as storage for
feature values of every class �le in project's source code - TypeObservation. Moreover, a
user classi�cation can be loaded for training purposes. An instance of ProjectObservation
can be injected into selected classi�er or validator for subsequent analysis. Once analysis is
performed, results from project's classi�cation are saved into ProjectClassi�cation object,
while results from project's validation are kept in the ProjectValidation instance. Both
classes share same interface, so they can be treated in the same way. For example, all
results can be exported to CSV in order to be published or archived. Relationships among
the mentioned classes are depicted in the Figure 1.
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Figure 1: A class diagram of developed tool's interfaces.

2.2 New patterns

2.2.1 Implementation pattern

During analysis of the results from test projects classi�cation, a question has arisen, if
worker pattern is not overly generic. There were many classes that were classi�ed as
worker pattern, but did not satisfy its de�nition: �A worker uses other objects in order
to perform the core logic of a certain part of the application.� After the analysis of badly
classi�ed data types, it was decided to introduce a new pattern: implementation. It
could be, for instance, a simple abstract class that implements certain interface, or a
class that overrides methods of its parent. The important point is that these classes do
not introduce new attributes; they only implement or reimplement simple logic.

2.2.2 Read only bean pattern

It was concluded that it is quite common that software projects contain beans that can
be accessed solely in read-only mode. These beans generally contain only getter methods
and no setters, instead their data are injected through constructors. For this reason a
rbean pattern was introduced.
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Table 1: Classi�cation results for Neuroph project (SVM).
Pattern Success [%] TOP misinterpreted as In [%]

utility 95 factory 5
worker 87 dao 4
factory 71 utility 29
rbean 67 composite 33
implementation 57 adapter 17
bean 40 worker 53
adapter 0 worker 63

2.3 Data sets update

As new patterns were introduced, data sets had to be updated. Examples of implementa-
tion and rbean patterns were added to training data set together with new representants
of worker, factory and proxy patterns. Training data set now contains 230 java classes.

2.3.1 Neuroph project

The set of test projects was extended with a new project - Neuroph. Neuroph is neu-
ral network framework, which can be used to create and train neural networks in Java
applications. Neuroph code is very clear and contains a large number of patterns, in-
cluding: adapters, beans, rbeans, workers, implementations, utilities, factories and other.
Approximately 200 classes of neuroph project were manually classi�ed and prepared for
analysis.

3 Results

After numerous classi�cations of test projects (including Neuroph) were performed, var-
ious results were observed. In case of Neuroph project acceptable results were achieved
by SVM classi�er for utility, worker, and factory patterns. However, results for bean
and adapter were unsatisfactory. All results can be seen in Table 1. Dao, builder, proxy
and constant patterns are not listed in the table, because of the low incidence of these
patterns in the project. Third column of the table contains the most frequent pattern
that was misinterpreted as valid one, the frequency is recorded in the last column.

In the training data, bean patterns consisted purely of attributes, setters, getters, and
sometimes of constructors. However, in the reality, for example in the Neuroph project,
many beans can have additional methods that are used, for instance, for: serialization,
minor computations, or attribute derivation. This fact causes that the classi�cation
strongly depends on how many pure setters and getters are in the classi�ed bean. If
there is a lack of setters/getters, then this bean can be classi�ed as worker.

Similar issue was recorded for the adapter and the proxy patterns. In such patterns,
the majority of methods usually mediate access to an adaptee or a proxied object. Im-
portant role for the worker pattern detection plays feature fm#amr [10] that expresses
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Table 2: Interesting method types according to accessibility aspect.
∃ parameter ∃ attribute non-void output

Transformation Yes No Yes
Derivation No Yes Yes
Computation No Yes No
Addition Yes Yes No
Combination Yes Yes Yes

how much a selected class uses its attributes in its methods. This feature reaches high
values for both worker's �computation� methods and adapter's �mediator� methods.

4 Discussion

Unsatisfactory results for bean and adapter were caused by fact that the current fea-
tures do not su�ciently take into account behavior of methods, but mostly depend on
their external properties. The current version of feature space tries to cover all possi-
ble combinations of method properties like static/non-static, abstract/non-abstract, pri-
vate/public/protected; nevertheless, purpose of these methods is not considered. That is
the reason, why an improvement of feature space was proposed.

4.1 Feature space improvement proposal

Based on repeated analysis of Neuroph classi�cation results an idea was born to divide
methods classes by two fundamental aspects: method accessibility and method purpose.

4.1.1 Method accessibility

Accessibility aspect takes into account inputs and outputs of methods, thus it is based
on three pieces of logical information: if a method has at least one parameter, if method
uses at least one attribute of its owning class, and if method returns any value. Five
frequent combinations of these properties were identi�ed and named according to their
role (Table 2). Transformation method transforms its parameters to an output without
using owning class attributes. Derivation method derives an extra information merely
from the class attributes and returns it as a result. Computation method, in contrast to
the derivation, stores computed result locally in the owning class. During addition an
external information is added to the method through the parameters in order to update
the owning class. In the case of combination a parameter is combined with local attributes
to produce an output. A scope for accessibility aspect are public, non-static, non-abstract
methods that are neither setters nor getters.

4.1.2 Method purpose

The second - purpose point of view deals with meaning of a code inside the method
de�nitions. So far, six examples of this aspect were named: mediation, usage, recursion,
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production, creation and build. If at least one member method of an attribute is called
from within other class method, it is called mediation. On the other hand, when a mem-
ber method invokes at least one other method of same class, it is called usage. A special
case when a method calls itself was named as recursion. Production is when a method
introduces a local variable which is instantiated within this method and returned as a
result. However, creation is when local variable is created a returned without instantia-
tion. Last but not least, if an attribute is instantiated within a method, we call it build.
A scope for purpose aspect are public, non-abstract methods that are neither setters nor
getters.

Since every important method should be described as combination of one accessibility
aspect and one or more purpose aspects, we belive that these new features will help us
to better classify our patterns.

5 Conclusion

The paper dealt with automated analysis of software project's source code. At �rst brief
overview of the current state of the art was given; subsequently, our progress in this
topic was reported and description of developed software tool was provided. Next, two
new patterns the implementation and the read only bean were introduced, together with
the new testing data set - the Neuroph project. In the following section, results from
classi�cation of Neuroph project were presented. Finally, in the discussion section, an
improvement of current feature space was proposed in order to capture the purpose of
class methods.

In the nearest future we will concentrate on the implementation of collectors for the
newly proposed features. Once they will be collected, we will continue on reduction of
feature space dimensions. Additionally, we would like to employ graph theory algorithms
to perform a posterior analysis of improperly designed data types that do not match any
standard pattern.
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Abstract. We present a new kind of ambiguity in Noether identity generated by dipheo-
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Klein identities are used for proving the conservation of Noether current.
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Abstrakt. Prezentujeme nový druh nejednozna£nosti identity Noetherové generované invari-

ancí v·£i difeomor�sm·m, který je d·sledkem kovariantiza£ní procedury. Problém vyvstávající

kv·li obecné nekomutativit¥ kovariantních derivací je ilustrován na jednoduchých p°íkladech s

Lagrangiány, které jsou lineární a kvadratické v druhých derivacích metriky. Je zkoumán obecný

p°ípad a v n¥m jsou kovariantní Kleinovy identity pouºity k d·kazu zachování Noetherovského

proudu.

Klí£ová slova: identity Noetherové, invariance v·£i difeomor�sm·m, Lagrangeovská polní teorie,

Einstein-Hilbertova akce, Gauss-Bonnetova gravitace, Kleinovy identity

1 Introduction

In [1] a general method for obtaining covariantized Noether identities stemming from
dipheomorphism invariance for second order Lagrangian using auxiliary metric was de-
veloped. Two classes of conserved currents were introduced based on switching order
of the second covariant derivatives which do not commute in general. In this paper we
would like to show some conceptual problems with this approach.

2 Linear Lagrangian

Let's consider a Lagrangian with metric as a dynamical �eld, linear in second derivatives,
i.e.

L̂(gmn; gmn,a; gmn,ab) =
√
−g
[
P µναβ(gmn; gmn,a) gµν,αβ +Q(gmn; gmn,a)

]
. (1)
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P µναβ and Q are arbitrary functions of metric and its �rst derivatives. Now we introduce
auxiliary (background) metric ḡµν and covariantize the Lagrangian, i.e. rewrite the partial
derivatives1 as

gµν,α = gµν ;̄α + 2Γ̄σα(µgν)σ, (2)

gµν,αβ = gµν ;̄αβ + 4Γ̄ρα)(µgν)ρ̄;(β + Γ̄ραβgµν ;̄ρ + 2gρ(µΓ̄ρν)α,β + 2Γ̄ρα(µΓ̄σν)βgρσ + 2gρ(µΓ̄σν)αΓ̄ρβσ

= gµν ;̄αβ +Kµναβ(gmn; gmn̄;a; ḡmn; ḡmn,a; ḡmn,ab) (3)

and we get the new Lagrangian

L̂∗(gmn; gmn̄;a; gmn̄;ab; ḡmn; ḡmn,a; ḡmn,ab) = L̂(gmn; gµν ;̄α + 2Γ̄σα(µgν)σ; gµν ;̄αβ +Kµναβ), (4)

more elaborately

L̂∗ =
√
−g
[
P µναβ(gmn; gµν ;̄α + 2Γ̄σα(µgν)σ) [gµν ;̄αβ +Kµναβ(gmn; gmn̄;a; ḡmn; ḡmn,a; ḡmn,ab)]

+ Q(gmn; gµν ;̄α + 2Γ̄σα(µgν)σ)
]

=
√
−g
[
P̃ µναβ gµν ;̄αβ + P̃ µναβKµναβ + Q̃

]
, (5)

where we denoted

P̃ µναβ(gmn; gmn̄;a; ḡmn; ḡmn,a) = P µναβ(gmn; gµν ;̄α + 2Γ̄σα(µgν)σ), (6)

Q̃(gmn; gmn̄;a; ḡmn; ḡmn,a) = Q(gmn; gµν ;̄α + 2Γ̄σα(µgν)σ). (7)

The partial derivative with respect to the second covariant derivatives of the covari-
antized Lagrangian is then simply

∂L̂∗

∂gµν ;̄αβ

=
√
−g P̃ µναβ. (8)

2.1 Properties of P µναβ (or P̃ µναβ)

As partial derivatives commutes the only reasonable choice of P µναβ is the one which
is symmetrical in (α, β), P µναβ = P µν(αβ). No matter how do we choose antisymmetric
part P µν[αβ] the Lagrangian as a function remains the same because of the trivial identity
P µν[αβ]gµν,αβ = 0. Let's say that a physical theory is de�ned by its Lagrangian. Then
P µν[αβ] has no e�ect on the theory � hence it is irrelevant. This has the important
consequence on the covariantized Lagrangian. Generally, covariant derivatives do not
commute, so it would seem that our covariantization procedure depends on the order of
covariant derivatives as gµν ;̄αβ = gµν ;̄βα + 2gρ(µR̄

ρ
ν)αβ, but we have P

µναβ = P µν(αβ) and
consequently

P µν(αβ)gµν,αβ = P µν(αβ) (gµν ;̄αβ +Kµναβ) = P µναβ
(
gµν ;̄(αβ) +Kµν(αβ)

)
. (9)

1The auxiliary metric ḡ de�nes the Riemann-Levi-Civita connection Γ̄ and corresponding covariant
derivative ∇̄ or in index notation ;̄.
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So the covariant derivatives appears only in symmetric combination and the ambiguous
antisymmetric part, which either can be or need not to be converted to Riemann tensor,
vanishes. In the end the partial derivative is

∂L̂∗

∂gµν ;̄αβ

=
∂L̂∗

∂gµν ;̄βα

=
√
−g P̃ µν(αβ) =

√
−g P̃ µναβ.

The analogous situation is with symmetricity of metric �eld gµν : P
µναβ = P (µν)αβ.

Let's review what will happen if we insist on keeping the antisymmetric part of P µναβ

in Lagrangian as is done in [1]. We have

P µναβgµν,αβ =
(
P µν(αβ) + P µν[αβ]

)
(gµν ;̄αβ +Kµναβ) (10)

= P µν(αβ)
(
gµν ;̄(αβ) +Kµν(αβ)

)
+ P µν[αβ]

(
gµν ;̄[αβ] +Kµν[αβ]

)
. (11)

It can be easily checked that Kµν[αβ] = −gρ(µR̄
ρ
ν)αβ, hence

P µναβgµν,αβ = P µναβ gµν ;̄αβ + P µν(αβ)Kµν(αβ) − P µν[αβ]gρ(µR̄
ρ
ν)αβ. (12)

It should be emphasized that antisymmetric part P µν[αβ] can be completely arbitrary
as it does not contribute into Lagrangian at all. In the end we got partial derivatives
(arbitrarily) depending on the order of covariant derivatives

∂L̂∗

∂gµν ;̄αβ

=
√
−g P̃ µναβ, (13)

∂L̂∗

∂gµν ;̄αβ

− ∂L̂∗

∂gµν ;̄βα

= 2
√
−g P̃ µν[αβ]. (14)

On the other hand, if antisymmetrized covariant derivatives are converted into back-
ground Riemann tensor, gµν ;̄[αβ] = gρ(µR̄

ρ
ν)αβ, the arbitrariness originating from P µν[αβ]

cancel out

P µναβgµν,αβ = P µν(αβ)gµν ;̄(αβ) + P µν[αβ]gρ(µR̄
ρ
ν)αβ + P µν(αβ)Kµν(αβ) − P µν[αβ]gρ(µR̄

ρ
ν)αβ

(15)

leading to unambiguous expression (9).
At last we can switch the order of covariant derivatives in (12) via gµν ;̄αβ = gµν ;̄βα +

2gρ(µR̄
ρ
ν)αβ to get

P µναβgµν,αβ = P µνβαgµν ;̄αβ + P µν(αβ)Kµν(αβ) + P µν[αβ]gρ(µR̄
ρ
ν)αβ. (16)

Again, converting antisymmetric part of covariant derivative leads to unambiguous ex-
pression (9).

2.2 Example of Einstein-Hilbert action

The Einstein-Hilbert action has the exact form of our sample Lagrangian (1). In fact it
is the only possible choice if we demand the general covariance. Let's �nd the symbol
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P µναβ in this particular case. If one writes the Riemann tensor as

Rλ
τρσ = Γλτσ,ρ − Γλτρ,σ + ΓλρηΓ

η
τσ − ΓλησΓητρ

=
1

2
gλι (gιτ,σρ + gισ,τρ − gτσ,ιρ − gιτ,ρσ − gιτ,ρσ + gτρ,ισ) + ΓλρηΓ

η
τσ − ΓλησΓητρ

= P λ
τρσ

µναβ
gµν,αβ +Qλ

τρσ, (17)

we �nd that

P λ
τρσ

µναβ
= gλ(µδν)

τ δ
α
[σδ

β
ρ] + gλ(µδ

ν)
[σ δ

β
ρ]δ

α
τ − gλαδ(µ

τ δ
ν)
[σ δ

β
ρ]. (18)

And then the coe�cients P µναβ (and Q) would be

P µναβ = gτσP λ
τλσ

µναβ
, (Q = gτσQλ

τλσ). (19)

Giving the result P µναβ = gα(µgν)β− gµνgαβ which is already symmetric in (α, β). Never-

theless, as the non-contracted symbol P λ
τρσ

µναβ
will be important in more complicated

Lagrangians involving Riemann tensor (such as the case of Einstein-Gauss-Bonnet grav-

ity) the correct way is to consider only symmetrized part P λ
τρσ

µν(αβ)
. To understand this

let's have a look at "canonical" covariantization of Riemann tensor. Using identity

Γλτσ − Γ̄λτσ = ∆λ
τσ =

1

2
gλι (gιτ ;̄σ + gισ;̄τ − gτσ;̄ι) (20)

we get

Rλ
τρσ = ∆λ

τσ;̄ρ −∆λ
τρ̄;σ + ∆λ

ρη∆
η
τσ −∆λ

ησ∆η
τρ + R̄λ

τρσ

=
1

2
gλι (gιτ ;̄σρ + gισ;̄τρ − gτσ;̄ιρ − gιτ ;̄ρσ − gιτ ;̄ρσ + gτ ρ̄;ισ) + Q̃ (21)

leading to

P̃ λ
τρσ

µναβ
= gλ(µδν)

τ δ
α
[σδ

β
ρ] + gλ(µδ

ν)
[σ δ

β
ρ]δ

α
τ − gλαδ(µ

τ δ
ν)
[σ δ

β
ρ] = P λ

τρσ
µναβ

(22)

The chosen order of covariant derivatives e�ectively �xes the antisymmetric part

of P̃ λ
τρσ

µναβ
. But again this choice is rather arbitrary as we could switch the order

of covariant derivative in each of six second order terms in Riemann tensor getting 26

di�erent symbols P̃ λ
τρσ

µναβ
. The resolution is again simple. We should realize that

only the symmetric part of P λ
τρσ

µναβ
is contributing to expression for Riemann tensor
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P λ
τρσ

µναβ
gµν,αβ +Qλ

τρσ. Covariantization with respect to this leads to

Rλ
τρσ =

1

2
gλι
(
gισ;̄(τρ) − gτσ;̄(ιρ) − gιτ ;̄(ρσ) + gτ ρ̄;(ισ)

)
+

1

2

[
gλι ;̄ρ (gιτ ;̄σ + gισ;̄τ − gτσ;̄ι)− gλι ;̄σ (gιτ ;̄ρ + gιτ ;̄ρ − gτ ρ̄;ι)

]
+ ∆λ

ρη∆
η
τσ −∆λ

ησ∆η
τρ + R̄λ

τρσ

+
1

2
gλι
(
2gκ(ιR̄

κ
τ)σρ + gκ(ιR̄

κ
σ)τρ − gκ(τ R̄

κ
σ)ιρ − gκ(ιR̄

κ
ρ)τσ + gκ(τ R̄

κ
ρ)ισ

)
(23)

=
1

2
gλι
(
gισ;̄(τρ) − gτσ;̄(ιρ) − gιτ ;̄(ρσ) + gτ ρ̄;(ισ)

)
+

1

2

[
gλι ;̄ρ (gιτ ;̄σ + gισ;̄τ − gτσ;̄ι)− gλι ;̄σ (gιτ ;̄ρ + gιτ ;̄ρ − gτ ρ̄;ι)

]
+ ∆λ

ρη∆
η
τσ −∆λ

ησ∆η
τρ

+
1

4

[
R̄λ

τρσ + gλι
(
gκτ R̄

κ
ισρ + gκσR̄

κ
ρτι + gκρR̄

κ
σιτ

)]
. (24)

The important thing to remember from this rather complicated expression (in comparison
with the "canonical" covariantized one) is that partial derivative with respect to the gµν ;̄αβ

is always symmetrical in (α, β), i.e.

∂Rλ
τρσ

∂gµν ;̄αβ

= P λ
τρσ

µν(αβ)
= gλ(µδ

ν)
[σ δ

(α
ρ] δ

β)
τ − δ(µ

τ δ
ν)
[σ δ

(α
ρ] g

β)λ. (25)

3 Einstein-Gauss-Bonnet gravity

Let's now turn our attention to more complicated example with quadratic terms in second
derivatives as is the case in Gauss-Bonnet gravity with Lagrangian

L̂EGB =
√
−g
[
R2 − 4RτσR

τσ +RλτρσR
λτρσ.

]
(26)

The structure of it is as follows

L̂ =
√
−g
[
P µναβµ̃ν̃α̃β̃

2 gµν,αβ gµ̃ν̃,α̃β̃ + P µναβ
1 gµν,αβ + P0.

]
(27)

with P0, P1, P2 being functions of metric g and its �rst derivatives.

Once again it holds that P µναβµ̃ν̃α̃β̃
2 = P

µν(αβ)µ̃ν̃(α̃β̃)
2 and P µναβ

1 = P
µν(αβ)
1 due to

commuting of partial derivatives. The covariantization leads to

L̂∗ =
√
−g
[
P µναβµ̃ν̃α̃β̃

2 (gµν ;̄αβ +Kµναβ)(gµ̃ν̃ ;̄α̃β̃ +Kµ̃ν̃α̃β̃) + P µναβ
1 (gµν ;̄αβ +Kµναβ) + P0

]
=
√
−g
[
P̃ µναβµ̃ν̃α̃β̃

2 gµν ;̄(αβ) gµ̃ν̃ ;̄(α̃β̃)

+
(
P̃ µναβµ̃ν̃α̃β̃

2 Kµ̃ν̃(α̃β̃) + P̃ µ̃ν̃α̃β̃µναβ
2 Kµ̃ν̃(α̃β̃) + P̃ µναβ

1

)
gµν ;̄(αβ)

+
(
P̃ µναβµ̃ν̃α̃β̃

2 Kµν(αβ)Kµ̃ν̃(α̃β̃) + P̃ µναβ
1 Kµν(αβ) + P̃0

)]
(28)
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tildas above Pi denotes functional change due to substitution as in (6) and (7). Then we
have unambiguous and symmetrical expression for

∂L̂∗

∂gµν ;̄αβ

=
∂L̂∗

∂gµν ;̄βα

=
√
−g
[
P µναβµ̃ν̃α̃β̃

2 gµ̃ν̃ ;̄(α̃β̃) + P µ̃ν̃α̃β̃µναβ
2 gµ̃ν̃ ;̄(α̃β̃)

+ P µναβµ̃ν̃α̃β̃
2 Kµ̃ν̃(α̃β̃) + P µ̃ν̃α̃β̃µναβ

2 Kµ̃ν̃(α̃β̃) + P µναβ
1

]
. (29)

3.1 Calculation

Let's perform an explicit calculation of the derivative with respect to the gµν ;̄αβ.

∂L̂EGB
∂gµν ;̄αβ

= 2
√
−g
[
∂Rλ

τρσ

∂gµν ;̄αβ

Rλ
τρσ − 4

∂Rτσ

∂gµν ;̄αβ

Rτσ +
∂R

∂gµν ;̄αβ

R

]
. (30)

We use the symmetrized result

∂Rλ
τρσ

∂gµν ;̄αβ

= gλ(µδ
ν)
[σ δ

(α
ρ] δ

β)
τ − gλ(αδ

β)
[ρ δ

(µ
σ] δ

ν)
τ (31)

with corresponding contractions

∂Rτσ

∂gµν ;̄αβ

= gβ)(µδ
ν)
(τ δ

(α
σ) −

1

2
gαβδ(µ

τ δ
ν)
σ −

1

2
gµνδ(α

τ δ
β)
σ , (32)

∂R

∂gµν ;̄αβ

= gα(µgν)β − gµνgαβ. (33)

Finally, the result is shown below.

∂L̂EGB
∂gµν ;̄αβ

= 2
√
−g
[
Rλ

τρσ
(
gλ(µδ

ν)
[σ δ

(α
ρ] δ

β)
τ − gλ(αδ

β)
[ρ δ

(µ
σ] δ

ν)
τ

)
−4Rτσ

(
gβ)(µδ

ν)
(τ δ

(α
σ) −

1

2
gαβδ(µ

τ δ
ν)
σ −

1

2
gµνδ(α

τ δ
β)
σ

)
+R

(
gα(µgν)β − gµνgαβ

) ]
(34)

= 2
√
−g
[
2Rα(µν)β −4gα)(µRν)(β + 2gαβRµν + 2gµνRαβ +

(
gα(µgν)β − gµνgαβ

)
R
]
.

(35)

It is symmetrical both in (µ, ν) and (α, β) and di�ers from results in [1], [2] and [3].

4 General case

Consider the theory with arbitrary set of tensor densities as dynamical �elds with second
order scalar density Lagrangian L̂(QB;QB,α;QB,αβ). In any case the indices of QB,αβ has
to be contracted to form scalar density. And this contraction re�ects the symmetry of
partial derivatives as we demonstrated in preceding sections. The covariantization leads
to Lagrangian L̂∗(QB;QB ;̄α;QB ;̄αβ; ḡ; R̄) with antisymmetrical part of second covariant



Ambiguity of Covariantized Noether Identities 221

derivatives QB ;̄[αβ] vanishing. Hence the changing of order of covariant derivatives via

substituting QB ;̄αβ = QB ;̄βα + QB|ρσ R̄σ
ραβ

2 does not change Lagrangian L̂∗ at all on the
contrary to what is suggested in [1].

If one insists on keeping arbitrary antisymmetric parts of tensor contracted with
second covariant derivatives we get nonvanishing derivative

∂L̂∗

∂QB ;̄[αβ]

=
1

2

(
∂L̂∗

∂QB ;̄αβ

− ∂L̂∗

∂QB ;̄βα

)
, (36)

then we truly get a Lagrangian L̂∗∗ by switching the order of covariant derivatives.
In general a covariant conserved current has the following form îα = ûασξ

σ + m̂ατ
σ ξ

σ
;̄τ +

n̂ατβσ ξσ;̄βτ which satis�es the identity îα;̄α = 0 for every vector �eld ξ. The formulas for
coe�cients û, m̂ and n̂ are given in [1]. For each Lagrangian we get a set of current
coe�cients and their di�erence is described by the following formulas

∆n̂ατβσ =
∂L̂∗

∂QB ;̄[αβ]

QB|τσ +
∂L̂∗

∂QB ;̄[ατ ]

QB|βσ , (37)

∆m̂ατ
σ = −2

∂L̂∗

∂QB ;̄[ατ ]

QB ;̄σ + 2

(
∂L̂∗

∂QB ;̄[αβ]

QB|τσ

)
;̄β

, (38)

∆ûασ = −2

(
∂L̂∗

∂QB ;̄[αβ]

QB ;̄σ

)
;̄β

+
∂L̂∗

∂QB ;̄[ατ ]

QB|βλ R̄
λ
στβ. (39)

These di�erences satisfy covariant Klein identities (see appendix A) for arbitrary
∂L̂∗

∂QB;̄[αβ]
, i.e. the current îα formed by coe�cients (37), (38) and (39) is conserved. The

antisymmetric part ∂L̂∗
∂QB;̄[αβ]

is not de�ned by the original Lagrangian L̂ in any way. In par-

ticular, the result cannot be generated by adding a divergence to the original Lagrangian
as divergence d̂α,α produces current coe�cients in the form

ûασ = 2(δ[α
σ d̂

β])̄;β, m̂αβ
σ = 2δ[α

σ d̂
β], n̂αβγσ = 0. (40)

5 Conclusion

We demonstrated that the new class of ambiguity in Noether currents appers due to
covariantization procedure. It doesn't have the character of adding divergence to the
Lagrange function as it doesn't change the original Lagrangian at all and also the resulting
current has di�erent structure. The canonical covariantization should take into account
the symmetricity of partial derivatives present in the original Lagrangian and this is in
con�ict with Petrov's approach in [1] suggesting two, rather arti�cially chosen, classes
of currents. This discrepancy was demonstrated in the sketch of current coe�cients
computation in the case of Gauss-Bonnet gravity.

2Quantity QB |ρσ is de�ned via geometrical properties of QB (e.g. rank and weight of the tensor �eld
density) and by formula for Lie derivative LξQB = ξρQB,ρ − QB |ρσ ξσ,ρ.
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A Covariant Klein identities

We want to make use of the arbitrariness of ξ in conserved current îα. Let's distribute
the derivative in îα;̄α and obtain

ûασ;̄αξ
σ +

(
ûασξ

σ
;̄α + m̂ατ

σ;̄αξ
σ
;̄τ

)
+
(
m̂ατ
σ ξ

σ
;̄τα + n̂ατβσ;̄α ξ

σ
;̄βτ

)
+ n̂ατβσ ξσ;̄βτα = 0. (41)

Coe�cients at corresponding derivatives of vector �eld should vanish. But not all higher
derivatives are linearly independent � it is necessary to choose basis, e.g. ξσ;̄(αβ), ξ

σ
;̄(αβγ)

� i.e. symmetrization of covariant derivatives. Antisymmetric parts are converted into
lower order via Riemann tensor. To achieve this we use Young projection operators to
decompose tensors m̂ατ

σ and n̂
α(τβ)
σ (see [4]) into

m̂ατ
σ = m̂(ατ)

σ + m̂[ατ ]
σ , n̂α(τβ)

σ = n̂(ατβ)
σ +

4

3
n̂[βα]τ
σ +

2

3
n̂[τβ]α
σ (42)

and using

2ξσ;̄[τα] = R̄σ
ρτα ξ

ρ, (43)

2ξσ;̄τ [βα] = R̄σ
ρβα ξ

ρ
;̄τ − R̄ρ

τβα ξ
σ
;̄ρ, (44)

2ξσ;̄[τβ]α = R̄σ
ρτβ ;̄α ξ

ρ + R̄σ
ρτβ ξ

ρ
;̄α (45)

we �nally get decompositions using only covariant derivatives of chosen basis

m̂ατ
σ ξ

σ
;̄τα = (m̂(ατ)

σ + m̂[ατ ]
σ )ξσ;̄τα = m̂(ατ)

σ ξσ;̄(ατ) +
1

2
m̂ατ
σ R̄

σ
ρατξ

ρ, (46)

n̂α(τβ)
σ ξσ;̄τβα = n̂ατβσ ξσ;̄(ατβ) + n̂α(τβ)

σ R̄σ
ρατξ

ρ
;̄β +

2

3
n̂α(τβ)
σ R̄ρ

τβαξ
σ
;̄ρ +

1

3
n̂α(τβ)
σ R̄σ

ρατ ;̄βξ
ρ. (47)

Rearranging the identity (41) using above written decompositions leads to covariant Klein
identities

0 = ûασ;̄α +
1

2
m̂αρ
λ R̄

λ
σαρ +

1

3
n̂αργλ R̄λ

σαρ̄;γ, (48)

0 = ûασ + m̂λα
σ;̄λ + n̂ταρλ R̄λ

στρ +
2

3
n̂λτρσ R̄α

τρλ, (49)

0 = m̂(αβ)
σ + n̂

λ(αβ)
σ;̄λ , (50)

0 = n̂(αβγ)
σ . (51)
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Abstract. The paper presents results of application of �ve di�erent classi�ers to a problem of

pattern classi�cation in Java source codes. Source code perception by tools for automated analy-

sis and transformation can be enhanced by �nding a e�ective method of patterns classi�cation.

Keywords: source code, classi�cation, Java

Abstrakt. P°ísp¥vek prezentuje výsledky aplikace p¥ti r·zných klasi�kátor· na problém klasi-

�kace vzor· ve zdrojovém kódu program· napsaných v jazyce Java. Nalezení efektivní metody

klasi�kace je základ pro zlep²ení vnímání kódu automatizovanými nástroji pro jeho analýzu a

transformaci.

Klí£ová slova: zdrojový kód, klasi�kace, Java

1 Úvod

Identi�kace a klasi�kace de�novaných vzor· ve zdrojových kódech softwaru m·ºe napo-
moci ke zlep²ení vnímání zdrojového kódu ze strany podp·rných nástroj· vývojá°e, jako
jsou nap°. refaktorovací a analytické nástroje, inteligentní editory, modelovací nástroje
a obecn¥ veri�ka£ní nástroje, které se snaºí ov¥°it implementaci v·£i speci�kaci. Tato
práce prezentuje experimentální výsledky aplikace n¥kolika b¥ºn¥ pouºívaných klasi�ka£-
ních metod: k-NN, neuronových sítí, logistické regrese a SVM.

1.1 Návaznost práce

My²lenka rozpoznávání vzor· ve zdrojovém kódu nabyla na významu s rozmachem ob-
jektov¥ orientovaného programování, které vytvá°ení takových vzor· zna£n¥ usnad¬uje.
V roce 1998 Antoniol a kolektiv [1, 2] vypracovali metodu pro detekci malé mnoºiny
návrhových vzor· [7] ve zdrojových kódech program· napsaných v C++. Ze zdrojových
kódu extrahoval hodnoty de�novaných metrik, pomocí kterých provád¥l samotnou de-
tekci vzor·. Tato práce rovn¥º zakládá klasi�kaci vzor· na hodnotách p°íznak· získaných
ze zdrojového kódu, na rozdíl od [1, 2] v²ak pro klasi�kaci vyuºívá jiné metody. Podobn¥
jako [6] a [9] vyuºívá tato práce metody strojového u£ení. Tato práce p°ejímá my²lenku
uvedenou v [8] a zabývá se analýzou na úrovni t°íd.

∗Tato práce byla podpo°ena grantem SGS11/167/OHK4/3T/14 a LA08015.
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1.2 Východiska práce

Práce se omezuje na zkoumání struktur v programovacím jazyce Java. D·vodem je roz-
²í°ení platformy Java, díky £emuº je k dispozici velké mnoºství rozmanitých zdrojových
kód· ke zkoumání. Dále jsou voln¥ k dispozici nástroje pro práci se samotným jazykem,
které jsou nutné pro analýzu zdrojového kódu a sestavení p°íznakového vektoru pro klasi-
�kátory. Zde uvedené postupy jsou v²ak aplikovatelné i na jiné objektov¥ orientované siln¥
typované jazyky. Naopak pouºité metody nelze aplikovat na dynamické jazyky, protoºe
n¥které pouºité p°íznaky se spoléhají na identi�kaci datových typ· prom¥nných.

2 Metody klasi�kace

Vzhledem k tomu, ºe hledané struktury, a´ uº se jedná o primitivní struktury jako
bean/datový typ, nebo sloºit¥j²í kompozitní struktury, mohou být t¥ºko popsatelné a
jejich konkrétní implementace se li²í v závislosti na programátorovi, zam¥°uje se tato
práce p°edev²ím na metody strojového u£ení s u£itelem, kdy jsou jednotlivé klasi�ká-
tory p°edem trénovány na vybrané mnoºin¥ p°íklad·. Objektový návrh softwaru, který je
stále populární a pouºívaný, dal vzniknout celé °ad¥ znovupouºitelných vzor·. Jedná se
p°edev²ím o návrhové vzory [7], které se staly v oboru softwarového inºenýrství hlavním
zdrojem inspirace p°i návrhu softwaru. Nicmén¥ ve zdrojovém kódu lze vysledovat i jiné
vzory, které by´ nejsou tak formalizované, mohou stále pomoct s orientací ve zdrojovém
kódu. Návrhové vzory nejsou de�novány exaktn¥, jedná se pouze o jistou ²ablonu, která
popisuje problém a obecný návrh °e²ení. Konkrétní implementace návrhových vzor· se
tedy mohou zna£n¥ li²it.

2.1 Klasi�ka£ní t°ídy a p°íznakový prostor

Pro za£átek bylo navrºeno 11 klasi�ka£ních t°íd, které pokrývají n¥které jednodu²²í ná-
vrhové vzory, UML stereotypy a jiné b¥ºn¥ se vyskytující vzory [10]:

• Utility � Pomocná t°ída obsahující zpravidla statické metody. V UML se taková
t°ída ozna£uje stereotypem Auxiliary [12].

• Factory � Návrhový vzor pat°ící do skupiny vzor· zabývajících se tvorbou objekt·.
Tento vzor se dotýká problém·, kdy je k vytvo°ení nového objektu pot°eba nap°íklad
jiný zdroj, který v²ak nemá být obsaºen ve výsledném objektu. Vytvo°ení objektu
je tedy delegováno na specializovanou t°ídu � továrnu.

• Builder � Návrhový vzor, který pat°i do stejné skupiny jako Factory. Builder °e²í
problém inicializace stavu zpravidla kompozitních objekt· se sloºitým vnit°ním sta-
vem. Vzor umoº¬uje postupnou kon�guraci stavu objektu po vytvo°ení.

• Adapter, Proxy, Decorator � Skupina návrhových vzor·, které obecn¥ °e²í zá-
stupnost objekt· s r·znými rozhraními.

• Bean � T°ída, která pouze zapouzdruje data. Jedná se o návrhový vzor Crate a
UML stereotyp Type [12].
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• DAO � P°edstavuje persistentní data. Jedná se o UML stereotyp Entity [12].

• Worker � T°ída implementující hlavní logiku pracující s daty. P°edstavuje UML
stereotyp Focus [12].

• Composite � T°ída p°edstavující hierarchická data jako jsou seznam, strom, a jiné.
Jedná se o návrhový vzor Composite.

• Constant � T°ída obsahující pouze konstanty. Zpravidla slouºí jako n¥jaká statická
kon�gurace systému. V UML se taková t°ída ozna£uje stereotypem Auxiliary [12].

P°íznakový prostor je de�nován jako mnoºina S = {F1, F2, F3, . . . , Fp}, kde p je po£et
de�novaných p°íznak· a Fi : C→ R funkce, která transformuje deklaraci datového typu
c ∈ C na reálné £íslo. Hodnota Fi typicky vyjad°uje £etnost sledovaného fenoménu v
deklaraci datového typu a m¥la by být invariantní k absolutní velikosti deklarace (a´ uº
m¥°eného pomocí po£tu °ádk· kódu, po£tu p°íkaz·, nebo jinou metodou) [10].

2.2 Pouºité klasi�kátory

V rámci této práce byly vyuºity výhradn¥ metody klasi�kace s u£ením s u£itelem.

2.2.1 Algoritmus k nejbliº²ích soused· (k-NN)

V oboru klasi�kace je k-NN jedním z nejjednodu²²ích, p°esto hojn¥ pouºívaných a ú£in-
ných neparametrických algoritm·. Bod v p°íznakovém prostoru je klasi�kován podle k
nejbliº²ích soused· v trénovací mnoºin¥. Algoritmus vychází z [4], jedná se vlastn¥ o spe-
ciální p°ípad pro k = 1. Slabinou algoritmu je p°ípad, kdy rozloºení pravd¥podobnosti
výskytu t°ídy v trénovací mnoºin¥ není rovnom¥rné. Pak zástupci nejvíce se vyskytu-
jící t°ídy ovliv¬ují výsledek klasi�kace. Algoritmus lze jednodu²e modi�kovat volbou k a
volbou metriky vzdálenosti.

2.2.2 Logistická regrese

Logistická regrese je pravd¥podobnostní statistický klasi�kátor. Pravd¥podobnost, ºe pr-
vek pat°í do ur£ité t°ídy je modelována na základ¥ vysv¥tlujících prom¥nných (vektor
p°íznak·) pomocí logistické funkce (logitové transformace). Tato metoda se za£ala pouºí-
vat v 60. letech jako alternativa k lineární regresi. Klasická logistická regrese °e²í binární
problém, kdy m·ºe být prvek za°azen pouze do dvou t°íd.

2.2.3 Perceptron

Perceptron je prvním a jedním z nejjednodu²²ích model· um¥lé neuronové sít¥, který
p°edstavil F. Rosenblatt jiº v roce 1957 [11]. Jedná se ve své podstat¥ o váºenou sí´. Tento
výpo£etní model ve své dob¥ podpo°il zájem o metody klasi�kace s ú£ením, nicmén¥ tento
zájem op¥tovn¥ opadl v dob¥, kdy M. Minsky ve své knize Perceptrons ukázal, ºe jed-
noduchý perceptron není schopen simulovat boolovskou funkci XOR. Pozd¥j²í výzkumy
v²ak ukázaly, ºe vícevrstvý perceptron je jiº tohoto schopen, coº vedlo op¥t k oºivení
zájmu o um¥lé neuronové sít¥.
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2.2.4 Vícevrstvý perceptron

Vícevrstvý perceptron odstra¬uje podmínku lineární separovatelnosti klasického perceptronu
vloºením jedné nebo více skrytých disjunkních vrstev s nelineární aktiva£ní funkcí mezi
vrstvu vstupní a výstupní. Výstup neuron· jedné vrstvy slouºí jako vstup neuron· vrstvy
následující, p°i£emº kaºdý neuron z jedné vrstvy je zpravidla propojen se v²emi neurony
následující vrstvy.

2.2.5 Support Vector Machine

Metoda podp·rných vektor· (SVM) °e²í problém nelineární separovatelnosti dat p°enese-
ním problému do prostoru vy²²í dimenze. Základním principem metody je nalezení takové
nadroviny, která rozd¥luje prostor problému na dva podprostory, kde kaºdý podprostor
obsahuje p°eváºn¥ zástupce jedné t°ídy a p°itom maximalizuje vzdálenost nejbliº²ích zá-
stupc· t¥chto t°íd (podp·rné vektory) od hranice tvo°ené touto nadrovinou [3].

2.3 Redukce p°íznakového prostoru

S ohledem na velikost trénovací mnoºiny (cca 170 poloºek) a velikost p°íznakového pro-
storu (40 p°íznak· ) byly v rámci lad¥ní klasi�kátoru aplikovány heuristiky (zp¥tná hla-
dová eliminace, rychlé simulované ºíhání) pro nalezení optimálního submodelu.

3 Výsledky

Kaºdý aplikovaný klasi�kátor byl podroben analýze, v rámci které byla lad¥na kon�gurace
parametr· a architektura klasi�kátoru. Tabulka 1 zobrazuje nejúsp¥²n¥j²í kon�gurace pro
kaºdý typ klasi�kátoru.

Klasi�kátor XV full XV sub-model # p°íznak·

k-NN 0,2674 0,2036 25
Logistická regrese 0,2963 0,2408 27
Perceptron 0,2411 0,2205 22
Sloºený perceptron 0,2572 0,2050 27
SVM 0,2352 0,2018 25

Tabulka 1: Pr·m¥rná chyba klasi�kace v k°íºové validaci na plném modelu (XV full) a
nejlep²ím nalezeném submodelu (XV sub-model).

U klasi�kátoru k-NN byly zkou²eny r·zné metriky pro m¥°ení vzdálenosti mezi body
v p°íznakovém prostoru: euklidovská, £eby²evova, kosínová a sí´ová. Nejlep²ích výsledk·
bylo dosaºeno za pouºití sí´ové metriky d(x, y) =

∑n
i=1 |xi − yi| pro k = 5. U logis-

tické regrese byly pomocí heuristiky lad¥ny parametry α a λ. Nejlep²ích výsledk· bylo
dosaºeno pro hodnoty α∗ = 0, 999347 a λ∗ = 5, 988688 · 10−6. U perceptronu u£eného
pomocí zp¥tné propagace byly zkou²eny dv¥ hlavní architektury: perceptron s výstupem
pro kaºdou t°ídu a klasi�kátor sloºeny s perceptron·, kde kaºdý perceptron má jeden
výstup. Dále byly zkou²eny r·zné aktiva£ní funkce a míra u£ení, aby nedo²lo k p°eu£ení
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klasi�kátoru. Jako nejlep²í se ukázal klasi�kátor sloºený z jednotlivých perceptron· pro
kaºdou t°ídu s aktiva£ní funkcí ve tvaru σ(ξ) = a tanh(vξ). U sloºeného perceptronu byly
podobn¥ zkou²eny architektury, kdy je klasi�kátor tvo°en jedním sloºeným perceptronem
s výstupem pro kaºdou t°ídu a klasi�kátor tvo°ený sloºenými perceptrony pro kaºdou
t°ídu. Dále byl zkoumán po£et neuron· ve skryté vrstv¥, vhodná aktiva£ní funkce a míra
natrénování sít¥. Nejmen²í pr·m¥rnou chybu klasi�kace m¥l op¥t klasi�kátor sloºen z
jednotlivých vícevrstvých perceptron· se 4 skrytými neurony a stejnou aktiva£ní funkcí
jako v p°ede²lém p°ípad¥. U SVM klasi�kátoru byly zkoumány r·zné kernely a pomocí
heuristiky hledány vhodné hodnoty parametr· ε, υ a γ. Celkov¥ nejúsp¥²n¥j²í se ukázal
SVM klasi�kátor s RBF kernelem k(xi, xj) = (−γ||xi · xj||2) a hodnotami parametr·
ε = 0, 00079, υ = 0, 32144 a γ = 0, 15617.

Jednotlivé klasi�kátory byly testovány pomocí k°íºové validace, kdy byla testovací
mnoºina rozd¥lena na 5 rovnom¥rných díl·, postupn¥ byly vºdy 4/5 pouºity pro trénování
a zbývající 1/5 pro ov¥°ení klasi�kátoru [5]. Takto byla otestována celá mnoºina. Celý
proces byl zopakován 100 krát a chyba zpr·m¥rována.

4 Záv¥r a dal²í práce

Pomocí postupného lad¥ní klasi�kátor· bylo dosaºeno p°esnosti klasi�kace vybraných
vzor· tém¥° 80%. To se dá pokládat za dobrý po£áte£ní výsledek do dal²ího zkoumání.
V rámci dal²í práce bude roz²í°ena mnoºina klasi�kovaných vzor·, bude dále revidován
p°íznakový prostor, roz²í°ena mnoºina zkoumaných dat a vyzkou²eny dal²í klasi�ka£ní
metody.
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Abstract. Na�on is a solid polymer that is used as a proton conducting membrane in hydrogen

fuel cells. Proton conducting as well as mechanical properties of Na�on strongly depend on

its microstructure. Despite the extensive research, there is no model of Na�on microstructure

that would be generally accepted. This contribution describes the mesoscale model of Na�on

microstructure, that we are developing, and compares it with the experimental results.
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Abstrakt. Na�on je polymer pouºívaný jako elektrolyt ve vodíkových palivových £láncích.

Vodivostní i mechanické vlastnosti Na�onu významn¥ závisí na jeho mikrostruktu°e. Navzdory

dlouholetému výzkumu stále neexistuje model mikrostruktury, který by byl bez výhrad p°ijímán.

Tento p°ísp¥vek popisuje mezi²kálový model struktury Na�onu, který vyvíjíme, a srovnává ho s

experimentálními výsledky.

Klí£ová slova: struktura Na�onu, modelování, MesoDyn

1 Introduction

Na�on is the most common material used as a proton conducting membrane in hydro-
gen fuel cells nowadays. Na�on consists of a polytetra�uoroethylene backbone with the
randomly attached per�uorinated side chains ending by a sulfonate ionic group (�gure
1).

Despite its wide usage and decades of intensive research, there are still heated dis-
cussions about Na�on morphology. There have been presented several models of Na�on
microstructure, but none of them is fully accepted in the fuel cell community.

The common feature in these models is the existence of the clustering of hydrophilic
domains inside hydrophobic polytetra�uoroethylene, but there is still heated debate over
the shape and structure of the ionic clusters. The complicating facts are the randomness
of the attachment of side chains to the polymer backbone and the sensitivity of the Na�on
microstructure to the processing methods and its history.

This contribution describes the mesoscale model of Na�on microstructure, that we
are currently working on, and compares it with the experimental data.

∗This work has been supported by the grants CZ.1.07/2.3.00/20.0107 and SGS13/217/OHK4/3T/14.
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Figure 1: Structure of Na�on.

2 Atomistic modelling

Modelling and simulations are very popular nowadays and they have helped with un-
derstanding almost all important aspects of membrane structure, including morphology
development, proton transport and the role of side chains in these areas.

Ab initio methods based on quantum mechanics provide the most accurate picture
of the local structure and have already given us much information about the proton
transport mechanisms, the dissociation of sulphuric acid and the aggregation of the side
chains with this acid through the formation of hydrogen bonds. But the accuracy is paid
by the size of the region, we are able to model. Ab initio methods compute with all valence
electrons in the system to gain the electronic structure, systems with a maximum of one
hundred atoms are generally modelled by these methods, so it can give us information
only about small sections of Na�on polymer.

Molecular dynamics is not so computationally demanding as ab initio methods as it
describes the motions of atoms without taking care about their inner structure. The
motion of particles is described by Newton's second law in molecular dynamics. The
potential of the molecular system is not a function of electronic wave functions like in ab
initio models, but it is a function of the positions of nuclei U(~Rj). These functions U(~Rj)
are evaluated by methods of quantum mechanics or empirically. Atoms and molecules
are considered as classical particles moving in this potential �eld.

mi
d2~ri
dt2

= −OU (1)

The good choice of potential U (often called as a force �eld) is a crucial point in
molecular dynamics and it is determined by the bond types, desired accuracy and of
course our computational resources. Also comparison with measurements on thermo-
physical properties and vibration frequencies is necessary for choosing the most suitable
force �eld.

The result of the molecular dynamics computation are trajectories and velocities of
all particles in the system. This also requires a lot of memory capacity and su�cient
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computer processor speed, so it generally provides motion of system of thousands of
atoms on a time scale of a few nanoseconds.

The molecular dynamics supports the idea of irregularly shaped ionic clusters [5],
although to model the space distribution of these clusters (2-5 nm clusters distant from
each other 12-15 nm) is out of the range of molecular dynamics. The mesoscale model
that would form a bridge between the fast molecular kinetics and slow thermodynamics
relaxation of macroscale properties is thus necessary.

Mesoscale models gain increasing attention nowadays. One of the popular mesoscale
models is MesoDyn which is a simulation code that was generated especially for describing
the mesoscale structures in polymer liquids [1].

3 MesoDyn code

MesoDyn is a mesoscale simulation program implemented in Accelrys Materials Studio.
It is based on a dynamic variant of self-consistent mean �eld theory.

The system under study is transformed to its coarse-grained structure, where several
atoms are taken as one unit. This unit is called as a bead. The original structure of
the bead is forgotten, but MesoDyn �nds interactions for these beads corresponding to
essential physics of the original system.

Because the beads consist of several atoms, the time and space lengths of simulation
can be expand up to 100 nm.

The theory behind the MesoDyn code [1] will be shortly mentioned here, the details
of the numerical procedure can be found in the original paper from 1997 [2].

The �uid is described by the density distributions of the individual beads ρI(~r). The
density distributions dynamically evolve due to the gradient of chemical potential and
random thermal noise according to the Langevin equation

∂ρI
∂t

=Mdiv(ρI∇µI) + ηI , (2)

where M is a bead mobility parameter, µI is the chemical potential of the respective
bead (the derivative of the free energy with respect to the density ρI), a noise ηI brings
the kinetics of Brownian motion to the equation and satis�es the �uctuation-dissipation
theorem in the following form

〈ηI(~r, t)〉 = 0, (3)

〈ηI(~r, t)ηJ(~̃r, t̃)〉 = −
2Mv

β
δ(t− t̃)×∇r.δ(~r − ~̃r)ρIρJ∇r̃, (4)

where δ is the delta function, v is the average bead volume and β is the inverse temper-
ature 1

kBT
.

The bead mobility parameter is in a simple relation with bead di�usion coe�cient
D = MkBT and its value is same for all species in the system. Tests showed, that
changes in this parameter have just small e�ect on the �nal structure, however they have
an in�uence on the rate, at which equilibrium is achieved [6]. The default value of the
bead mobility parameter is 10−7cm2s−1 in MesoDyn code allowing thus to use time steps
of 50 ns for most of the �uids.
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The equations (2) can be transformed to the so called dynamic Langevin equations,
that are integrated on a cubic lattice using a Crank-Nicholson numerical scheme in Meso-
Dyn code.

The Langevin equations are constructed for incompressible system with a dynamic
constraint

1

v
=
∑
I

ρI(~r, t), (5)

where v is a constant molar volume of a substance.
So at each step of the computation, the density distribution is calculated, starting

from an initially homogeneous mixture in a cube box with periodic boundary conditions.
Density distribution ρI(~r) evolves via the Langevin equations and forms a slowly chang-
ing external potential UI(~r). The relation between the density and external potential is
through the derivative of the partition function Z

ρI(~r) = −nIkT
∂Z

∂UI(~r)
,

where nI is the number of chains and k is the Boltzmann constant.
Such system generates Helmholtz free energy

F = −kT
∑
i

ln
Zni
i

ni!
−
∑
I

∫
V

UI(~r)ρI(~r)d~r + (6)

1

2

∑
I,J

∫
V

∫
V

εIJ(|~r − ~r′|)ρI(~r)ρJ(~r′)d~rd~r′ + (7)

kH
2

∫
V

(
∑
I

vI(ρI(~r)− ρI0))2d~r, (8)

where the �rst two terms represent the ideal free energy. The third term represents the
interaction between the chains and it has the following form in the MesoDyn code

εIJ(|r − r̃|) = ε0IJ

(
3

2πa2

) 3
2

exp[− 3

2a2
(r − r̃)2], (9)

where ε0IJ is related to the Flory-Huggins mixing parameters via χIJ = β
v
ε0IJ .

The parameters in the last term (8) are Helfand compressibility parameter kH , the
average density of each bead ρI

0 and bead volume vI . This term gives a restriction on
the size of the density �uctuation that can occur in the system.

Electrostatics may be included in the Flory-Huggins parameter, or may be explicitly
included for each bead in the system using the Donnan approximation.

The models using the Donnan approximation showed that the electrostatic e�ects do
not have a high in�uence on the membrane morphology, so using simple Flory-Huggins
theory is su�cient [4].

There are two steps in generating mesoscale model. First a coarse-grained model
of the original system has to be determined. The second step is the calculation of the
interaction energies εIJ .
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One has to be really careful, while creating the coarse-grained topology of the system,
and represent all chemically distinct units of the system by di�erent beads. Otherwise
the original chemistry of material would be lost.

After determining all the beads, it is necessary to de�ne the connectivity between
them. In the case of many small molecules, single bead can represent the whole molecule.
Small molecules with chemically distinct regions should be represented as a short chain
of more than one bead. Real polymers are represented by a Gaussian chain of respective
beads (intra molecular interactions are described by harmonic oscillator potentials) that
exhibit the same response functions as the original chain. It is worth to mention, that
the structures of the real and Gaussian chains can be di�erent. Linear polymer can be
represented by a Gaussian chain with branches and vice versa.

The next step after �nding the coarse-grained topology is to determine the interactions
between the species. Because the interactions must correspond to the interactions of
real molecules and they should be easily calculated, the interactions in MesoDyn are
calculated via the Flory-Huggins interaction parameters χIJ de�ned for each pair of the
species presented in the system.

There are several ways how to determine the Flory-Huggins mixing parameters χ. It
can be gained experimentally from e.g. the partial vapour pressure of solvent-polymer
solutions or interfacial tension. It can be also calculated from the energy of mixing.

There is a simple relation between Flory-Huggins mixing parameters between the
components I and J and Hildebrand solubility parameters δI and δJ of these components.

χIJ =
Vref (δI − δJ)2

RT
+ χs, (10)

where Vref is a reference volume - a mean molar volume of components I and J and χs
is the entropy contribution to the mixing energy. This term can be usually neglected,
because it is only a small correction to the �rst term.

Hildebrand solubility parameters can be found in the polymer handbooks or they can
be directly calculated from molecular dynamics simulations using the formula

δ =

√
Ecoh
V

, (11)

where Ecoh

V
is a cohesive energy density.

4 Mesoscale model of Na�on

This section describes the mesoscale model of Na�on morphology, that was originally
published in [5].

The limitation of the dynamic self-consistent mean �eld theory, which is implemented
in MesoDyn, is that there is only one reference volume. So it means, that all beads should
occupy approximately the same volume.

The natural choice is to take the per�uorinated side chain as a single bead S. Its
volume is 0.31nm3. This volume corresponds to the four (−CF2−CF2−)monomer groups
(0.33nm3) (bead P) and approximately to ten water molecules (bead W). The average
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between these volumes (0.32nm3) seems then as a good choice for the bead reference
volume. The bead reference volume v and the reference volume Vref used in the equation
(10) are simply connected through Avogadro number - Vref = vNA

.
= 1.9×10−4m3.mol−1.

The volumes of the beads were calculated using the SYNTHIA module.
Because of the average length of Na�on chains, a single chain of Na�on with equivalent

weight of 1100g.mol−1 is represented by twenty repeating PPS monomers. This choice
leads to the coarse-grained structure depicted in �gure 2.

Figure 2: Coarse-grained structure of Na�on

4.1 Molecular modelling of the cohesive energy density

The choice of the interaction energies εIJ is crucial for obtaining the correct morphologies.
Hildebrand solubility parameters (11) will be calculated here.

The value of cohesive energy density is very sensitive to the used force �eld. The
molecular dynamic and ab initio simulations showed that COMPASS force �eld describes
all the important interactions in Na�on polymer with a su�cient accuracy. Wescott et al.
[5] slightly modi�ed default COMPASS atom typing and partial charge assignments in
order to have higher agreement with experimental results. Their atom typing assignments
were successfully used in several studies. The same modi�ed COMPASS force �eld were
used during the calculation.

Three bulk amorphous models of each beads were generated with AMORPHOUS
CELL in order to obtain the densities of cohesive energy for each bead.

One amorphous cell was �lled with four polymers composed of 100 C2F4 monomers,
the other amorphous cell was �lled with 80 side chains. These two cells were generated
at a density of 2.05g.cm−3 that corresponds to the experimental value of Na�on density.

The third amorphous cell was �lled with 300 water molecules with at a density of
1g.cm−3.

The minimization of each of the cells with smart algorithm was used after the con-
struction. Then each of the cells was equilibrated by molecular dynamic simulation in
NVT ensemble starting at 200 K. The temperature increased to 300 K in steps of 25 K
with 20 ns dynamics with 1 ps time step. After equilibration, another 300 ns of NVT dy-
namics were carried to obtain the average value of the cohesive energy density. Andersen
thermostat was used during the calculations.
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There is a problem with the value of solubility parameter for water. The calculation

gives us the value of 47.2 MPa
1
2 . However this value is really high and leads to demixing

of all Na�on - water mixture at all hydration levels which does not correspond to the
experimental observations. Futerko and Hsing solved this problem by de�ning an e�ective

value of this parameter. They suggested the value δW = 25 MPa
1
2 for Hildebrand

solubility of water and this value was consistent with their measurements.
The reduction of the value of Hildebrand solubility parameter to the value δW =

23 MPa
1
2 was eventually done in order Crank-Nicholson scheme to converge.

This reduction and the values of solubility parameters for Te�on (δP = 13.3 MPa
1
2 )

and for side chain (δS = 21.2 MPa
1
2 ) lead to the following Florry-Huggins parameters

used in MesoDyn simulation

χPS =
11.8

RT
, χPW =

17.8

RT
and χWS =

0.6

RT
.

4.2 Calculation of mesoscale structure

The details of the MesoDyn calculation of Na�on microstructure followed by the discus-
sion of the results will be described in this subsection. Na�on membrane with equivalent
weight 1100 g.mol−1 is comprised of chains with the same lengths. Each chain is repre-
sented by twenty repeating coarse-grained monomers FF(S), where bead F represents four
C2F4 groups and bead S represent the whole side chain in the original Na�on structure.
Ten water molecules are included in the W bead.

The simulations were carried on the cubic lattice with volume (29nm)3 and grid
resolution 0.9nm. The calculation started from a homogeneous distribution of each bead
and the morphologies were equilibrated in 150µs. This relaxation time corresponds to the
5000 time steps. The simulation temperature was 300 K.

Phase separation of beads can be characterized by their order parameters. The order
parameter is de�ned as

PI =
1

V

∫
V

(θI
2(r)− θI2)dr, (12)

where θI is dimensionless density (volume fraction) for bead I. The higher is the value of
order parameter, the higher is the phase segregation.

You can see the values of the order parameters for di�erent level of hydration in Na�on
in �gures 3, 4 and 5.

It seems that no phase segregation occurs for low level of hydration in Na�on (�gure
3). The values of order parameters for respective beads increase with the increasing level
of hydration inside the membrane. The rate of segregation also grows with increasing
hydration which is in agreement with experimental results. However the phase segregation
should occur even in dry Na�on, so the model needs to be modi�ed.

You can see no phase segregation for λ = 2 also in �gure 6 and high phase segregation
for λ = 10 also in �gure 7. These �gures show the density distributions of respective
beads.

However these are just intermediate results and the model need to be improved to be
in better agreement with experimental results. It seems that the values of the Hildebrand
solubility parameters from molecular dynamics do not correspond to the reality perfectly.
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Figure 3: Order parameter for λ = 2

Figure 4: Order parameter for λ = 4

So it would be better to take them as a �rst trial and then slightly change these values
to obtain higher correspondence with the experimental results.

4.3 Conclusion and further work

The aim of my thesis is to �nd the model of Na�on microstructure, because we believe
that it has to be incorporated to the constitutive relation. The mesoscale model of
Na�on morphology was introduced in this study, however this model needs to be further
improved.

The values of Hildebrand solubility parameters do not correspond to the reality per-
fectly. So they will be taken as a �rst trial and their values will be changed to obtain
higher correspondence with the reality.

Also the size of the beads in the original model is too big according to us, so the next
step is to create di�erent coarse-graining structure of Na�on.

The sulphonic acid has di�erent properties from the rest of the side chain. So it will
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Figure 5: Order parameter for λ = 8

Figure 6: Density distributions for λ = 2
Figure 7: Density distributions for λ =
10

be taken as one bead and the rest of the structure will be transformed according to this
choice of bead volume.

The electrostatics will be not comprised in Florry-Huggins parameters, but it will be
calculated explicitly.

Calculating parameters for this model with �ner coarse-grained structure will be my
task in the following months.
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Abstract. Electroencephalography examination (EEG) records the brain activity. That makes
it important part of neurological diseases diagnosis, eg. Alzheimer's disease. Modern methods
describe EEG signal as a chaos. With such an approach, new characteristics of chaotic systems
are calculated. The correlation dimension is one of those properties, however, its estimation
requires high time-complexity. The article compares EEG time series to known chaotic system
of Brownian motion and describes correlation dimension approach using Monte Carlo method.
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Abstrakt. Elektroencefalogra�cké vy²et°ení (EEG) slouºí k zaznamenávání mozkové aktiv-
ity. Proto je d·leºitou sou£ástí p°i diagnostice neurologických chorob, nap°. Alzheimerovy
choroby. Moderní postupy nahlíºejí na EEG signál jako na chaos. Takový p°ístup tak p°iná²í
nové charakteristiky popisující tento systém. Jednou z nich je i korela£ní dimenze, jejíº výpo£et
je v²ak £asov¥ náro£ný. �lánek srovnává EEG signál se známým chaotickým systémem Brownova
pohybu a popisuje odhad korela£ní dimenze pomocí metody Monte Carlo.

Klí£ová slova: EEG, Brown·v pohyb, korela£ní dimenze, Monte Carlo

1 Introduction

Electroencephalography (EEG) signal analysis have been widely adopted. The aim is an
early detection of disorders or con�rmation of disease diagnosis which change the brain
activity in di�erent ways. EEG electrodes record the sum of the graded potentials of the
many thousand underlying neurons. The time series of EEG signal seems to have irregular
and chaotic progress, at �rst sight, but we can recognize waves with some periodicity too
[1].

Beside time-frequency analysis, EEG signal can be considered to be generated by non-
linear dynamic systems with chaotic behaviour. One of the values used for description
of chaotic systems is correlation dimension D2. Its calculation involves some di�culties
as algorithms developed from mathematical theorems are valid for noiseless and endless
chaotic processes. EEG signal does not meet this condition, EEG times series are not end-
less, but experimental data are long enough to make D2 calculation very time-expensive.

The aim of this article is to compare EEG signal data to a chaotic system with known
value of correlation dimension and approach this value using Monte Carlo method to
eliminate time complexity.

241
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(a) Brownian motion (H = 0.1)
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(b) EEG signal

Figure 1: Visualization of chaotic system and real data.

2 Fractional Brownian Motion

Fractional Brownian motion (fBm) is a Gaussian process BH(t) with stationary incre-
ments and zero mean, which depends on a parameter H ∈ (0, 1) called the Hurst expo-
nent [2]. For H = 1

2
, it is the standard Brownian motion B(t). For H > 1

2
, the increments

of the process are positively correlated and they are negatively correlated for H < 1
2
. The

higher value of H leads to a smoother motion as shown in Fig. 2.
Brownian motion is de�ned as a stochastic process B(t) that satis�es [3]:

• B(0) = 0, ∀ t,

• random variables B(t2) - B(t1) and B(t4) - B(t3) are independent for 0 < t1 < t2 <
t3 < t4,

• the variable B(t + s) - B(t) is a Gaussian variable with zero mean and standard
deviation s, ∀(s, t) ≥ 0,

• B(t) is a continuous function of t.
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(b) H = 0.9

Figure 2: Fractional Brownian Motion
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3 Correlation Dimension Monte Carlo Approach

The traditional characteristic of chaotic behaviour is called correlation dimension [4].
The correlation dimension measures the dimensionality of the object, usually attractor,
formed from N points in some embedding space. Its value lies between topological and
Hausdor� dimensions [5] according to inequalities

DT ≤ D2 ≤ DH. (1)

Taken as two-dimensional space for ease of vizualization, the case corresponds to a
time series XN where we draw a cirle of radius r > 0 around picked point and count
number of points inside the cirle. Grassberger and Procaccia [6] suggest to measure the
distance between every pair of points. Let C(r) be the number of points within all these
circles. Then C(r) is called the correlation sum and is calculated by

C(r) =
2

N(N − 1)

N∑
j=1

N∑
i=j+1

Θ(r − ri,j) (2)

where Θ is the Heaviside function, ri,j = ‖~xi−~xj‖, and N is a number of data points. C(r)
converges to the correlation integral for N →∞ and can be inspected as the probability
that two di�erent randomly chosen points will be closer than r [7].

A slope of log C(r) versus log r plot in the limit of small r and largeN is the correlation
dimension

D2 = lim
r→0

lim
N→∞

d log C(r)

d log r
. (3)

For �nite N , D2 can be estimated via LSQ method using a linearized model

log C(r) = A+D2 log r. (4)

The main disadvantage of this approach is the time complexity of C(r) calculation
for large N . The opossite problem is bias of D2 estimate which comes with small N .
Another possibility is to use the Monte Carlo approach. This methodology was desribed
and tested on past results [8] as follows.

Let M ∈ N be number of Monte Carlo simulations [9]. Let ∆ ∈ N be given barrier.
The approach is based on the Monte Carlo estimation of C(r) for k = 1, ...,M , where
rk are also results of simulation. Single simulation step is based on two random indices
i, j ∼ U({1, 2, ..., N}) which are repeatedly generated until |i − j| > ∆. Vector distance
dk = ‖xi − xj‖ is stored as result of kth simulation. After M simulations, we sort dk to
obtain non-decreasing series of dk and then

rk = d(k),

C(rk) = k/M. (5)

Resulting pairs (rk,C(rk)) are censored using contrains

pmin ≤ C(rk) ≤ pmax (6)
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Figure 3: fBm (H = 0.5) crossing with a median line

to avoid disturbances for extreme values of rk. Linear model (4) is then applied only to
censored data from Monte Carlo experiment.

The main advantage of this novel approach is in decreasing of time complexity in the
case of large time series but the estimation error also depends on M,∆, pmin, and pmax.
Meanwhile, the time complexity of original correlation sum calculations is T (N) = O(N2)
per each �xed parameter value r, the time complexity of this approach is only T (M) =
O(M logM) due to sorting complexity.

4 Numerical Experiment

Monte Carlo approach was veri�ed on Fractional Brownian motion levelsets. Levelsets,
the generalization of zero sets Z = {t 6= 0|BH(t) = 0} [10], are obtained by the crossing
of BH(t) with a constant line BH(t) = c. Moreover, the levelsets have known fractal
dimension 1−H [3].

The fBm time series X = {xk}Nk=0 for N = 106 were generated �rst and the trend
was subtracted. The median value was set as c parameter for the levelset line. The time
series and the levelset line crossing points were used in Monte Carlo estimation.

The main aim of simulations is to map D2 approximation on fBm for di�erent Hurst
exponent values H = 0.1, ..., 0.9 with simulation length M = 104 which was chosen due
to time complexity. Monte Carlo estimation is performed for L = 10 loops to obtain its
mean value ED2 and standard deviation s. Knowning only theoretical value of D∗2, the
point estimates in one-sample t-test are used as a kind of statistical pesimism. Results
of the estimation are shown in Tab. 1 including p−value of one-sample two-sided t-test
of H0 about ED2 and D

∗
2 equity.

5 Alzheimer's Disease Testing

Alzheimer's disease is an irreversible neurological disorder that causes dementia. It phys-
ically defects neurons and their synapses. The result is a loss of memory, thinking, and
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Table 1: D2 simulation for fBm

H D∗2 ED2 s p−value
0.1 0.9 0.9171 0.0095 0.1058
0.2 0.8 0.8385 0.0263 0.1777
0.3 0.7 0.7213 0.0273 0.4560
0.4 0.6 0.5739 0.0314 0.4298
0.5 0.5 0.5053 0.0378 0.8921
0.6 0.4 0.4300 0.0270 0.2947
0.7 0.3 0.3814 0.0301 0.0242
0.8 0.2 0.2899 0.0203 0.0017
0.9 0.1 0.4185 0.1120 0.0223

language skills. Due to changes in the brain, EEG takes a part in Alzheimer's disease
study [11] as a research tool.

For testing, the real biomedical signal data were used. EEG time series were obtained
from two examined groups of patients consist of 139 control normals (CN) and 26 with
Alzheimer's disease (AD) diagnosis. The signal was recorded in a form of multichannel
EEG using the standard 10-20 scheme with nineteen channels and two reference electrodes
[12].

Parameters of the simulation were kept same as for the Fractional Brownian motion
estimation. Instead of iterations, individiual D2 values were simulated for each channel
for each group of patients. The length of EEG data varied patient by patient starting
at a 5 minutes minimum with the sampling frequency 200 Hz. The correlation sum was
calculated from M = 104 pairs of points.

Resulting values of the mean ED2 and the standard deviation s of correlation dimen-
sion approaches are collected in Tab. 2. There is no theoretical number representing
ideal correlation dimension value D∗2 for EEG time series. Therefore, for a statistical
description of this model, a two-sample t-test was applied on signi�cant level α = 0.05.
This method tests the hypothesis that two indepedent samples come from distributions
with equal means H0 : EX = EY [13]. Calculated p−value are also in Tab. 2.

To avoid false positive results, the standard methodology of False Discovery Rate
(FDR) was used [14]. The corrected critical value was determined as αFRD = 0.0030.
According to this value, the third channel is signi�cant. Other channels with p−value <
0.05 are 5, 9, and 11 which has p−value equal to αFRD.

6 Conclusions

The Monte Carlo approach of correlation dimension was successfully tested on D2 of
Fractional Brownian motion crossing its median levelset line with various Hurst expo-
nent values. Along with 104 simulations, it decreases the time complexity as expected.
Acceptable results were obtained also on real data set which was EEG signal obtained
from patients with control normal and with con�rmed Alzheimer's disease. Statistically
signi�cant di�erence between these two groups was estimated on the third channel. The
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Table 2: EEG D2 simulation results

CN AD
Ch ED2 s ED2 s p−value
1 0.9622 0.0020 0.9547 0.0039 0.0370
2 0.9564 0.0019 0.9628 0.0034 0.6090
3 0.9563 0.0020 0.9688 0.0039 0.0018

4 0.9570 0.0019 0.9573 0.0028 0.7963
5 0.9600 0.0018 0.9620 0.0043 0.0156
6 0.9617 0.0018 0.9557 0.0045 0.3610
7 0.9575 0.0018 0.9571 0.0047 0.8129
8 0.9592 0.0019 0.9665 0.0043 0.6127
9 0.9603 0.0018 0.9548 0.0049 0.0179
10 0.9586 0.0019 0.9550 0.0047 0.0671
11 0.9626 0.0017 0.9644 0.0032 0.0030
12 0.9603 0.0019 0.9578 0.0054 0.1420
13 0.9560 0.0019 0.9706 0.0050 0.2361
14 0.9559 0.0019 0.9610 0.0046 0.8306
15 0.9592 0.0019 0.9644 0.0040 0.6199
16 0.9586 0.0020 0.9604 0.0032 0.9315
17 0.9591 0.0019 0.9564 0.0057 0.1604
18 0.9590 0.0019 0.9545 0.0032 0.7327
19 0.9598 0.0017 0.9512 0.0042 0.1923

third electrod is placed over the frontal lobe as shown in Fig. 4 where also other channels
with low p−value are highlighted.

7 Discussion

The result of EEG analysis con�rms conclusions of past studies and is in accordance with
biomedical hypotheses that Alzheimer's disease causes atrophy mainly at frontal and
temporal lobes [15]. Due to a kind of statistical pesimism, only the third channel was
accepted as signi�cant. The same channel was also signi�cant for EEG linear prediction
study [16]. Better results could be obtained by changing model driving parameters as a
simulation length. Other important parameter is the length of tested data. The model
was tested for crossing only with median. The next improvement could be crossing with
more lines on di�erent levels producing more points for comparison.
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Figure 4: Electrode 10-20 scheme
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Abstract. We consider Möbius number systems with so�c expansion subshift. Let F : R→ R
be an analytic function de�ned on the extended real line R = R ∪ {∞}. We show that if F
is computable by a �nite state transducer, then it is in fact a Möbius transformation, that is,
F (x) = ax+b

cx+d , ad − bc 6= 0. The same problem for a di�erent number system was also studied
in [1]. Furthemore, we show that unlike in modular Möbius systems, in bimodular systems, not
every rational Möbius transformation is computable by a �nite state transducer.

This contribution has been presented at a conference by the author and the results have
been published in [2].

Keywords: exact real algorithms, transducers, möbius

Abstrakt. Uvaºujeme Möbiovské £íselné systémy se so�ckým expanzním subshiftem. Nech´F :
R → R je analytická funkce de�novaná na R = R ∪ {∞}. Ukáºeme, ºe pokud je funkce F
po£itatelná kone£ným transducerem, potom je F Möbiova transformace, tzn. F (x) = ax+b

cx+d , kde
ad − bc 6= 0. Stejný problém, ale pro jiný systém, byl také studován v [1]. Navíc ukáºeme, ºe
narozdíl od modulárních Möbiovských systém·, v bimodulárních systémech není kaºdá Möbiova
transformace po£itatelná kone£ným transducerem.
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Abstract. We de�ne and review basic properties of a higher Dorfman bracket, an extension of

a vector �eld commutator to a direct sum of tangent bundle and a p-fold wedge product of a

cotangent bundle. Lie algebra of its derivations and group of its automorphisms is calculated.

We introduce a notion of integration of �rst order di�erential operators. We �nd an explicit

formula for integrating automorphism of in�nitesimal symmetries of higher Dorfman bracket.

Examples and an application to in�nitesimal isometries of generalized metric are included.
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Abstrakt. De�nujeme a shrneme vlastnosti vy²²í Dorfmanové závorky, roz²í°ení komutátoru

vektorových polí na direktní sou£et te£ného bundlu a p-násobného vn¥j²ího sou£inu kote£ného

bundlu. Spo£teme Lieovu algebru jejích derivací a grupu jejích automor�sm·. De�nujeme pojem

integrace diferenciálních operátor· prvního °ádu a nalezneme explicitní vzorec pro integrující

automor�smus in�nitesimálních symetrií vy²²í Dorfmanové závorky. Na záv¥r zahrneme p°íklady

a aplikaci na in�nitesimální izometrie zobecn¥né metriky.

Klí£ová slova: Zobecn¥ná geometrie, vy²²í Dorfmanové závorky, automor�smy, zobecn¥ná metrika

1 De�nition, basic properties

Let p be any non-negative integer. Consider a vector bundle E = TM ⊕ ΛpT ∗M , where
we identify Λ0T ∗M ∼= M × R. There exists a well-known extension of a vector �eld
commutator to a bracket on Γ(E), for p = 1 called a Dorfman bracket [3, 8]. It constitutes
a simplest example of Courant algebroid. For p > 1, there is a bracket on Γ(E), usually
called a higher Dorfman bracket. Let us denote the sections of E as ordered pairs.
For e ∈ Γ(E), we will write e = (x, ap), where x ∈ X(M) is a vector �eld on M and
ap ∈ Ωp(M) is a p-form on M . A higher Dorfman bracket is de�ned as

(x, ap) ◦ (y, bp) = ([x, y],Lxbp − iydap), (1)

for all (x, ap), (y, bp) ∈ Γ(E). For a detailed discussion of topics related to this de�nition
and its skew-symmetric counterpart, see [1, 4]. Since there is no known proper higher
analogue of a Courant algebroid, one has to stick to a more general notion of Leibniz
algebroid. Leibniz algebroid is a triple (E, ρ, ◦), where E is a vector bundle, ρ : E → TM
is a vector bundle morphism, and ◦ : Γ(E) × Γ(E) → Γ(E) is an R-bilinear bracket,
satisfying the following axioms:
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1. e ◦ (fe′) = f(e ◦ e′) + (ρ(e).f)e′, (Leibniz rule)

2. e ◦ (e′ ◦ e′′) = (e ◦ e′) ◦ e′′ + e′ ◦ (e ◦ e′′), (Leibniz property)

for all e, e′, e′′ ∈ Γ(E). To avoid confusion, Leibniz property is in some literature called a
Loday identity, and Leibniz algebroid a Loday algebroid.

It is not di�cult to show that if one chooses ρ = prTM , a projection onto the �rst
summand of E, then (E, ρ, ◦) from the �rst paragraph of this section forms a Leibniz
algebroid. It is not a Courant algebroid, since there is no canonical R-valued bilinear
pairing on E.

Leibniz property establishes a following property. For each e ∈ Γ(E), we can de�ne a
R-linear map χ(e) : Γ(E)→ Γ(E) using a higher Dorfman bracket:

(χ(e))(e′) = e ◦ e′, (2)

for all e, e′ ∈ Γ(E). Leibniz property then states that χ(e) is a derivation of the higher
Dorfman bracket:

(χ(e))(e′ ◦ e′′) = (χ(e))(e′) ◦ e′′ + e′ ◦ (χ(e))(e′′). (3)

This is equivalent to an observation that χ is a bracket homomorphism in a sense that

[χ(e), χ(e′)] = χ(e ◦ e′), (4)

for all e, e′ ∈ Γ(E). This can be easily proved directly from the de�nition of χ and a
Leibniz property. χ can be thus viewed as a R-linear representation of ◦ on Γ(E). Note
that it is not a representation by C∞(M)-linear maps (that is vector bundle morphisms
of E). Instead, there holds (χ(e))(fe′) = f(χ(e))(e′) + (ρ(e).f)e′ for all e, e′ ∈ Γ(E) and
f ∈ C∞(M). This also shows that χ(e) is a vector bundle morphism, i� ρ(e) = 0.

2 Derivations of the bracket

We will now examine a special class of R-linear endomorphisms of Γ(E). Let F : Γ(E)→
Γ(E) be an R-linear map, and assume that there is an R-linear operator D on a vector
space C∞(M), such that

F(fe) = fF(e) + (D.f)e. (5)

Consistency on the products of two functions requires D to satisfy:

D.(fg) = (D.f)g + f(D.g). (6)

This implies that D is a vector �eld on M . Denote this vector �eld as x ∈ X(M).
Condition (5) can be called "a locality property", since it ensures that F does not depend
on e ∈ Γ(E) in its entirety, but only on the values of e in a neighborhood of every point.
This means that if e|U = e′|U in some neighborhood in M , then F(e)|U = F(e′)|U .

Said in a slightly di�erent language, see [7], F satisfying (5) are called �rst order
di�erential operators on E, and they form a space of sections of a vector bundle D(E).
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The map assigning to F a vector �eld x can be then viewed as vector bundle morphism
a : D(E)→ TM . It follows that (D(E), a, [·, ·]) forms a Lie algebroid.

Moreover, assume that F acts as a derivation of the higher Dorfman bracket (1), that
is there holds

F(e ◦ e′) = F(e) ◦ e′ + e ◦ F(e′). (7)

Combining the properties (5) and (7) yields the equation

ρ(F (e)) = [x, ρ(e)], (8)

for all e ∈ Γ(E). Recall that given x ∈ X(M), we have the map χ(x, 0), de�ned in the
previous section, which satis�es (5), (7) and (8). De�ne a new map G : Γ(E)→ Γ(E) as

F = χ(x, 0) + G.

It is easy to see that G is a C∞(M)-linear endomorphism of Γ(E), that is a vector bundle
endmorphism of E (over identity). This means that vector �eld in (5) is zero for G.
Moreover, since the space of derivations is a vector space, G is also a derivation of the
bracket (1). It follows from (8) that ρ(G(e)) = 0. We can thus write G(e) in the block
form

G(y, bp) =

(
0 0
G1 G2

)(
y
bp

)
,

where a division into blocks corresponds to the sum TM ⊕ ΛpT ∗M . Plugging back into
the condition (7) gives the conditions:

G1(y) = −iyC, G2(bp) = λ · 1, (9)

where C ∈ Ωp+1
closed(M) and λ ∈ Ω0

closed(M). We have thus proved that the most general
map F satisfying (5) and (7) is of the form

F(y, bp) = (χ(x, 0))(y, bp) + (0,−iyC + λbp) = ([x, y],Lxbp + λbp − iyC), (10)

for (y, bp) ∈ Γ(E), C ∈ Ωp+1
closed(M) and λ ∈ Ω0

closed(M), and x ∈ X(M). Each map F is
thus determined uniquely by a triple (x,C, λ). The space of all derivations of ◦ denoted
as Der◦(E) is a Lie algebra. One �nds that

[(x,C, λ), (x′, C, λ′)] = ([x, x′], (Lx′ − λ′)C − (Lx − λ)C ′, 0). (11)

This proves that Der◦(E) ∼= X(M) n (Ωp+1
closed(M) o Ω0

closed(M)), where Ωp+1
closed(M) and

Ω0
closed(M) are viewed as Abelian Lie algebras. To conclude this section, recall that χ(e)

presents an example of an element of Der◦(E).

3 Automorphisms of the bracket

In this section, we will examine the vector bundle automorphisms of E, preserving the
higher Dorfman bracket. We will in fact show that the resulting group Aut◦(E) has
Der◦(E) as its Lie algebra (not being rigorous, no in�nte-dimensional manifolds are dis-
cussed). We will now consider vector bundle automorphisms over di�eomorphisms, that
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is pairs (F , ψ), where ψ ∈ Diff(M) is a di�eomorphism, and F : E → E is a smooth map,
such that F : Em → Eψ(m) is a a linear isomorphism for each m ∈ M . Note that each
(F , ψ) induces a R-linear automorphism of Γ(E) de�ned as (F(e))(ψ(m)) = F(e(m)),
for all e ∈ Γ(E) and m ∈M . Map F can be characterized by a property similar to (5):

F(fe) = (f ◦ ψ−1)F(e). (12)

This condition in fact ensures that F depends only on the values of e at each point
m ∈M , that it if e(m) = e′(m), then F(e)(ψ(m)) = F(e′)(ψ(m)).

Now we will consider the subset of all vector bundle automorphisms of E, preserving
the bracket (1). We thus impose a condition

F(e ◦ e′) = F(e) ◦ F(e′), (13)

for all e, e′ ∈ Γ(E). We can again combine (12) and (13) to get a consistency condition:

(ρ(e).f) ◦ ψ−1 = ρ(F(e)).(f ◦ ψ−1). (14)

for all e ∈ Γ(E) and f ∈ C∞(M). Let ψ ∈ Diff(M) be a di�eomorphism of M . De�ne a
vector bundle automorphism (T (ψ), ψ) of E by de�ning T (ψ) : Γ(E)→ Γ(E) as

T (ψ)(y, bp) = (ψ∗(y), ψ−1∗(bp)). (15)

It is easy to see that (T (ψ), ψ) satis�es (12) and (13). Now take arbitrary (F , ψ) satisfying
(12,13). Since such vector bundle morphisms form a group, de�ne a new automorphism
(G, IdM) by formula

(F , ψ) = (T (ψ), ψ) ◦ (G, IdM). (16)

Condition (14) for (G, IdM) than says that ρ(e) = ρ(G(e)). In other words, G has a block
form

G(y, bp) =

(
1 0
G1 G2

)(
y
bp

)
,

where G2 is an invertible map. Plugging back into (13) yields the conditions:

G1(y) = −iyC, G2(bp) = λ · 1, (17)

where C ∈ Ωp+1
closed(M), and λ ∈ Ω0

closed(M). Invertibility of G2 implies that λ(x) 6= 0
for all x ∈ M . Denote the group (with respect to multiplication) of locally constant

everywhere non-vanishing functions as Ω̃0
closed(M). We have thus found that (F , ψ) has

the form
F(y, bp) = (ψ∗(y), ψ−1∗(λbp − iYC)),

where ψ ∈ Diff(M), C ∈ Ωp+1
closed(M) and λ ∈ Ω̃0

closed(M). Every element of Aut◦(E) is
thus determined uniquely by a triple (ψ,C, λ). We can then �nd a composition rule:

(ψ,C, λ) ◦ (ψ′, C ′, λ′) = (ψψ′, ψ′∗C + (ψ′∗λ)C ′, (ψ′∗λ)λ′). (18)

This proves the group isomorphism Aut◦(E) ∼= Diff(M)n (Ωp+1
closed(M)o Ω̃0

closed(M)). We
see that this is in a good agreement with the previous results we have found for Der◦(E).
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4 Integration of in�nitesimal symmetries

We have shown in the �rst section, that to each e ∈ E, there corresponds a map χ(e) ∈
Der◦(E). We suspect that there should be a corresponding 1-parameter subgroup of
Aut◦(E) of the bracket automorphisms, integrating the map χ(e) in the following sense.

Let G be any �rst order di�erential operator on E, that is (5) holds. We say that
1-parameter subgroup of vector bundle automorphisms (Ft, ψt) integrates the map G, if
there holds

G(e) =
d

dt

∣∣∣∣
t=0

F−t(e), (19)

for all e ∈ Γ(E). Since ψt is 1-parameter subgroup of Diff(M), it corresponds to the
�ow of some vector �eld. It follows from (19), that it is exactly the vector �eld D in
the locality property (5) for G. This is another reason to consider �rst order di�erential
operators on E as Lie algebra of Aut(E). We write formally F−t = exp(tG).

Let us start with some simple examples. Consider �st the map G = χ(x, 0). We
have G(y, bp) = ([x, y],Lxbp). Let φxt be a �ow of x ∈ X(M). One can guess that
(Ft, ψt) = (T (φxt ), φ

x
t ) will do the trick. We thus have to check that for all m ∈M :

(G(e))(m) =
d

dt

∣∣∣∣
t=0

T (φx−t)(e(φ
x
t (m))) =

d

dt

∣∣∣∣
t=0

(φx−t∗(y|φxt (m)), φ
x∗
t (bp|φxt (m))).

The right-hand side is exactly ([x, y],Lxbp) at m, as we wanted.

Second example is G = χ(0, ap). We thus have G(y, bp) = (0,−iydap). Since G
is C∞(M)-linear, we get immediately that ψt = IdM . It is then easy to guess that
Ft(y, bp) = (y, bp + tiydap). In this case it is almost trivial to verify the condition (19).

The main pursue of this section is to �nd the automorphism integrating the map χ(e)
for general e ∈ Γ(E), and show that it is an automorphism of higher Dorfman bracket
(1). Main idea follows from the previous two paragraphs. We know how to integrate
χ(e) for e = (x, 0) and for e = (0, ap). We can thus guide our steps by suitably using the
BCH formula. De�ne X = χ(x, 0) and Y = χ(0, ap). Now observe that (4) implies that
only non-trivial nested commutator of X's and Y 's is the one containing single Y , and
(n− 1)-times X:

Xn ≡ [X, [X, . . . , [X, Y ]] . . . ]. (20)

We will use a variant of the BCH formula, called a Zassenhaus formula [2]. This formula
states that in the above special case, we have

et(X+Y ) = etX
∞∏
n=1

Cn(t,X, Y ), (21)

where Cn(t,X, Y ) = exp((−1)n+1 tn

n!
Xn). Note that Cn commute with each other, and the

product in (21) becomes an exponential of the sum:

et(X+Y ) = etX exp(
∞∑
n=1

(−1)n+1 t
n

n!
Xn).
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Inverting this expression, and interchanging X ↔ −X and Y ↔ −Y gives the opposite-
order equality:

et(X+Y ) = exp(
∞∑
n=1

tn

n!
Xn)etX . (22)

To proceed, recall the de�nition of X and Y and (4). One gets

Xn = χ(0,Ln−1x ap). (23)

We thus obtain (a formal expression):

etχ(e) = exp(χ(0,
∞∑
n=1

tn

n!
Ln−1x ap))e

tχ(x,0).

Recalling the �rst two examples, we get the (still slightly formal) expression for etχ(e):

etχ(e)(y, bp) =
(
φx−t∗(y), φx∗t (bp)− iφx−t∗(y)

{
∞∑
n=1

tn

n!
Ln−1x dap}

)
. (24)

See that sum over n can be rewritten as an integral of the power series over t:

∞∑
n=1

tn

n!
Ln−1x =

∫ t

0

etLxdt. (25)

But etLx is nothing but a pullback by a �ow φxt . We thus get

etχ(e)(y, bp) =
(
φx−t∗(y), φx∗t (bp)− iφx−t∗(y)

∫ t

0

{φx∗t (dap)}dt
)
. (26)

It is easy to see that this map indeed satis�es the integration condition (19), that is

d

dt

∣∣∣∣
t=0

etχ(e)(y, bp) = χ(e)(y, bp) ≡ e ◦ (y, bp). (27)

Now, we expect that etχ(e) will be an automorphism of the Dorfman bracket. Accord-
ing to the Section 3, this accounts to the veri�cation of the closedness of the form∫ t
0
{φx∗t (dap)}dt. The exterior di�erential operator commutes both with integration (imag-

ine it as a di�erentiation with respect to parameter of the integrand) and with the pull-
back. Closedness of this form thus follows from d(dap) = 0.

Example 4.1. Let us try to show the integration on the example. Let M = R2(y1, y2).
Let x ∈ X(R2) be de�ned as

x = y1∂2 − y2∂1.

Let p = 1. 1-form a1 is de�ned as a1 = y1dy2. First, we have to �nd a �ow corresponding
to x. This is a standard calculation, giving:

φxt (y
1, y2) = (y1 cos(t)− y2 sin(t), y1 sin(t) + y2 cos(t)).
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We see that x is a complete vector �eld, with uniform rotation along R2 origin as its �ow.
Now, we are supposed to calculate the pullback of the form dap = dy1 ∧ dy2. Pullback of
a 2-form just multiplies it by a Jacobian of the map, which is of course |J | = 1 in this
case (rotation is orthogonal). Thus φx∗t (dy1 ∧ dy2) = dy1 ∧ dy2. This also follows from
the fact that rotations are symplectomorphisms with respect to the canonical symplectic
form da1 on R2. We then obtain:

It(da1) ≡
∫ t

0

{φx∗t (da1)} = t · dy1 ∧ dy2. (28)

Finally, we will calculate the action of etχ(e) on the section (y, b1) = (y, 0), where y = y1∂1.
Pulling back the vector �eld y gives

φx−t∗(y) = {cos(t)(y1 cos(t)− y2 sin(t))}∂1 + {sin(t)(y2 sin(t)− y1 cos(t))}∂2.

Plugging this into the 2-form (28) gives:

−iφx−t∗(y)
It(da1) = {t sin(t)(y2 sin(t)− y1 cos(t))}dy1 + {t cos(t)(y2 sin(t)− y1 cos(t))}dy2.

To conclude this example, see that χ(x, ap) acts on (y, 0) as

(χ(x, a1))(y, 0) = ([x, y],−iyda1) = (−y2∂1 − y1∂2,−y1dy2). (29)

It is easy to see that there indeed holds

d

dt

∣∣∣∣
t=0

(φx−t∗(y),−iφx−t∗(y)
It(da1)) = (−y2∂1 − y1∂2,−y1dy2). (30)

5 Example

Let us show the application of the formula (26) in �nding a �nite transformation corre-
sponding to in�nitesimal isometry of generalized metric on E. It is a �berwise metric G
on vector bundle E, naturally appearing in the Hamiltonian of membrane sigma models.
For details, see for example [5]. First recall that given metric g on M , one can de�ne a
�berwise metric g̃ on the exterior product bundle ΛpTM as

g̃IJ = δ
k1...kp
I gk1j1 . . . gkpjp . (31)

where I = (i1 < · · · < jp) and J = (j1 < · · · < jp) are strictly ordered p-indices,
labeling the local basis of Γ(ΛpTM) ≡ Xp(M) induced from arbitrary local basis (ei)

n
i=1

of Γ(TM) ≡ X(M) as eI = ei1 ∧ . . .∧eip . Not only that g̃ is a symmetric C∞(M)-bilinear
form on the module Xp(M), but it is non-degenerate in a usual sense. Its signature (as a
quadratic form) depends only on the signature of g, and for positive de�nite g, g̃ is also
positive de�nite.

Writing C as a matrix, we mean a rectangular n ×
(
n
p

)
matrix CiJ de�ned as CiJ =

C(ei, eJ) for a (p+1)-form C ∈ Ωp+1(M). Note that the transpose matrix CT corresponds
to the map x 7→ ixC. A generalized metric G is de�ned by a symmetric block matrix:

G =

(
g + Cg̃−1CT −Cg̃−1
−g̃−1CT g̃−1

)
. (32)
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Having the �berwise metric G, we can de�ne a generalized Killing vectors e ∈ E to be
the sections of E satisfying the generalized Killing equation:

ρ(e).G(e′, e′′) = G(e ◦ e′, e′′) + G(e′, e ◦ e′′). (33)

Such sections have certain physical signi�cance. They correspond to Noetherian currents
conserved in time evolution, for details, see [6]. Thanks to (4) it is easy to prove that
given generalized Killing sections e, e′ ∈ Γ(E), their higher Dorfman bracket e◦e′ is again
a generalized Killing section. It follows that the set of generalized Killing vectors of G
forms a Leibniz algebra. Writing e = (x, ap), we can extract the content of the equation
(33) to get a set of three equations:

Lxg = 0, LxC = dap, Lxg̃ = 0. (34)

The last one in fact follows from the �rst one, although this is quite tedious to show.
Interpretation of the �rst condition is obvious, x is a Killing vector �eld of g, generating
thus an isometry of g. What is a meaning of the second condition?

We can integrate the in�nitesimal isometry χ(x, ap) to the automorphism of a higher
Dorfman bracket using the formula (26). We see that we have to �nd the (p + 1)-form∫ t
0
{φx∗t (dap)}dt =

∫ t
0
{φx∗t (LxC)}dt, where we have used the generalized Killing equation

for (x, ap). Glancing at the original power series expression for the integral, one sees

that
∫ t
0
{φx∗t (dap)}dt = φx∗t C − C. But we know that this is a closed form (see the

discussion after (26)). In other words, action of the isometry φxt on C only makes a gauge
transformation by a closed (p+1)-form

∫ t
0
{φx∗t (dap)}dt. The automorphism corresponding

to the map χ(e) is according to (26):

etχ(e)(y, bp) =
(
φx−t∗(y), φx∗t (bp)− iφx−t∗(y)

(φx∗t C − C)
)
. (35)

It is not di�cult to verify that etχ(e) is moreover an isometry of G, that is there holds

G(etχ(e)(e′), etχ(e)(e′′)) = G(e′, e′′) ◦ φxt , (36)

for all e′, e′′ ∈ Γ(E). To conclude, see that one can �nd the generalized Killing vectors as
follows. First �nd an ordinary Killing vector x of g. Necessary condition for LxC = dap
to have some solution is a closedness of the form on the left-hand side. That is there
holds

0 = d(LxC) = Lx(dC) = LxF,
where F = dC is a �eld strength corresponding to C. Generalized Killing equation has
the solution for given x ∈ X(M), only if x is an in�nitesimal symmetry of F . If we work
locally or on a contractible space, we can always �nd a form ap, such that LxC = dap.

Example 5.1. Let M = R2(y1, y2), and g = (dy1)2 + (dy2)2 be an Euclidean metric on
R2. Consider p = 1, and let C = (y1 + y2)dy1 ∧ dy2. We would like to �nd all generalized
Killing vectors of generalized metric G. Killing algebra of g is generated by translations
ti = ∂i and a rotation along the origin: r = y2∂1 − y1∂2. We may �nd the potentials for
LxC separately - the condition is additive. For translations, it is very simple:

Lt1C = Lt2C = dy1 ∧ dy2 = d(y1dy2).
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The set of possible choices of a1 for ti is thus a cohomology class [y1dy2]. For a rotation
generator r, we get

LrC = (y2 − y1)dy1 ∧ dy2.

We can �nd a potential for LrC easy enough. We can choose

a1 = −1

2
{(y2)2dy1 + (y1)2dy2}. (37)

Set of all such a1 is again the cohomology class of the above particular solution. The set
of all generalized Killing vectors GK(G) can be thus described as

GK(G) = {
(
α1t1 + α2t2 + βr,(α1 + α2)y

1dy2 − β

2
{(y2)2dy1 + (y1)2dy2}+ df

)
| α1, α2, β ∈ R, f ∈ C∞(M)}.

(38)

We see that Leibniz algebra GK(G) is not �nite-dimensional (as is in the ordinary Killing
vector algebra), because there is always an in�nite-dimensional ambiguity in the condition
LxC = dap.
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Abstract. The Wigner�Kirkwood (WK) expansion was originally presented in two seminal
papers [2, 3] and since its very inception it has had two important implications. On the one
hand, it has been used for studying the equilibrium statistical mechanics of a nearly classical
system of particles obeying Maxwell�Boltzmann statistics. WK expansion is in its essence an
expansion of the quantum Boltzmann density in powers of Planck's constant ~, or equivalently
of the thermal de Broglie wavelength λ = ~

√
β/M , where β is the inverse temperature andM is

the mass of a particle. On the other hand, it has paved a way for new alternative mathematical
techniques and practical calculational schemes that are pertinent to the high-temperature regime
in quantum systems.

In this paper, we pursue the study of the WK perturbation method by means of the path
integral (PI) calculus. The relevance of the PI treatment in a high-temperature context is due
to several reasons: PI's allow to connect evolutionary equations (Bloch equation or Fokker�
Planck equation) with the underlying stochastic analysis [4], they are tailor-made for obtaining
quasi-classical asymptotics [5], they allow to utilize some powerful transformation techniques to
simplify the original stochastic process, etc. Besides, PI's also provide an excellent tool for di-
rect numerical simulations of the underlying stochastic dynamics including many-body systems.
One of the key advantages of the PI approach is, however, the fact that the techniques and
methodologies used can e�ciently bypass the explicit knowledge of the exact energy spectrum.
In particular, one can progress without relying on the explicit use of approximate expressions or
interpolation formulas for the energy eigenvalues which are often di�cult to judge due to lack
of reliability in their error estimates.

The idea to use PI's as a means of producing various WK-type expansions and related
thermodynamic functions is clearly not new. Indeed, the �rst systematic discussions and analyzes
of these issues emerged already during the early 1970's. Among these belong the early attempts of
PI treatments of the high-temperature behavior of partition functions for anharmonic oscillators
and gradient expansions of free energy [5]. These approaches belong in the class of the so-called
analytic perturbation schemes which account for an explicit analytic expressions of the coe�cient
functions. For many practical purposes it is desirable to have explicit analytical expressions for
coe�cients in the WK perturbation expansion. This is so, for instance, when the symmetry
(Lorentz, gauge, global) is supposed to be broken by quantum or thermal �uctuations. Though
these issues are more pressing in quantum �eld theories, they have in recent two decades entered
also in the realm of a few-body �nite-temperature quantum mechanics. The catalyst has been
theoretical investigations and ensuing state-of-the-arts experiments in condensed Bose gases,

∗This work has been published in [1].
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degenerate Fermi gases, quantum clusters or strongly coupled Coulomb systems. It is not only
the zero-temperature regime that is of interest in these systems. Many issues revolve also around
�nite-temperature or �high�-temperature questions. These include, thermal and thermoelectric
transport of ultra-cold atomic gases, hydrogen, helium, and hydrogen/helium mixtures and their
astrophysical implications, Lennard�Jones 3He and 4He gases, etc.

A serious weakness of existent analytic WK expansions and their various disguises (be they
based on PI's or not), resides in their inability to progress very far with the expansion order.
This makes it di�cult to address thermodynamically relevant intermediate-temperature regions
that is particularly pertinent in molecular and condensed matter chemistry (binding energies,
self-dissociation phenomena, order-disorder transitions, etc.). The best analytic expansions are
presently available within the framework of the world-line path integral method (known also as
the string inspired method) [6]. In this approach the expansion coe�cients are available up to
order O(β12), subject to the actual interaction potential. Other more conventional approaches,
such as the recursive or non-recursive heat-kernel calculations or higher derivative expansions by
Feynman diagrams, achieve at best the order O(β7). The key problem is a rapid escalation in the
complexity of higher-order terms which is di�cult to handle without some type of resummation.
In the present paper we derive a new resummation formula that provides a rather simple and
systematic way of deriving the coe�cient functions. Its main advantages rely on both an analytic
control of the high-temperature behavior, and on an accurate description over a wide temperature
range via numerical calculations that can be simply carried out at the level of an undergraduate
exercise.

The structure of the paper is as follows. To set the stage we recall some fundamentals of PI
formulations of the Bloch density matrix and the ensuing partition function and Boltzmann den-
sity. With the help of the space-time transformation that transforms the Wiener-process sample
paths to the Brownian-bridge sample paths we obtain the PI that represents a useful alternative
to the original Feynman�Kac representation. Consequently we arrive at a new functional rep-
resentation of the Boltzmann density which is more suitable for tackling the high-temperature
regime than the genuine Wigner�Kirkwood formulation. While the method resembles in princi-
ple the Wentzel�Brillouin�Kramers (WKB) solution for the transition amplitude, its details are
quite di�erent. In two associated subsections we examine some salient technical issues related
to the low-order high-temperature expansion in one dimension. To illustrate the potency of
our approach we consider the high-temperature expansion of the one-dimensional anharmonic
oscillator. In particular, we perform the Boltzmann density and ensuing partition function ex-
pansions and compute the related thermodynamic quantities. The expansions obtained improve
over the classic results of Schwarz [7] and Padé-approximation-based expansion of Gibson [8].
We proceed by extending our expansion to the whole Bloch density matrix. The expansion thus
obtained is compared with the more conventional Wick's theorem based perturbation expansion
based on the Onofri�Zuk Green's functions. There we show that our prescription comprises
substantially less (in fact, exponentially less) terms contributing to higher perturbation orders.
Also the algebraic complexity of the coe�cient functions involved is substantially lower in our
approach. The paper is accompanied by Mathematica code that generates the higher-order
expansion terms for arbitrary smooth local potentials up to 18th order in β.

Let us add a �nal note. Most of the presented mathematical derivations are of a heuristic
nature � as it should be expected from the mathematical analysis based on the path-integral
calculus. The basic purpose of this paper is to �nd explicit formulas for the coe�cient functions,
and in doing so to reveal the elaborate algebraic and combinatorial structure present in these
functions. A more rigorous treatment of the aforementioned mathematical aspects is possible,
but would involve di�erent language and techniques than are employed in this paper.
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Abstract. This contribution deals with modeling of mechanical manifestations within saturated

soil, which are induced by freezing of the pore water. A simple 2D mechanical model of the phase

transition in a portion of a pore is presented. This model is based on the Navier equations and

on the continuity equation and serve mainly for a veri�cation of the dynamics of the mechanical

reaction. A basic qualitative computational study of this model is presented. Further, this

model is generalized by supplementing it with a heat balance law onto the thermo-mechanical

model describing the mutual interaction of all pore components. Thus, the extended model

enables more realistic description of the studied dynamics in a more general part of the soil pore

material. For this model, some basic qualitative studies, which indicate non-trivial progress of

the mechanical interaction, are presented as well.

Keywords: freezing, model, phase-transition, soil, micro-scale

Abstrakt. V p°ísp¥vku se zabýváme modelováním mechanických projev· v saturované p·d¥,

které jsou vyvolány zamrzáním vody v pórech. Je zde p°edstaven jednoduchý 2D mechan-

ický model fázové zm¥ny £ásti saturovaného póru zalo£ený na Navierových rovnicích a rovnici

kontinuity. Tento model slouºí p°edev²ím pro ov¥°ení dynamiky mechanické reakce. Je zde

p°edstavena základní kvalitativní výpo£etní studie tohoto modelu. Dále je tento model zobec-

n¥n, p°idáním tepelného bilan£ního zákona, na termomechanický model popisující jiº vzájemnou

interakci v²ech sloºek porézního materiálu. Roz²í°ený model tak umoº¬uje reáln¥j²í popis zk-

oumané dynamiky na obecn¥j²í £ásti p·dního porézního prost°edí. Také pro tento model jsou

p°edstaveny základní kvalitativní studije nazna£ující netriviální pr·b¥h mechanické interakce.

Klí£ová slova: zamrzání, model, fázová zm¥na, p·da, mikro ²kála

1 Introduction

In regions su�ering from freezing seasons or the climate change, upper layers of soil
ground exhibit structural changes due to the phase transition of a wet component of soil.
Therefore these phenomena introduce an unceretaint into designs of building structures
in the cold regions or an ambiguity into ecological problems associated with impacts of
the climate change.

∗Partial support of the project of the �Development and Validation of Porous Media Fluid Dynamics
and Phase Transitions Models for Subsurface Environmental Application, project of Czech Ministry of
Education, Youth and Sports Kontakt II LH14003, 2014-2016� and of the project �Advanced supercom-
puting methods for mathematical modeling of natural processes, project of the Student Grant Agency
of the Czech Technical University in Prague No. SGS14/206/OHK4/3T/14 2014-16�.
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Although there are several macro-scale models of one of the most signi�cant freezing
phenomena ( [2], [3], [4]), the frost heave, they are not su�ciently general and complex,
or are one-sidedly oriented, or are based on some simpli�ed assumptions. One of the
reasons for such state of complex understanding of the freezing soil problem is that
there is a little studies, experimental or theoretical, concerning with the behavior of the
phenomenon on the pore-scale level. Therefore one of the aims of this work is to improve
the understanding of the impacts of soil freezing on such level.

This work freely follows the preliminary models of soil freezing described in [1]. In
this contribution, �rstly, we present a 2D micro-scale continuum model capturing the
basic mechanical response within a pore during freezing of its water component. This
model helps to reveal the dynamics of this response and serve generally for the study and
veri�cation of the induced structural changes. Secondly, we further generalize this model
in terms of thermo-mechanical coupling and in terms of a general geometric scenario.
This model is capable of providing the dynamics of the freezing processes within an ideal
pore region. Computational studies for the both stages of model are also presented.

2 Arti�cially driven phase and structural model

To get a basic insight into the structural dynamics of freezing water in a nontrivial shaped
domain, we have designed a simple two-dimensional mechanical model capturing both
the solidi�cation of water in terms of a local change of the stress tensor of water and the
structural change induced by the solidi�cation. As the model has been intended to serve
purposes of study of the issue, the both changes are driven arti�cially by a step function
Υ, Υ = Υ(t, x, y), where its arguments stand for the temporal and spatial coordinates,
respectively.

2.1 Mathematical model

The default mathematical description for this model is the homogeneous isotropic elastic
model involving the Navier equations for the displacement vector u in two dimensions
and the mass conservation equation. The latter equation provides an additional relation
for the pressure p as for the another dependent variable. Let Ω. denote the considered
domain, then our system of equation reads

%l
∂2u

∂t2
= ∇ · σ in Ω. ,

p

%lEl

+∇ · u = 0 in Ω. ,

where %l stands for the density of water, σ is the stress tensor, and El is Young's modulus
of water.

In order to be able to capture the forementioned changes, the default description is
altered in terms of the modi�cation of the water stress tensor, σ. It is expressed as
a temporal-spatial dependent tensor �eld controlled only by use of functions Υ in the
following way

σ = σ(t, x, y) = Υ(t, x, y)σi + (1−Υ(t, x, y))σl , (1)

where σl stands for the stress tensor for the Newtonian �uid,

σl = −pI + µ
(
∇u̇ + (∇u̇)T

)
,



Micro-Scale Modeling of Soil Freezing 267

and σi stands for the stress tensor of an isotropic linear elastic material extended with
terms introducing the structural change during the solidi�cation of water,

σi =
Ei

2(1 + νi)

(
∇u + (∇u)T

)
+

νiEi∇ · u
(1 + νi)(1− 2νi)

I +
βiEi

1− 2νi
Υ̂ ,

where µ is the (dynamic) viscosity of water, Ei and ηi stand for Young's modulus and
Poisson's ratio of ice, respectively, and βi represents the inner stress ratio.

The system of equation is supplemented with the boundary and initial conditions.
Their particular form follows from the nature of the shape of a pore and is discussed in
following subsection.

2.2 Geometry

When interested in applications of induced forces in soils as in porous media, it is useful
to consider the domain of study as a somehow idealized part of a pore area. A convenient
shape can thus be an isosceles trapezoid representing the cross-section of a simpli�ed
meniscus between two soil grains.

da b

(a) A representative domain Ω. (a = 3e−6m,

b = 1e−6m, d = 6e−6m)
(b) A plot of (molli�ed) Υ + Υ̂ at t = 8s.

Figure 1

In our study, we use this shape of domain (see Figure 1a) and consider that narrower
of the parallel sides represents the contact point of two grains, so points on this side
are �xed in the horizontal direction, and that wider side experiences a symmetrical force
in�uence, so points on this side are also �xed in this direction. The remaining sides are
considered to be subjected loosely to the stress conditions within domain. Rewriting
these conditions on the boundaries in terms of the displacement vector u, we have

u(x) = 0 , on the parallel parts of boundary ∂Ω. ,

σ · ~n = 0 , on the remaining parts of boundary ∂Ω. .

The initial conditions are set to be constant; no initial displacement is assumed and
pini = 0.

To simulate the natural process of gradual propagation of ice into a meniscus, we
prescribe functions Υ as follows

Υ(t, x, y) = ϑ(v(t− t1)− x) , Υ̂(t, x, y) = ϑ(v(t− t1)− x− h) , (2)
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where v is the arti�cial velocity of the propagation, t1 is a delay, and h is the distance
between the steps of both functions. The parameter h has the meaning of a test tool
for the distinguishing the e�ects of the phase transition of water and of its structural
response. For simulation of the real process of freezing, the simultaneous action of the
both e�ect is assumed, i.e h = 0.

2.3 Simulations

To avoid the convergence di�culties, we use a smoothed form (with smoothing parameter
ε) of the step functions. An illustration of such a regularization is shown in Figure 1b.
For further simplicity, all physical parameters are kept constant and their exact values
are shown in Table 2.

Solutions are obtained by use of the FEM method in combination with the BDF
solver. Solving process is controlled by an error condition; the step is accepted if the
following inequality holds (

1

N

N∑
i=1

(
|ei|

Ai +R|ei|

)2
) 1

2

< 1 , (3)

where u is the solution vector, e is the solver's estimate of the local error, Ai is the
absolute tolerance for degree of freedom i, R is the relative tolerance, and N is the
number of degree of freedom.

3 Thermally driven phase and structural model

Been focusing on a more realistic problem, we have generalized the previous model in
several aspects. We have included the adjacent domains into our considerations, but still
the smallest appropriate region of a soil pore structure is considered. We have passed
to the temperature, T , as to the natural initiator of phase change and made physical
quantities dependent on the current phase.

3.1 Geometry of the problem

Problem scale of the interest is such that dimensions of pores are not negligible with regard
to the dimensions of the considered pore region. Therefore, phases contained in soil are
clearly distinguished and occupy separated subdomains. Thus generally, a representative
domain of freezing saturated soil, Ω, consists of subdomains for liquid water, ice, and
skeleton and of all their mutual boundaries. The domain illustration and the particular
notation of all domain parts are shown in Figure 3a.

3.2 Mathematical model

To cover the thermo-mechanical interactions within saturated soils during their cooling
(and warming) on pore-scale (micro-scale) level, the previous model for the water do-
main has been extended with the modi�ed heat equation, capturing the phase transition
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(a) Here the inception of the phase change and

that of the structural change are shifted, h =
2e−6m.

(b) Here the inception of the phase change and

that of the structural change occur at the same

time, h = 0m.

Figure 2: Simulations of the phase change propagation in the simpli�ed meniscus. The
color signi�es the values of function Υ + Υ̂. The arrows stand for the displacement, and
the displacement of the domain is 10 times scaled.
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Γli

Γis

Γls
Ωs

Ωl

Ωi

solid grain

ice

liquid water

(a) A representative domain Ω.

(b) → The considered domain. Its geometry

involves four quadrants with radius r = 3e−6m
and with the mutual distance c = 5e−7m. →

r

c

skeleton

pore

Figure 3

of water and representing a heat balance relation, and with the pair of corresponding
equations for the skeleton domain as well.

Further some conditions must be also prescribed on the mutual boundaries between
the domains in order to the assembly of the equation could be performed. Therefore
we assume that the temperature and the displacement vector are continuous on the
inner boundaries, that the heat �uxes are continuous over the boundaries along the grain
surfaces, and that the momentum is balanced on these boundaries.

Functions Υ initiating the changes during the phase transition are now naturally
de�ned as functions, which are explicitly dependent on the tempriture; in particular,
they are de�ned in following way: Υ(T ) = Υ̂(T ) = ϑ(T − T?) , where T? stands for the
local freezing point depression. This value can be obtained from equilibrium condition

%il
T? − T0
T?

= γκ , (4)

which generally holds on a curved equilibrium interface between liquid and solid phases
and where T0 is the bulk freezing point of water, γ denotes the surface tension, and κ
stands for the curvature of the interface.

Under these assumptions, the governing system for the micro-scale model of the phase
and structural change within a freezing saturated soil reads:

%c
∂T

∂t
+ %l

∂Υ(T )

∂t
= ∇ · (k∇T ) in Ωl ∪ Ωi ∪ Γli , %scs

∂T

∂t
= ∇ · (ks∇T ) in Ωs ,

%
∂2u

∂t2
= ∇ · σ in Ωl ∪ Ωi ∪ Γli , %s

∂2u

∂t2
= ∇ · σs in Ωs ,

p

%lEl

+∇ · u = 0 in Ωl ,

where % is the e�ective value of the density of water, c is the e�ective value of the
volumetric heat capacity of water, l stands for the volumetric latent heat of water, k
is the e�ective value of the thermal capacity of water, σ is the e�ective form of the
stress tensor, and subscript s signi�es the analogous quantities of the skeleton, and where
the e�ective values of the water properties are taken as the convex combinations of the
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e�ective values of the corresponding quantity of each pore component; i. e.

% = Υ(T )%i + (1−Υ(T ))%l , c = Υ(T )ci + (1−Υ(T ))cl ,

k = Υ(T )ki + (1−Υ(T ))kl , σ = Υ(T )σi + (1−Υ(T ))σl ,

where subscripts i and l signify the quantities of ice and water, respectively.

3.3 Simulations

The following scenario has been designed to provide a basic information on the inter-
action between the freezing pore water content and the surrounding (uncemented) solid
skeleton. The problem scenario considers a vertical cross-section through a small region
of saturated soil with an ideal geometry but with the real physical dimensions and prop-
erties. The geometry comprises a group of four untouching quadrants, which represents
the skeleton grains, and the remaining region, which stands for the pore �lled with water.
The particular geometry with all sizes is illustrated in Fig. 3b.

The outer boundary conditions for this scenario have been provided in the following
manner: Heat �ux q has been prescribed on the top boundary; the remaining boundaries
have been assumed as thermally isolated; movement of the grain sides points has been al-
lowed only along the geometry sides, and the free condition has been set for displacements
of the outer points of the pore domain.

A
(T )
i 1e−7[1] A

(u)
i 1e−12[1] βi 1.3044e8[1]

ci 2.1e3[J · kg−1 · k−1] cl 4.2e3[J · kg−1 · k−1] cs 1e3[J · kg−1 · k−1]

Ei 7.8e9[Pa] El 5.33e9[Pa] Es 7.5e10[Pa]

γ 7.5e−2[Pa ·m−1] ki 2.18[W ·K−1 ·m−1] kl 0.6[W ·K−1 ·m−1]

ks 2[W ·K−1 ·m−1] l 3.34e5[J · kg−1] µ 1.8e2[Pa · s]
νi 0.33[1] νs 0.3[1] R 1e−2[1]

%i 9.2e2[kg ·m−3] %l 1e3[kg ·m−3] %s 2.5e3[kg ·m−3]

Table 1: Values used in the simulations - the thermally driven model.

To stress the importance of the geometry e�ect, two simulations have been run. One
under the assumption of a constant freezing point of the water in the pore and another
under the assumption of the spatially dependent freezing point distribution induced by
the equilibrium condition (4). The maps of freezing points are shown in Figure 4a and
Figure 4b, respectively. The simulation results are then shown in Figure 5 and Figure 6.

4 Conclusions

The presented micro-scale model includes a basic heat and force balance and has been
designed for the purpose of a study of structural change dynamics within saturated soils
caused by the phase transition of the water content. Simulations so far provided by
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(a) The constant freezing point distribution.
(b) The freezing point distribution induced by

the equilibrium condition.

Figure 4

Ai 1e−12[1] βi 1.3e−2[1]

El 5.33e−9[Pa] ε 5e−7[1]

µ 1.8e3[Pa · s] νi 0.33[1]

R 1e−2[1] %l 1e3[kg ·m−3]

v 5e−7[m · s−1] t1 0.5[s]

Table 2: Values used in the simulations - the arti�cially driven model.

the model indicate non-trivial progress of the thermo-mechanical interaction, but for a
general conclusion wider testing will be needed. Results obtained from existing and future
studies on this level are planned to be used for upscaling the relevant information into
our macro-scale model ([1]).
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Figure 5: The simulated dynamics of freezing of the considered domain. The freezing
point is constant as in Figure 4a. The color stands for the density; the isolines signify 20
current uniformly distributed isotherms - their color legend is not shown.
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Figure 6: The simulated dynamics of freezing of the considered domain. The freezing
point is distributed as in Figure 4b. The color stands for the density; the isolines signify
20 current uniformly distributed isotherms - their color legend is not shown.


