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Predmluva

Workshop Doktorandské dny pro doktorandy oboru Matematické inzenyrstvi na FJFI
slavi v roce 2015 jiz desaté vyroci. Letosni ro¢nik se kond ve dnech 20. a 27. listopadu
2015 a bude hostit pres 30 prispévki studentt prezen¢niho i kombinovaného studia na
FJFI. Prispévky jako obvykle pfesahuji z oblasti aplikované matematiky i do informatiky
a matematické fyziky. Prezentaci pfed svymi kolegy-studenty, skoliteli, ¢leny oborové rady
MI i dalsimi zajemci z fad odborné verejnosti doktorandi ziskavaji neocenitelnou zkuse-
nost pro ucast na konferencich v sirsim méritku. Sepsani prispévku do sborniku je pro
mnohé z nich prvni prilezitosti k vytvoreni samostatné védecké publikace. Proto povazu-
jeme konani této studentské konference za nezbytné pro vytvareni vhodnych podminek
pii doktorském studiu na FJFI. Za finan¢ni podporu workshopu dékujeme Studentské
grantové soutézi (grant SVK 30/15/F4). Zajem o toto setkdni neutuché, a tak lze doufat,
ze v tradici konani konference Doktorandské dny bude i mozno nadale pokracovat.

Organizatori






Suitable Bases for Quantum Walks with Wigner
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Abstract. The analysis of a physical problem simplifies considerably when one uses a suitable
coordinate system. We apply this approach to the discrete-time quantum walk model, where the
coins are given by 2j + 1-dimensional Wigner rotation matrices (Wigner walks). The model was
introduced by T. Miyazaki et al. [1] and the limit density with respect to the standard coin basis
was analysed. First we show that the number of parameters of the Wigner rotation matrix can
be reduced from three to only one parameter which influences the dynamics of the walk. Next
we construct an optimal basis of the coin space in which the limit density of the Wigner walk
gains much simpler form. Moreover, the optimal basis allow us to identify interesting regimes
that are in the standard basis description hidden. The optimal basis description is based on
such regimes, where we are cancelling one or more peaks in the probability distribution by a
specific choice of the initial state. We provide a tool for construction of the optimal basis in
any dimension. Furthermore, the models with integer j (odd-state walks) lead to the interesting
trapping effect, which means that the walker is trapped around the origin with high probability
(central peak in the probability distribution). Most of the known results regarding the trapping
were obtained for the three-state Grover walk on a line |2, 3]. This feature was not analysed
for Wigner walks before. We find that the optimal basis is more convenient and interesting
even for the trapping probability. For example it shows that the trapping peak can be highly
asymmetric and deviates from purely exponential decay. We provide explicit results for both
the limit density and the trapping probability up to dimension five. Similar analysis of the limit
distribution was done earlier [4] for special deformations of the Grover walk. In that case the
optimal basis is different than for the Wigner walks since it is directly given by the eigenvectors
of the coin operator [5].

Keywords: quantum walk, Wigner rotation matrix, limit density, trapping effect optimal basis

Abstrakt. Pouziti spravného soutfadnicového systému znacné zjednodusi popis kazdého fyzikal-
niho problému. Tuto ideu pouZijeme na diskrétni model kvantové prochézky, kde je nasi minci
27 + 1-dimenzionalni Wignerova rotatni matice (Wignerovy prochazky). Model Wignerovy
prochazky byl zaveden a analyzovan T. Miyazakim a dalsimi [1] z hlediska limitni hustoty a
vzhledem k standartni bazi prostoru mince. Nejprve ukdZeme, Ze pocet parametrd Wignerovy
matice, které jsou fyzikalné relevantni a ovlivnuji dynamiku kvantové prochazky, se da redukovat

*This work was supported from SGS13/217/OHK4/3T /14 and GACR 13-33906S.



2 1. Bezddkova

ze tTi na pouhy jeden. Daéle zkonstruujeme bazi prostoru mince, kterou nazyvime optimalni.
V této bazi se limitni hustota Wignerovy prochézky zna¢né zjednodu$i. Volba optimélni baze
navic odkryje zajimavé rezimy, které jsou v popisu pomoci standartni baze skryty. Ukézeme
jak se d& optimélni baze jednoduse zkonstruovat pro libovolnou dimenzi. V modelu, kde je
parametr j pfirozené ¢islo, mizeme pozorovat efekt zachytu. To znamend, Ze chodec je s velkou
pravdépodobnosti lokalizovan v okoli pocatku (centralni pik v pravdépodobnostim rozdéleni je
navic). Vétsina znamych vysledki tykajicich se zachytu je pro Groverovu prochazku na p¥imce o
tfech moznych stavech [2, 3]. Pro Wignerovy prochézky nebyla tato vlastnost d¥ive analyzovana.
Ukazeme, Ze optimélni baze je vhodnéjsi a zajimava také co se tyce efektu zachytu v pocatku. Je-
den z priklada ktery ukazeme je, ze centralni pik mutze byt diky vhodné volbé pocéatetniho stavu
zna¢né asymetricky, navic je porusen exponenciélni pokles. Explicitni vysledky jak pro limitn{
hustotu, tak pro zachyt v pocéitku uvadime az do dimenze pét. Podobna analyza limitniho
rozdéleni byla provedena jiz dfive pro specialni modifikaci Groverovy prochazky [4]. Konstrukce
optimalni baze byla v tomto pfipadé zcela jind nez u Wignerovy prochazky. Optimélni béaze
prostoru mince pfimo odpovidala vlastnim vektorim mince [5].

Klicovd slova: kvantova prochazka, Wignerova rotacni matice, limitni hustota, efekt zachytu,
optimélni baze

The full paper: I. Bezdgkova, M. Stefaniak and L. Jex, Phys. Rev. A 92 (2015), 022347
or arXiv:1509.00960.

References

|1] T. Miyazaki, M. Katori and N. Konno. Wigner formula of totation matrices and
quantum walks. Phys. Rev. A 76 (2007), 012332.

|2] N. Inui and N. Konno. Localiyation of multi-state quantum walk in one dimension.
Physica A, 353 (2005) 133.

[3] N. Inui, N. Konno and E. Segawa. One-dimensional three-state quantum walk. Phys.
Rev. E, 72 (2005) 056112.

[4] T. Machida. Limit theorems of a 3-state quantum walk and its application for discrete
uniform measures. ArXiv:1401.1522.

[5] M. Stefaiiak, I. Bezdékova and L. Jex. Limit distributions of three-state quantum walks:
the role of coin eigenstates. Phys. Rev. A 90 (2014), 012342.



Box Counting with Bayesian Correction
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Abstract. Fractal patterns appear in a wide variety of sources across nature. The unusual
characteristic of fractals is that they entail non-integer dimension. The Box Counting method
is one of the often used approach to estimate the fractal dimension of a signal. Thanks to
the relationship between entropy and the fractal dimension, it is possible to employ entropy
in estimating the fractal dimension. In this paper, we propose to utilize Bayesian estimate of
Hartley entropy of a finite sample in fractal dimension estimation. This method was tested on
fractals generated by recursive expansion of appropriate matrices.

Keywords: unbiased estimation, Hartley entropy, Shannon entropy, Box Counting

Abstrakt. Fraktalni struktury se vyskytuji napfi¢ pfirodou. Neobvyklou vlastnosti fraktald
je, ze maji necelo¢iselnou dimenzi. Metoda box counting je jednim z ¢asto vyuzivanych pfistupi
k odhadu fraktalni dimenze signalu. Tu je moZné odhadovat diky vztahu entropie a fraktalni
dimenze. V tomto ¢lanku je navrzen postup odhadu fraktdlni dimenze pomoci Bayesovského
odhadu Hartleyovy entropie konetného vzorku dat. Tato metoda byla otestovina na fraktalech
generovanych rekurzivn{ expanzi vhodnych matic.

Klicovd slova: nestranny odhad, Hartleyova entropie, Shannonova entropie, box counting

1 Introduction

A fractal is an object whose so-called fractal dimension exceeds its topological dimension
and its Hausdorff dimension is non-integer at the same time. The Box Counting method
|6] can be used for estimating the fractal dimension due to the relationship

InC(a) =A—Dylna, (1)

where a > 0 is a box size and C'(a) is a number of covering elements. Capacity dimension
|1] Dy is estimated as a slope of the line computed by the least square method. These
estimates tend to be biased especially for small values of a. We propose to enhance the
Box Counting method by Bayesian estimation of Hartley entropy Hy, which offers better
estimate of capacity dimension Dj.
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2 Multinomial Distribution and Naive Entropy Esti-
mates

A multinomial distribution [5| model plays the main role in investigating of point set
structures. Let n € N be a number of distinguished events. Let p; > 0 be a probability
of the j'™ event for j = 1, ..., n satisfying > -1 pj = L. Then the random variable j has
a multinomial distribution Mul(py, ..., p,). After realization of multinomial distribution
sample of size N € N, we can count the events and obtain N; € Ny as the number of
4 event occurrences for j = 1,...,n satisfying > j—1 Nj = N. Therefore, we define the
number of various events in a sample as K' =3y ;1 < min(n, N). Revising Hartley [8]

and Shannon [8] entropy definitions

Hy =1Inn, (2)
H,y :—ijhlpj, (3)
j=1
we can perform a direct but naive estimation of them as
I:—,O,naive =1In K7 (4)
. N. N.
) 2 SE— I
1,naive N n N (5)
N;>0

The main disadvantage of the naive estimates is their biasness. The random variable
K € {1,...,n} is capped by n, which causes E[:[O,naive =FEIlnhK <Elnn =Inn = H,.
Hence, the naive estimate of Hartley entropy HO,naive is negatively biased. On the
other hand, the traditional Box Counting Technique is based on this estimate. There
we plot the logarithm of the covering element number C(a) € N against the loga-
rithm of the covering element size a > 0 and then estimate their dependency in the
linear form InCf(a) = Ay — ﬁO,naive Ina. Recognizing equivalence C(a) = K leads to
InC(a) = nK = I:Ig’naive and then ]:IO,naive = Ay — -DO,naive Ina. Defining D[]’naive as
an estimate of capacity dimension and recognizing the occurrence of [A{[],naive in the Box
Counting procedure [6], we are not surprised to be victims of the bias of Hartley entropy
estimate.

A similar situation is the case of Shannon entropy estimation. There are several ap-
proaches how to decrease the bias of lﬁh,naive to be closer to a theoretical value of Shan-
non entropy H;. Miller [4] modified the naive estimate I—A[Lnaive using a first-order Taylor
expansion resulting in

. . K—-1
H =H naive Tanr 6
1M 1, + N (6)
Lately, Harris [4] improved the formula to
A - K -1 1 1
H =H naive - 1- _ : 7
L= Haive 58T T o 2 P (7)
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Finally, we can estimate the capacity and information dimensions according to relation
]f[d:Ad—Ddlna, (8)

where Hd is any estimate of H;. Therefore, we can also estlmate Hausdorff dlmensmn
Dy using 1nequahtles D1 < Dy < Dy under the assumption that D1 <Dy < DO for any
“good” estimates Dy, Dy of capacity and information dimensions, respectively. The next
section is oriented to Bayesian estimation of Hy and Hy, which are essential for evaluating
DO and El.

3 Bayesian Estimation of Hartley Entropy
We suppose Dirichlet distribution [5] of a random vector p = (p, ..., p,,) satisfying p; > 0,
Z?:lpj = 1, with o; = o® > 0. Using properties of multinomial and its conjugate

distribution — the Dirichlet distribution, we can calculate probability estimate p(K|n, N)
of the random variable K € N for K < min(n, N) as

p(K |n, N) = prob Z 1=K n,iNj:N

I'(N+1)r N—i—oz
:(K) F(N+na Z H T(N; + 1)I(a*)

Derivation of (9) is included in the Appendix 8.1. When N > K + 2, we can calculate

n=Y D(K|[n,N). (10)

When the number of events is constrained as n < np,,,, we apply an alternative formula

Mmax

Skx =) DK |n.N). (11)

n=K

Convergence of the infinite series (10) is proved in the Appendix 8.2. Having a knowledge
of K, N where N > K + 2, we can calculate a Bayesian density

p(K[n,N)

| K.N) = P

n>K (12)

Thereafter, Bayesian estimate of Hartley entropy comes out as

o0

p(K|n,N)lnn
HOBayes—EHO Zp n|KN Z |

n= Sk (13)

— Zn:Kp(K’n’ )hln 1 K
>k D(K |0, N) ’
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which is a convergent sum as well. We gain an equivalent formula by substituting n =
K+

. S obiIn (K + )
H(),Bayes - ] Ozjoo b 5 (14)

where

(K +5\B((K +j)a*,N)
bﬂ‘( j ) B(Ka*.N)

Convergence of the sums in (13) is proved in Appendix 8.2. Particular coefficients b; can
also be generated recursively

(15)

by = 1

, _K+i T(K+j)a") TN +(K+ja—a’),

T DK gt —ar) TN+ (K +j)ar) 7 (16)
L K+ N-1 ) o

b= bia— II(l (K+jMﬁ+u)'

4 Bayesian Estimation of Shannon Entropy

In the case when the number of events n is known, we perform Bayesian estimation of
Shannon entropy for arbitrary o; = o* > 0 as

(WO +a; +1) = O (N +a+1))

i/[: (N+a)T(n;+a; + 1)

—~ T(n;i+o;) (N +a+1)

n

A N]"‘CY* * *

where 1 is digamma function. However, when the number of events n is unknown, we
can use K as a lower estimate of n and perform the final Bayesian estimation as

Hl,Bayes = Z n | K N Hl Bip (18)
n=K

which is also a convergent sum for N > K + 2.

Substituting n = K + j, we obtain an adequate formula

. > o biH
Hl,Bayos = Z]_Zooi bliK—H : (]‘9)

Unfortunately, asymptotic expansion of (19) depends on individual frequencies ;. But
H,, < Inn, hence H g4; < In K + j, which implies the convergence of Z;io biHy k)
based on majority rule and (14).
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Figure 1: Table of the fractals involved in the research.

5 Revisited Box Counting Method

Let F C R™ be a set of N points placed into m-dimensional rectangular grid of element
size a > 0. Let ﬁO,Bayes be an unbiased estimate of Hartley entropy Hy. Fitting the linear
model

ﬁ(lBayes =A—Dylna (20)

via the method of least squares is called Revisited Box Counting.

Revisited Box Counting can be modified by using H 1,Bayes instead of I:—IO,Bayes which comes
to estimation of information dimension [7] according to

fil,Bayes =A- Dl Ina. (21)

6 Experimental Part

The Revisited Box Counting technique will be tested on models of deterministic self-
similar 2D fractal sets. They are generated by recursive expansion of binary matrix
Guw € {0,1}"%?, where u a is the number of non-zero elements (units), v > 1 is a matrix
dimension, and v < u < v?.

Recursive expansion of G,, generates a binary matrix which represents fractal set I, ,
of a similarity dimension Dg = Dy = Dg = Dy = log“ Depth h of recursion depends on
v and should be appropriate to computer memory sme The structures involved in the
research are depicted in Fig. 1

At first, adequate point sets of given depth h were generated. Then, they were randomly
rotated around the origin, and finally they were randomly shifted. Afterwards, a grid of
size a was put on the data points and entropy estimates were calculated. Due to physi-
cal interpretation of entropy, the estimates were averaged over 20 realizations and mean
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Figure 2: Optimum « values of exponential model and its linear regression.

values of entropy were calculated.

The relationship between Dnaive and optimum value of o was studied on the aforemen-
tioned fractals for the grid of size a = 12,16, 20, ..., 480, 500. The results of optimization
are collected in Tab. 1. We suppose, the relationship can be approximated by linear,
exponential, or power model respectively as

a=A+ BDO,naivey
lna = A + BDO,HEHVG? (22)
Ina=A+ Bln b(),naive-

Linear regression was used for the estimation of unknown parameters A and B. The values
are included in Tab. 2 together with correlation coefficient . The exponential model had
the best correlation and will be used for corrected estimation. But the differences among
models are not statistically significant. Using exponential model, we calculated amodel
from Do naive; then recalculated Do, and tested hypothesis Ho EDO = Dy via two-sided
t-test. The resulting values are also collected in Tab. 1 as Dg and pyaue. In this case of
multiple hypothesis testing we had to apply False Discovery Rate (FDR) [2] methodology
on critical level p..;; = 0.05. We were not able to reject any hypotheses and therefore the
improved Dy estimate was not biased in our experiments.

7 Conclusion

In this paper we developed the Bayesian estimator f:[o,Bayes of Hartley entropy for Dirichlet
prior. This estimate enables to estimate Dy with suppressed bias in comparison with naive
box-counting estimate. The novel methodology is based on the box-counting estimate
Domive which helps to specify the Dirichlet prior and finally reestimate the capacity
dimension. This procedure is recommended for 2D structures with 1 < Do < 1.6 and can
be easily extended for information dimension D; estimation and higher dimensions.
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Table 1: Optimum « values and their exponential model

’ Fractal H h ‘ DO H DO,naive Qopt, H Omodel | Pvalue ‘
Fso 11 | 1.585 || 1.567 0.778 || 0.749 | 0.392
Fas1 7T 1 0.982 1.885 || 1.886 | 0.995
Faszo |7 |1 0.977 | 2.178 | 1.901 | 0.131
Fss3 7|1 0.977 2.004 || 1.901 | 0.667
F334 7|1 0.985 1.958 || 1.878 | 0.743
Fss5 7 |1 0.976 1.525 || 1.904 | 0.129
Fss6 7|1 0.983 1.760 || 1.883 | 0.698
Fss7 7T |1 0.979 1.873 || 1.895 | 0.929
Fus: || 7 | 1262 1.251 |1.302 | 1.236 | 0.789
Fyso 7 1 1.262 || 1.248 1.196 || 1.242 | 0.850
Fys3 7 1 1.262 || 1.258 1.502 || 1.223 | 0.283
Fss1 7 | 1.465 || 1.447 0.871 || 0.908 | 0.653
Fs32 7 | 1.465 || 1.447 0.830 || 0.908 | 0.427
Fss3 || 7 | 1.465 | 1.451 | 0.941 || 0.903 | 0.544
Fs34 7 | 1.465 || 1.445 0.886 || 0.911 | 0.720
Fs35 7 ] 1.465 || 1.444 0.864 || 0.913 | 0.367
Fs36 7 | 1.465 || 1.451 1.046 || 0.903 | 0.185
Fs37 7 | 1.465 || 1.453 1.061 || 0.900 | 0.019
Fs3s 7 ] 1.465 || 1.447 0.841 | 0.908 | 0.122
Fs39 7 | 1.465 || 1.442 0.755 || 0.916 | 0.009
Fss10 || 7 | 1.465 | 1.448 0.860 || 0.907 | 0.186

Table 2: Comparison of the models fitting the relationship between DO,naive and o
model H A ‘ B ‘ r
linear || 3.905 | —2.066 | —0.9542
exponential | 2.178 | —1.571 | —0.9553
power | 0.605 | —1.892 | —0.9524
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8 Appendix

8.1 Derivation of p(K|n, N) in (9)

Let Q, = {7 € (Ry)"|>_7_, ¢ = 1} be a support set of a Dirichlet-distributed random
variable p € Q, with parameters o, for j = 1,...,n. The conditional probability of
an integer K satisfying 1 < K < min(n, N) is

p(K |n, N) = prob leK n,ZNj:N . (23)
j=1

N;>0

The vector of N; can be reorganized to begin with positive values:

n,iNj:N). (24)

Let D,y = {2 € N¥| 2% 2, = N} be the domain of N = (N, ..., Ni) € Dy . Using
the mean value of a multinomial distribution over Q,,, we obtain an unbiased estimate of

n

p(K |n,N) = (K>pr0b (ijl,...,n:Nj >0 j7<K
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p(K |n,N) as

p(KImN)z(Z)E > (Nb]\iNK)ﬁpfjﬁ "

NeDg N h Jj=1 Jj=k+1 (25>
n N K
NJ
- (K) Z (Nl NK>E 117
) Y =1
Ne J=
Using the generalized Beta function
B = [ T ar= i, 26)
PEQm F(Zj 1 75)
we can calculate
E <ﬁ Nj) - fﬁEQn B(q) IHf:lpJ o H] rp Py’ dp
j - N\ — n a;—1
j=1 ’ fﬁe@n B(a) ' Hj:l p;’ dp 27)
K
_ (o) 11 T(N; + o)
F(N + Oé) e F(Oéj) ’
where « is the sum of all «;. Therefore,
5(K | n, N) (n> Z N! I'(a) HJ TN + )
p n, =
K oo Hil NAT(N +a)  [TE, T(ay)
(28)

n\I'(N L'(N; —|— oz]
- (0) e T My
In this particular paper, we assume «; = o*,Vj = 1,...,n which results in a simpler form
of Equation 28
K

R (TN + 1 (na*) I'(N; + o)
DK |n, N) = (K) T(N + na*) Ne%: ]1:[1 T(N; + DD (a"). (29)

K,N Y

8.2 Convergence of > = b;ln(K +j) in (14) and > 7 b; in (10)

The ratio of coefficients b; could be expressed as:

b; In(K+j)
b (K +j—1)
C(K+)) Wn(K+j) (K +j)a’) TN+ (K +j—Da’)
j In(K+j-1)T(K+j—-1)a) T(N+(K+j)a)

q; =
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Starting with inequality proved by Wendel [9]:

Vd € [0;1],Vx>0:%§xd; (31)

that can be generalized for 6 = D + d where D € Ny, d € [0;1) as

)

-1

[(x+9) d )
ng (x+i+d). (32)

I
<)

We should see the similarity between a* = A + a, where A € Ny, a € [0;1), and § leading
to
bj—l hl(K +] — 1)
_E+j In(K+j) (K+j—-Da* \* 7% (K+j—1Da*+i+a

i WmK+j—-D)\(K+j—1)a*+N L(K+j— Do +ita+N
(33)

q; =

=

by In(K+j)

G (K +j - 1)
PR In(K + j) ( (K+j—1)a* )a
— j Wm(K+j-D\(K+j—1a*+N

The Raabe criterion [3] will state series of positive members >~ @, as convergent if

(34)

an

exists L = lim, oo n < — 1) satisfying L > 1. Then we can calculate

I — Lm ,(bj_lln(K—l—j—'l) _1)
j—o0 b; In(K +j)

. 35
> Jim ( J ln(K+j—1)((K+j—1)a*+N) _1) (35)
I\ K K +7) (K +j—1ar '
Substitution x = K + j leads to
L= lim (z - K) r—Khn(x —1) ((z —1)a*+ N 1), (36)
z—00 x In(x) (x —1)a*

and finally

N — ot a 1 a
L=—-K+ lim (x<1+ &> —x(l——)). (37)
T—00 T X

Substituting h = 27! — 07 and applying 'Hospital rule, we obtain

14+ M=2tp)* — (1 —h)"
L:—K—i-lim( =)~ )
h—0*t h

=N - K. (38)

Thus the series > 7 bjIn(K + j) converges absolutely for X' < N — 2 because L =
N—K > 1. According to majority rule, the series > 22 b; = > 7 - (K | n, N) converges
as well.
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Abstract. The set of discrete trigonometric transforms, which correspond to the antisymmet-
ric and symmetric multivariate trigonometric functions, is extended. The multivariate discrete
trigonometric transforms are derived using the standard one-dimensional variants of discrete
cosine and sine transforms. The resulting generalized transforms are then used to derive in-
terpolation formulas for interpolation by multivariate trigonometric functions. The obtained
interpolation methods are then tested on a given model function.

Keywords: Discrete trigonometric transforms, Multivariate trigonometric functions, Interpola-
tion

Abstrakt. Soubor diskrétnich trigonometrickych transformaci, které odpovidaji antisymet-
rickym a symetrickym trigonometrickym funkcim vice proménnych je rozsifen. Diskrétni trigono-
metrické transformace vice proménnych jsou odvozeny za uziti jednodimensionélnich variant
diskrétnich kosinovych a sinovych transformaci. Vysledné zobecnéni je poté uzito k odvozeni in-
terpola¢nich formuli pro interpolaci za uZiti trigonometrickych funkci vice proménnych. Ziskané
interpolacni metody jsou nasledné testovany na zvolené modelové funkci.

Klicovd slova: Diskrétni trigonometrické transformace, Trigonometrické funkce vice promén-
nych, Interpolace

1 Introduction

The aim of this paper is to summarize and extend the knowledge of antisymmetric
and symmetric generalizations of trigonometric functions of one variable [5|. There exist
eight discrete cosine transforms (DCTs) and eight discrete sine transforms (DSTs) based
on various boundary conditions [1]. Each of these transforms can be generalized using
antisymmetric or symmetric multivariate trigonometric functions [5|. First four DCTs
and first DST were generalized in [5], the following four DCTs in [2]. The example of
generalization of the remaining DSTs is shown, then the antisymmetric multivariate dis-
crete sine transforms (AMDSTs) and the symmetric multivariate discrete sine transforms
(SMDSTs) are used to derive interpolation formulas.

The DCTs and DSTs are naturally obtained as discretized solution of undamped
harmonic oscillator equation with certain homogeneous boundary conditions [1]. These

*This work was supported by the Grant Agency of Czech Technical University in Prague, grant No.
SGS13 /217/OHK4/3T/14
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transforms can be generalized using antisymmetric and symmetric multivariate trigono-
metric functions, which are introduced as determinants and permanents of matrices,
whose entries are trigonometric functions of one variable [1]. The case for dimension
n = 2, is investigated in [3|, [4]. These functions have some remarkable properties such as
discrete orthogonality, which lead to Fourier-like transforms. This orthogonality is con-
sequence of DCTs, DSTs and their Cartesian product generalizations. There exist eight
different types DCTs and eight different types DSTs, the first four of DCTs and first DST
are generalized into their multivariate variants in [5]. The generalization of DCTs V-VIII
can be found in [2]. The remaining discrete sine transforms have to be generalized into
antisymmetric and symmetric multivariate sine transforms. The full set of 32 transforms
can then be used for applications, i.e. interpolation methods.

Due to the properties of antisymmetric and symmetric trigonometric functions, we
can restrict these functions to their fundamental domains, certain subset of R™ . Using
properties of these functions one can map any point of R™ to a point inside fundamental
domain with same value of given function. Interpolation of functions defined on funda-
mental domain can be done directly. For functions defined in R™ the fundamental domain
is mapped into R"™ using extended symmetry group and then interpolated for each block
independently. The resulting coefficients can be further analyzed in multidimensional
analogue of image recognition [8] and reversible data hiding |7| This interpolation method
can be applied to any model function, but more the given function satisfies antisymmetry
resp. symmetry and boundary conditions of discrete trigonometric transforms, the more
suitable is the method.

2 Discrete trigonometric transforms

The one-dimensional Discrete Trigonometric transforms, which have many applica-
tions in various parts of mathematics and physics, arise naturally from dicretized solution
of harmonic oscillator equation with different choices of boundary conditions applied at
grid or mid-grid points [1]. The Neumann boundary condition applied at point x = 0
with various conditions applied at grid or mid-grid points will produce eight different
DCTs. By replacing the Neumann boundary condition at x = 0 by Dirichlet condition
the DSTs are generated. This again lead to eight DSTs, each with different combination
of boundary conditions applied at grid or mid-grid points.

2.1 Discrete Cosine Transforms

DCTs are obtained using the Neumann condition at x = 0, by applying additional
conditions at grid or mid-grid we obtain each DCT. For example by applying Neumann
conditions at points x = 0 at [ = % using mid-grid and x = 7 at [ = N — 1 using grid
points we obtain DCT-VT in following form.

For N € IN are cosine functions cos (7ks) ,k = 0,1,..., N — 1, defined on finite grid

2(r+13)
—= |r=0,1,...,N—-1 1
86{2]\/—1 |r=0,1,..., : (1)
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pairwise discretely orthogonal,

N-1 / 1 _
CT . (%k (r+ 1 )) o (27rk: (r+ 2)) 2N 15%,7 )

N — 1 N — 1 Acy

*M

where constant
(3)

Therefore any discrete function f given on grid (1) is expressed in terms of cosine
functions as

o — s ifr=0o0rr=N,
"1 1 otherwise.

F

f(s) _ A, COS(W]{S% A, = 4cy, Z 1 f (M) COS (M) ) (4)

0 2N—1r 2N -1 2N -1

£
I

2.2 Discrete Sine Transforms

To generate the DSTs we replace the Neumann condition at x = 0 with a Dirichlet
condition. In exactly same way by applying different boundary conditions applied at grid
or mid-grid points we obtain eight different DSTs. For example by applying Dirichlet
boundary condition applied at grid and mid-grid points we obtain DST-VI in following
form.

For N € IN are sine functions sin (7ks),k =1,2,..., N — 1, defined on finite grid

SE{MM:O,L...,N—2}, (5)

2N -1

pairwise discretely orthogonal,

N2 (onk (r + %) (27K (T + %) 2N —1
Z S11 (w S11 W = 1 5kk’- (6)

Due to this relation any discrete function f given on grid (5) can be expressed in
terms of sine functions as

N-1 2rk (r+ 3
A sin(mks), Ay = 2N—1z;f< 2N—1)>Sin (%) (7)

k=1

The remaining discrete trigonometric transforms are be obtained in similar way.

3 Multivariate trigonometric functions

The symmetric and antisymmetric multivariate generalizations of trigonometric func-
tions are defined and their properties detailed in [5]. The antisymmetric trigonometric
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functions cos; (), siny (z) and symmetric trigonometric functions cosy (z), sinj (z) of
variable x = (z1,...,x,) € R" with parameter A = (\y,...,\,) are defined as determi-
nants and permanents of matrices with entries cos(w;z;) resp. sin(m;z;), i.e.

cos, (z) = Z sgn (o) cos(mAy, 1) cos(TAy,Ta) - + - COS(TA,, Tn),

sin (z) = Z sgn(o) sin(mA,, 1) sin(wA,,x2) - + - sin(mw\,, ),
O'GS’VL

for the antisymmetric trigonometric functions and

cosy (z) = Z cos(T Ay, 1) COS(T A, T2) - -+ COS(T Ay, T ),

oc€Sn
(9)
sin} (z) = Z Sin(m Ay, 1) SIn(T Ay, T2) - - - sin(mA,, ),
oc€Sn

for the symmetric trigonometric functions.
For further applications we will only consider functions cosy (z) and sinf(z) with
integer parameter only, k£ € Z"™ and denoting

o= (). w0

These functions due to properties of determinant, permanent and trigonometric func-
tions can be considered only on closure of the fundamental domain F'(S2) of the form

F(S*™ = {(a1,20,...,2p) €ER* | 1> 21 > 09> ... > 2, > 0} (11)

Due to additional properties we can omit boundaries

o 1; =x;1,1 €{l,...,n— 1} for cos; (z) and sin, (),
o v, =zi41,i €{l,...,n— 1} or z; =1 for cos;, () and sin;, (),
o z;=1,0€{l,...,n} for cos;, (x) and sin;, ().

In addition the functions are non-zero in interior of their corresponding fundamental
domains.

4 Discrete Multivariate Trigonometric transforms

Discrete multivariate trigonometric transforms can be viewed as generalizations of
discrete trigonometric transforms using multivariate trigonometric functions. Each of
DCTs resp. and DSTs can be generalized using symmetric or antisymmetric multivariate
version of cosine resp. sine functions. Denominated as antisymmetric multivariate dis-
crete cosine transforms (AMDCTSs) resp. symmetric multivariate discrete cosine functions
(SMDCTs) for antisymmetric resp. symmetric generalization of DCTs, and antisymmet-
ric multivariate discrete sine transforms (AMDSTS) resp. symmetric multivariate discrete
sine functions (SMDSTSs) for antisymmetric resp. symmetric generalization of DSTs.



Discrete Multivariate (Anti)Symmetric Trigonometric Transforms 17

4.1 AMDCT VI

Let us now consider antisymmetric generalization of DCT VI. For N € IN we consider
function cosy (s) with parameter k € Dy

Dy ={(kr k) [N—1>ky > ky> ... >k, >0}, (12)

restricted to finite set of points

_ 27""‘l 27”71—1_l -
e L LT S

The antisymmetric cosine functions labeled by parameters k, k' € Dy are pairwise or-
thogonal on the grid F]‘\f]’_, ie.,

Z g, cos;, (s) cosy, (s) = d ! (2N4_ 1) Ok’ (14)

sEF]‘\,”ﬁ

where B
€s = Cri4+1Crag41 """ Crp 41, (15)
dk = Ck;Cy * * * Ckg

n*

Due to this relation, any function f : F}\;I’f — R can be expanded into terms of
antisymmetric multivariate cosine functions as

f(s) = Z Ay cosp (s), A = dy, (2]\74— 1>” Z 5f(s) cosy (s). (16)

keDy seFy

4.2 SMDCT VI
+

For symmetric generalization of DCT VI we consider N € IN and function cos; (s)
with parameter k € D}

on fixed set of points
2(7"1—1-1) 2(7"”—1—1)
Yt = 27 2 D b 1
N {( IN — 1 ) ’ IN — 1 ‘(Th >Tn)€ N (8)

The symmetric multivariate sine functions labeled by parameters in k,k' € D, are
pairwise discretely orthogonal

Hy, (2N —1\"
Z g.H, " cos (s) cosy (s) = — ( ) Ok’ (19)

= dy. 4
seFy"

where Hj is number of permutations, which stabilize point k € Dy,

H,=#{ok=Fk|oe Sy}, (20)
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VIt
Fy

Therefore we expand any function f : — R into terms of symmetric multivariate

cosine functions as follows:

f(s) = Z Ay cosy (s), Ap = Z_’; (2]\74— 1) Z E.H; ' f(s)cos (s). (21)

keDY, seFy T

4.3 AMDST VI

For N € IN we consider the antisymmetric sine function sin, (s) labeled by index set
ke D and restricted to finite grid of points FNI’f X

Dy={(ky, ..., k) | N=1>k >ky>...>k,>1}. (22)

The antisymmetric multivariate sine functions labeled by parameters k, k' € f);, are
then pairwise orthogonal,

> sing (s) sing (s) = <2N4_ 1)n5kk,. (23)

VI,—
seFN

Therefore any function f : F ]‘\ﬁl_ — R can be expanded into terms of antisymmetric
multivariate sine functions as

f(s) = Z Apsing (s), Ay = (2]\74— 1) Z f(s)sin (s (24)

keDy seFy s

4.4 SMDST VI

For symmetric generalization of DST VI, let us consider N € IN and sin; (s) labeled
by index set k € Dy, restricted to finite set of points F]‘\ﬁf“

Dt ={(ky,.... ko) [N =1>k > ks> ... >k, >1}. (25)

The functions labeled by k, k' € D, | are pairwise orthogonal,

Z H;'sinf (s)sinf(s) = (2N4_ 1) Ok, (26)

seFyF

which lead to transformation formulas, which can be applied to any function
f: Fy e R to expand it in terms of symmetric multivariate sine functions,

f(s) = Apsinf(s), A, =H,' <2N4_1) > H'f(s)sing(s).  (27)

Dt VI+
keDY; sE€F N

The formulas for other AMDCTs, SMDCTs, AMDSTs or SMDSTs can be obtained by
similar way from their one-dimensional versions
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5 Interpolation by Multivariate Discrete trigonometric

functions
Let f be real-valued function given on set F/(S2%). In previous section we introduced
transformations for functions defined on grids Fy"~ and Fy'". We are looking for
interpolation polynomial of f in form of corresponding trigonometric functions labeled
by parameter k, in such a way that the value of function f is equal to value of interpolation

function on corresponding grid. The interpolation formulas for multivariate DCT VI and
DST VI with corresponding constants A, follows.

5.0.1 Interpolation by AMDCT VI

NT(@) =) Apcosy (0), on"T(s) = f(s), s € Fy'T, (28)

k€Dy

5.0.2 Interpolation by SMDCT VI

N @) = ) Axcosi(x), on"T(s) = f(s), s€ Py (29)

keDY;

5.0.3 Interpolation by AMDST VI

OnCT (@) = Y Agsing (), 63" (s) = f(s), s € PN (30)

keDy

5.0.4 Interpolation by SMDST VI

(@)=Y Agsinf(z), o7 (s) = f(s), s € FyIY (31)

keDY,

5.1 Example of Interpolation

For n = 3 let us consider model function

f(xw,z):exp((:l?—(),ﬂ +(y—0,5)7 4 (2 — 0,15) +3>

0, 005
1 (z—0,87)°+ (y—0,7)° + (2 — 0,15) @)
T — ) y - Y 2V
+36Xp< 0,005 +3)’

and interpolate it by ngK,I_’I(x, y,z) and gbxl_i’(x, Y, 2).
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Figure.1. The cut of model function for z = }l.

Figure.2. The antisymmetric sine interpolation polynomial (beI_; (z,y, i) for model
function with N = 5,10, 15.
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Figure.3. The symmetric sine interpolation polynomial ngX/_T(m, Y, %) for model function

with N = 5,10, 15.

6 Conclusion

The main idea behind generalizations of discrete trigonometric functions was shown.
The multivariate antisymmetric and symmetric generalizations of discrete cosine trans-
forms were already defined in |2|, [5]. From generalizations of discrete sine functions only
DST I was done in [5]. The remaining sine transforms can be generalized in similar way as
the DCT VI shown in this paper. Interpolation using these transforms is based on fitting
the values for n-dimensional cubic lattice inside n-simplex and then interpolating using
multivariate trigonometric functions. The versions differ by small shifts of the lattice
points.

Beside the straight-forward application in interpolation the multivariate discrete trans-
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forms can also be used as starting step for definition of Chebyshev-like polynomials. The
multivariate generalizations of Chebyshev polynomials of first and third kinds was done
in [2] using multivariate cosine functions. The possibility of generalization of Chebyshev
polynomials of second and fourth type with use of generalizations of sine functions is
yet to be investigated, but properties of the multivariate sine transforms suggests the
possibility of construction of such multivariate polynomials.
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Abstract. Systems with socio-physical interactions are characteristic by stochastic nature of
both, dynamic aspects and parameters describing single elements. Typical representative of such
system may be a group of pedestrians, which rules of motion are too complex for deterministic
description [1]. Nevertheless, wide range of models describing various phenomena were developed
in last twenty years [2],[3],[4],[5]. The main task of these models is mainly to evaluate the ability
of infrastructure to handle extreme events.

Despite significant development of computing technique and monitoring systems, some as-
pects of pedestrian’ behavior have been still underestimated. It is obvious that pedestrians
creates quite heterogeneous set from many points of view, but for the purposes of modeling,
only different velocity is taken into account. The other qualities as power, aggressiveness or
endurance are totally neglected.

Moreover, our recent experiments [7], [8] uncovered rather similar behavior when participants
walked freely, but significantly heterogeneous behavior in crowded situations. Quantitative anal-
ysis described stepwise linearly increasing trend of travel time with respect to the occupancy.
The slope of this trend strongly differs with participants, the least active pedestrians were several
times slower than the most energetic ones, under the comparable conditions. More detail study
shows that the difference is not caused by difference selection of paths, but only by the ability to
push through the crowd. Based on this observation, the quality aggressiveness («) was defined
as the inverse value of this slope:

TT, = * + Noise + — - N. (1)
vo (&%)

To enable the reproduction of this behavior, existing concept of agents’ conflicts in the
cellular automata family of the models had to be enhanced [6]. The situations, where two or
more agents are willing to enter the same cell, were solved by random selection of one agent or
by letting this cell empty (simulation of friction). This approach was modify by adding priority
to more aggressive agents.

Based on presented study, two conclusions may be highlighted:

1. the concept of aggressiveness extracted from experimental observations may be simulated
by the cellular automata models using modify conflict solution method

*This work was supported by GACR 15-15049S and SGS15/214/0OHK4/3T/14.
tThis study has been provided in cooperation with Pavel Hrabak.
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2. the free flow velocity may be considered as global constant fro the purposes of simula-
tions, the statistic distribution of observed attributes is reachable due to the stochastic
background of the models

Further research on this field should deal with more complex geometry of designed system
and confirming our experimental observations with more heterogeneous group of participants.

Keywords: evacuation dynamics, cellular model, heterogeneity

Abstrakt. Systémy se socio-fyzikdln{ interakci jsou charakteristické stochastickou povahou jak
dynamickych aspekti, tak parametri popisujicich jednotlivé prvky systému. Typicky predstavi-
tel takového systému miize byt skupina chodci, jejichz pravidla pohybu jsou tak komplexni, ze
je neni mozné deterministicky popsat [1]. Pfesto se v poslednich dvaceti letech podatilo vyvi-
nout Siroké spektrum modelti reprodukujicich riizné pozorované jevy [2],[3],[4],[5]. Cilem t&chto
modeli je pfedevsim ovérit schopnosti infrastruktury zvladat extrémni udalosti.

I pfes znacné pokroky v oblasti vypocetn{ techniky a monitorovacich systémi se stale zaned-
béavaji nékteré prvky chovani chodct. Je zfejmé, Ze se jednotlivi chodci od sebe znacné lisi
ve spousté ohledti, pifesto se v modelech uvazuje nanejvy$ rizna rychlost icastnik. VSechny
ostatni parametry, jako je sila, agresivita ¢i odolnost jsou zcela zanedbéavany.

Nage posledni experimenty pfitom odhalily [7], [8], Zze lidé vykazuji velmi podobnou rychlost
pii pohybu ve volném prostoru, ale v rdmci davu se chovaji znacné odligné. Kvantitativni analyza
ukazala linedrné rostouci trend zavislosti ¢asu prichodu mistnosti na jeji stfedni obsazenosti.
Smérnice tohoto trendu se ale mezi Gcastniky znacné lisi, stFedni ¢as prichodu nejméné pribo-
jnych tcéastnikt byl nékolikanisobné vyssi nez téch nejaktivnéjsich. Podrobnéjsi studie odhalila,
7e se jednotlivy Gc¢astnici neodlisuji volbou trajektorie, ale pouze schopnost{ prosadit se v hustém
davu. Na zékladé tohoto pozorovani pak byla definovana veli¢ina agresivita («) jako inverzni
hodnota této smérnice:

1
TT, = > + Noise + — - N. 2)
0 o

Aby bylo moZné toto pozorovani reprodukovat, bylo nutné upravit stavajici koncept feSeni
konfliktit ve t¥idé celularnich modelt [6]. Standardné jsou situace, kdy se vice agentt snazi
vstoupit do jedné buiiky, feSeny podle parametru tfeni bud nadhodnym vyb&rem jednoho ze
zucastnénych chodcti ¢i nechanim bunky neobsazené. Tento koncept byl upraven tak, ze agre-
sivnéjsi chodci jsou pii konfliktech preferovani.

Na zakladé provedené studie tak bylo mozné udélat néasledujici zavéry:

1. koncept agresivity extrahovany z pozorovaného chovan{ tcastnikii experimentu je mozné
simulovat v ramci t¥idy celularnich modeli pomoci zobecnéni feSeni konfliktti.

2. rychlost agenti ve volném rezimu muze byt modelovand jako globalni konstanta, statistické
rozdéleni ¢asu prichodu prazdnou mistnosti je dobfe simulovatelné stochastickou povahou
modelfi.

vvvvvv

experimentalnich vysledka s komplexn&jsi skupinou tGcéastnika.

Klicovd slova: evakuaéni dynamika, celularni model, heterogenita
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Abstract. We discuss algebras related to rational R-matrix. We introduce L-operators de-
scribing Jordan—Schwinger representations and use them to construct monodromy matrix which
generates Yangian algebra. Next, we introduce a notion of Yangian symmetric correlator and
give some examples of them. We use the procedure related to similarity transformations of
L-operators to generate Yangian symmetric correlators.
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Abstrakt. Diskutujeme algebry vztahujici se k raciondlni R-matici. Zavadime L-operatory
popisujici Jordan—Schwingerovy reprezentace a pouzivame je ke konstrukci matice monodromie,
ktera generuje algebru zvanou Yangian. Déle zaviadime pojem yangovsky symetrického korelé-
toru a uvadime nékteré jeho pifklady. Pouzivame proceduru vztahujici se k podobnostnim
transformacim L-operdtort pro generovani novych yangovsky symetrickych korelatora.

Klicovd slova: Yang-Baxterova rovnice, korelator, Yangian, kvantova inverzn{ metoda rozptylu

We will use the following notation throughout the text. The vector of coordinates cor-
responding to the i-th site of the chain is denoted as x; with components z; 1,z 2, ..., Zin.
Scalar product of vectors x; and x; is denoted as (x;x;) = Y ,_, ;,z;,. We will also
adopt a shorthand notation for it (ij) = (x;x;). Similarly, we denote vector of derivatives

at the i-th site as p; with components p; 1,...,p;, where p;, = 85 -

1 L-operators related to gf(n) symmetry
There is a R-matrix directly related to g¢(n) symmetry. It is of the form
ng(U)ZU'I+P12 (1)

where Py = Zz’j E;; ® Ej; is a permutation operator permuting spaces C" @ C" and
E;; are famous matrix units. One can easily prove that it is a solution of Yang-Baxter
equation

ng(u — U)ng(u)Rgg,(U) = RQg(U)R13(U)R12(U — U). (2)

*This work has been supported by the grant SGS12/198/OHK4/3T/14.
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We introduce L-operator as operator acting in tensor product of a finite-dimensional
(so called auxiliary) space and not necessarily finite-dimensional space (so called quantum
space) in the following way

L=> E;®t; (3)

ij=1

where ¢;; are generators of gf(n) satisfying commutation relation
[tija tkl] = 5kjtz'l — 5iltkj~ (4)

Introducing parameter dependent L-operator L(u) = ul + L we can equivalently rewrite
(4) as
ng(u — U)Ll (U)LQ(U) = LQ(U)Ll (u)ng(u — U). (5)

We use the advantage of L-operator language throughout the text.

We are basically interested in representations of gf(n) on spaces of functions. There
is very convenient way how to represent it. It is due to the Heisenberg pair of operators
T, Pb = O, well known from quantum mechanics, under commutation relation [p,, x| =
Oab-

There are two fundamental representations of gf(n) dual to each other. Accordingly,
we define two representations on space of functions of n variables using Heisenberg pair.
They are called Jordan-Schwinger representations. To distinguish between them one is
denoted with + and second with —. We use the advantage of L-operator formulation.

Lgy = Pao, Loy = —Tapb- (6)

The representations of gl(n) on space of functions naturally decomposes into invariant
subspaces of definite homogeneity 2[. It is due to the fact that the trace of both L-
operators is related to infinitesimal dilatation operator (xp) := >, z,p, which com-
mutes with all generators of gf(n) and thus decomposes it into gf(n) = sf(n) @ u(1).

The space of homogeneous functions of definite homogeneity is an irreducible lowest
weight representation. For 2] € Ny, the moduli space is finite-dimensional.

Let us mention, that there is plenty of algebraic relations satisfied by L-operators (6).

This can be naturally extended to spaces with n bosonic and m fermionic variables.
It results then to algebra gl(n|m).

2 General R-operators

Beside the fundamental commutation relation (5) with numerical n x n R-matrix, there
is a relation written in a similar way, but the R-operator is now acting in the space
of functions of two sets of variables. In general, R-operator acts in product of infinite-
dimensional representations of gf(n).

The defining relation for R-operator can be written in matrix form as follows

737 (1 — ) (L (1) )an(L3? (0))he = (L (0))ab (L5 () ) RT3 (= v). (7)

Let us mention without going into details that this equation is completely different from
(5). We should also mention that components of operator L; acts now in a space of
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functions of variable x; = (11, 212,...,21,) and of Ly in a space of functions of variables
Xo = (91, T2,...,T2,). Of course, we have also to mention that we have to specify how
does the L-operators act on their moduli spaces, if as L™ or L~. This is the reason for
introducing oy, 09 = £. The R-operator R{3”?(u — v) acts in the tensor product of these
two spaces.

We know two explicit solutions, cf. [2, §],

_ w de _, -
Ry (u) = (x1%2)", R (u) :/Cl+u€ (x1p2) (8)

If we restrict ourselves to the functions of definite homogeneity 2y, 2[5 in both sets of
variables x1, X, respectively, we can write additional RLL-relation

517 0 — g (L )L (02 o = (L () (£ () e R (0 = 052) — (9)

where u = u + 2l;, u; =u — 2l; —n.

3 Monodromy matrix and Yangian

Here, we will use the big advantage of Faddeev’s Quantum Inverse Scattering Method
(QISM) formulation. For a review, see [6, 1].

The mentioned L-operators and gf(n) algebra are not all algebraic objects related
to rational R-matrix (1). There is one more, much more sophisticated and in the last
years studied in many situations appearing in Yang-Mills and super Yang-Mills theory.
Its name is Yangian. The Yangian was established as an infinite-dimensional algebra for
every simple Lie algebra in works of Drinfeld [4, 5]. In the context of Quantum inverse
scattering method was founded by Takhtajan and Faddeev in [10] for Lie algebra gf(n).
For a review, please, see [9]

The Yangian Y (gf(n)) is closely related to fundamental RLL-relation (5). Let us
introduce n x n matrix 7'(u) elements of which are operators. Let this matrix can be
expanded in spectral parameter u in the following way

(T(w))ap = 0ap + Y _ uF1L}). (10)
k=1

Let this matrix satisfy the RTT-relation
ng(u — 'U)Tl (U)TQ(U) = TQ(U)Tl (u)ng(u — ’U) (11)

with rational R-matrix (1). Then this relation defines the commutation relation for the
Yangian, explicitly

e ted) = ) e ™) = 63t — 657150 (12)

It can be seen that at the first level tgj) we obtain generators of gf(n).



30 J. Fuksa

The matrix T'(u) is called monodromy matrix and is highly related to L-operators,
because it is a product of them. Here, we state the basic procedure of QISM. The L-
operator L7*(u;) is a local object and acts only in the space of function of variable x;.
We scatter from local objects L; to global object which is the monodromy matrix

T(Ula Ugy . . . 7UN) = LTI (U1>L52 (UQ) T L?VN(UN>' (13)

In the limit N — oo and under condition u; = w for all ¢ = 1,..., N we arrive at the
definition of the Yangian above. Nevertheless, for monodromy of finite length we can still
sPeak about Yangian algebra, but it is a special representation where all higher operators
t

alz) are zero for k bigger than the length of the chain N.

4 Yangian symmetric correlators

Yangian symmetric correlators (YSC) were introduced in [2]. N-point Yangian symmetric
correlator ® = ®(y,9,..., ) is a homogeneous eigenfunction of monodromy matrix 7T,
i.e. it is a solution of

1% n(ur, ug, .. un)® = E(u) O (14)

There is plenty of algebraic relations amongst the correlators. Because of lack of
the space, we will not mention them, see |2, 8. We will only mention here their most
important property from the point of view of this article. They can be generated by R-
operators via RLL-relations (7) and (9) in the sense that if some ® is a Yangian symmetric
correlator, then also R} ;7" (u; —uiy1)® and Ry (uf" —uj ") ®. Let us remark without
going into details that R-operation producing new correlator from the old one changes
the arguments of the monodromy matrix as can be seen from RLL-relations.

The basic two YSC’s are a constant function 1 and Dirac’s distribution 6 (x). The
action of L-operators on basic correlators is

Lt(u) 1= (u+1)I-1, LT (u) - 6 (x) = ul - 6™ (x),
L™ (u)-1=ul-1, L™ (u) - 0™ (x) = (u+ 1T - 6™ (x). (15)

5 Some examples of correlators

In what follows, we use the so called similarity transformation for generating of correla-
tors, i.e our method stays and falls with R-operator R*~. There are another methods
of creation of correlators, the most powerfull of them is method using R-operator R+
acting on Dirac’s delta distributions. Also, a convolution of correlators produces another
correlators. But, as we said, we describe here just the method of similarity transforma-
tion.

Let us write here some useful relations

(07050 = (o= NEE) @ @ e = (o= ATE ) @ (10
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Let us repeat that the infinitesimal dilatation
(xipi) = Z TiaPia (17)
a=1

measures the homogeneity of functions in the set of variables x;, e.g.
(xiPi) (5)* = A(ig)™. (18)

Let us introduce useful matrix operator

Li.aljb

(1i‘>ab = — .]7 (19)

! (i7)

satisfying

11 =1, 1,1 =1, 1,15 =1, 1;1; =0, lyds =21y, lI31lo =213
(20)

where 19)(34

(13)(24)

is of zero homogeneity (x;p;)z = 0 for all ¢ = 1,2,3,4. Another relations amongst 1,
and z can be written.

5.1 3-site correlators

We will discuss just mostly plus situation. Mostly minus convention is dealt similarly.
Situations + + + and — — — are uninteresting because they produce from a constant
function a constant function. Correlators for configurations +—+ and ++— are explained
in [2]. Therefore, I will not mention them.

5.1.1 Correlator — + +

We can use two methods how to calculate the correlator related to a sequence of repre-
sentations o = (—, +, +).

The first one is the following. First of all, let use RLL relation of the second kind
on sites 1 and 2. We can not forget that such a relation holds only when we restrict
ourselves to homogeneous functions on both sites. Then we want to apply RLL relation
of the second kind on sites 1 and 3. To be able to do that we have to "degenerate" the
L-operator on site 2 to a multiple of identity operator. But it is restricted to homogeneous
functions. The only functions on which L-operator degenerates to identity operator are
its eigenfunctions 1 and Dirac’s delta function 6 (x). We choose in this case the function
1.

First of all, let us use the RLL relation of the second kind on sites 1 and 2:

Ly (1)L (ug) L (u3) (21)" " p(ary3 A) @ 1 =
= (21)" % Ly (un) L (uz) L (u)p(a1; ) @ 1 (22)
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where p(z1; ) ® 15 are written to emphasize the fact that this equation is valid only
under restriction to functions of definite homogeneity and A is the homegeneity of function
o(x1; A). We get

Ly (un) L (ug) L (ug) (21)" "0 (21;0) @ 1y =

= (ug +1)(21)" 7" Ly () Ly (ug)p(w1; A) @ 1o, (23)

We see that on the right hand side can be again used RLL relation of the second kind
because we can take ¢(z1;\) = (31)* with A = u; —n — ug

Ly (u1) Ly (us)(31) "1 @ 13 =

= (31)“1_”_“3L1_(ul)L:}f(u:),)ll ® 13 = ul(u;; + 1)(31)"1_”_"311 ® 15. (24)
We get
where
O = (21)" 2 (31)m e, (26)

On the other hand, we can use methods similar to subsection 5.2 and rewrite the
defining relation to
L3 (u2) L3 (u)® = E'Ly (u})® (27)

with v} = —u; — 14+ n+ Ap + A3 and E' = E/(uju)). We use the ansatz
= (12)M2(13)Ms, (28)

Commuting the operator ® to the left, acting on constant function and cancelling ® we
get the following condition on E’, A\j3 and A;3:

(Ug + 1)(11,3 + 1)1 + )\12(’&3 + 1)112 + )\13()\12 +Z2 + 1)113 = E’(u'll — )\12112 — )\13113) (29)

with solution £’ = —(ug + 1), A\j2 = ug — uy and A3 = uy — uz — n.

5.2 4-site correlator + — —+

Let us try to find a correlator for configuration + — —+, in other words, let us solve
condition

L (w1)Ly (u2) Ly (us) L (ua)® = EQ. (30)
Equivalently, we can find

Ly (u3) L (ug)® = E'Ly (uy) Ly (u))® (31)
where

uy = —up — 1 — Ajg — i3, Uy = —ug — 1 +n+ Ajg + Aoy (32)

and B’ = —LZ. . We choose an ansatz of the form

uiugu) ub

O = (12)M2(13)M3(24)4 (34)2 > " by, 2™, (33)
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because without the sum ) b,,2™ we get very degenerate solution with many \;; = 0.
We will need the following commutation relations with 2

Ta.b T1p T3p Top
m i m o 34
P3p2 (psb—% ) rn(13)>, Pap? <p4b—%rn<34> Tn(24)) , (34)
L1 I4b xgb ang

Commuting ® in (31) to the left on both sides and cancelling the prefactors (ij)*4, we
we arrive to the expressions for the left hand side

> bty (s + 1)1+ bty (Aas = m) Loy — b (Aag = m) (g + 1)1y

+ [bm()\34 +m)(us —ug —n+m— A3y — Aoy — A13)

— b1 (Ais — e+ 1) Aoy — m+ 1)} 134} (36)
and for the right hand side

3 zm{bmu;(u; 1)1+ bty (Mg — m) a1 — bn(ag — m) (1t + 1)1ag

+ [bm()\m + m)(U,Q — u’l —n+m— )\12 — /\24 — )\13)

— bmfl()\24 —m + 1)()\13 —m + 1):| 121}. (37)

Comparing it we get five equations:
uz(ug + 1) = F'uy(uy + 1), (a)
ug(Aog —m) = —E'(Xyg —m)(u) + 1), (b)
— (Mg —m)(ug + 1) = E' (A3 — m)us, (c)

bm(/\34 + m)(u;; —Ug—N+m— )\34 - )\24 - )\13) = bm—l()\13 —m + 1)()\24 —m + 1),
(d)
bm(/\12 + m)(u'z — u/1 —n+m— )\12 — )\24 — )\13) = bm—l()\24 —m + 1)()\13 —m + 1)

(e)

To make equations (d) and (e) consistent it has to hold i) A3y = A2 and ug —ug = ub — v
or 11) /\12+/\34+)\13+)\24:u3—u4—nand u3—u4:u’2—u’1.
Let us analyse i). We have two constraints

At = Aiz, (*)
Uz — Ug = uh — uj. (**)
From (b) and (c) we see that
1
it (e (38)

uh(uy + 1)
and comparing with (a) we get that E/ = 1. Then from (b) and (c¢) we get

/\13 =—A;2 —u; + us, Aoy = —A1g — N+ Uy — Uy, (39)
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And for b,, we get

(u3—u1—/\12—m+1)(u2—u4—)\lg—n—m—l—l)

bm = b1 s+ ) Ovia + 11 + 1 — 02) (40)
which gives a solution
A13 A24
b — F(m —m 4+ D)D(uy — ug — Aj2 — n—m + 1) (41)

F()\m + m)F()\H +m + Uy — u2)

We choose A3 = us — uy + 1 and get a solution where b,, = 0 for m < 0. Using integral
formula for gamma function

F'(A+1) e~
A= d 42
Y 27 /c(_c)/\Jrl ¢ (42)

where C is a contour encircling clockwise the positive real semi-axis starting at +o0o — ie
and ending at 400 + 7€, we get the solution

(I) = K . /HdCije_Cij(ij)(012C34)_/\12_1(—613)_)\13_1<—C2_4>\24_1)X

. T(1+ Az +m) (613024)m (43)

m) C12C
0 12C34

with unimportant constant K. Using formula

Z Mxm — p(/\)# (44)

m!
m>0
we get
o p G*Cij(ij)
B / 6(012634 — C13Coq) M2 (—3) M3 H] (—gq ) M2aH]

up to a constant factor, where Ao = us—u;+1, \j3 = uz—us—1 and Aoy = u; —ugy—n—1.
In a similar way we can analyse the case ii).

(45)

5.3 Correlator +--- 4 —

Let us denote the monodromy matrix Ty "y (un, . . ., u1, up). It can be easily shown that
the corresponding correlator and eigenfunction is

N N-1
Tt — H(Z O)uifl—Ui’ Ett— — UN H (Uz + 1), (46)
=0

=1
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6 Conclusions and outline

We have introduced some basic features of general R-operators and used their properties
to generated Yangian symmetric correlators. YSC’s are very important object in modern
approach to quantum field theory. It shows up that amplitudes in weekly coupled N = 4
super Yang-Mills theory are composed out of the YSC’s. They were also successfully used
for calculation of anomalous dimensions of composite operators in other theories.

It seems that YSC’s are related also to parton distributions. This is a specific case,
because the problem is related to ¢gl(2) symmetry and corresponding Yangian. There
is also still partially open question if the same procedure can be done for g-deformed

U,(s0(2)). On both of these questions we try to give an answer in our paper in preparation
[7].
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Abstract. The bidirectional texture function (BTF) is the recent most advanced representation
of visual properties of material surface. It specifies its appearance due to varying spatial, illumi-
nation, and viewing conditions. Corresponding enormous BTF measurements require compact
mathematical representation for visual fidelity preserving compression. We present a novel BTF
model based on a set of underlying three dimensional moving average random field (3D MA RF)
models. 3D MA assumes the texture considered as a product of a convolution of an uncorrelated
three dimensional random field with a three dimensional filter which completely characterizes
the texture. The BTF model combines several spatial factors, subsequently factorized into a
set of 3D MA representations, and range map to produce the required BTF texture. This en-
ables high BTF space compression ratio, unrestricted texture enlargement, and reconstruction
of unmeasured parts of the BTF space. We also compare proposed model with its simpler two
dimensional variant in terms of colour distribution fidelity.

Keywords: Bidirectional texture function, texture analysis, texture synthesis, data compression,
virtual reality, moving average random field model

Abstrakt. Obousmérna funkce textur (BTF) je v soucasné dobé nejpokrocilejsi reprezentace
vizuélnich vlastnosti povrchu materidlu. Jeji vzhled se méni s ménicimi se podminkami osvétlen{
a s thlem pohledu. Odpovidajici naméfend data vyZaduji kompaktni matematickou reprezentaci
umozihujici kompresi zachovavajici vizualni vérnost. V tomto ¢lanku predstavujeme novy BTF
model zaloZeny na sadé trojrozmérnych modeld klouzavého priméru nahodného pole (3D MA
RF). 3D MA piedpoklada, ze texturu lze povazovat za produkt konvoluce s nekorelovaného tro-
jrozmérného nadhodného pole s trojrozmérnym filtrem, ktery zcela charakterizuje texturu. BTF
model kombinuje nékolik prostorové omezenych faktori reprezentovanych 3D MA a hloubkovou
mapu k ziskani pozadované BTF textury. Toto umoznuje kompresi BTF prostoru s vysokym
kompresnim pomérem, neomezené rozsifeni textur a rekonstrukci nenamétrenych ¢asti BTF pros-
toru. Rovnéz porovnavame navrzeny model s jeho jednodussi dvourozmérnou variantou a to z
hlediska vérnosti reprodukce barevného podani.

Klicovd slova: Obousmérnd funkce textur, analyza textur, syntéza textur, komprese dat, vir-
tualni realita, model pohyblivych primért nahodného pole

*Pattern Recognition Department, Institute of Information Theory and Automation, ASCR.
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1 Introduction

Realistic virtual reality scenes require objects covered with synthetic textures visually as
close as possible to real surface materials appearance they emulate under any required
viewing and lighting conditions. Recent most advanced visual representation of such
surfaces is Bidirectional Texture Function (BTF) [2| which is a seven dimensional function
describing surface appearance variations due to varying spatial position and illumination
and viewing angles. Such a function is typically measured as thousands of images per
material sample, each taken for a specific combination of the illumination and viewing
condition. Textures can be either represented by digitized measured ones or synthetic
ones represented by an appropriate mathematical model. Using digitized textures directly
suffers among others with evidently extreme memory requirements.

Several so called intelligent sampling methods ([5] among others) were proposed to
solve this problem. All of them are based on some sort of original small texture sampling.
However, they still require to store thousands images for every combination of viewing
and illumination angle of the original target texture sample and additionally they of-
ten produce images with undesirable visual artifacts. Moreover some of them are very
computationally demanding.

Contrary to the sampling approaches, the synthetic textures generated from mathe-
matical models are more flexible and extremely compressed, because only tens of param-
eters have to be stored instead of the original inconvenient visual measurements. They
may be evaluated directly in a procedural form and can be used to fill virtually infinite
texture space without visible discontinuities. On the other hand, mathematical models
can only approximate original data, which might result in visual quality compromise. A
BTF texture representation requires, in general, seven dimensional mathematical mod-
els, but it is possible to approximate the BTF with a set of much simpler three or two
dimensional factorial models. Such a compromise obviously leads to some information
loss.

We present a novel BTF model based on a set of underlying three dimensional moving
average random field (3D MA RF) models. 3D MA model assumes the texture consid-
ered as a product of a convolution of an uncorrelated three dimensional random field
with a three dimensional filter which completely characterizes the texture. As the pro-
posed underlaying MA model suffers from inability to represent low frequencies present
in natural textures we use multi scale extension of the model so that modelled texture
is decomposed by means of Gaussian Laplacian (G-L) pyramid and each band limited
component is modelled independently. The BTF model combines several spatial factors,
subsequently factorized into a set of 3D MA representations, and range map to produce
the required BTF texture.

BTF 3D MA model represents a novel method for efficient rough texture modelling
which combines an estimated range map with synthetic smooth texture generated by
the set of multiscale 3D MA models. The texture visual appearance during changes of
viewing and illumination conditions are simulated using either the bump mapping [1]
or displacement mapping [8] technique. The obvious advantage of this solution is the
possibility to exploit direct support for both bump and displacement mapping techniques
in the contemporary graphics hardware.
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2 Three Dimensional Moving Average BTF Model

The BTF model combines the estimated and enlarged material range map with the syn-
thetic smooth texture. The range map specifies overall roughness of the textured surface
which significantly influences the BTF texture appearance. The BTF model range map
estimate can benefit from tens of ideally mutually registered BTF measurements using
the method called over determined photometric stereo [9] making such estimate much
more accurate. The estimated range map is enlarged into required size using the roller
[5], currently the most efficient texture synthesis algorithm.

Analyzed texture is decomposed into a multi resolution grid and each resolution data
are independently modelled by their dedicated model. Each one generates a single spa-
tial frequency band of the texture. Decomposition is performed using Laplacian pyramid
and the intermediary Gaussian pyramid which is a sequence of images in which each
one is a low pass down sampled version of its predecessor. The Laplacian pyramid con-
tains band pass components and provides a good approximation to the Laplacian of the
Gaussian kernel. It can be constructed by differencing single Gaussian pyramid layers.
The hierarchy of different resolutions of an input image provides a transition between
pixel level features and region or global features and hence such a representation simplify
modelling a large variety of possible textures. Each band limited component is modeled
independently.

A stochastic texture can be considered as a sample from a three dimensional RF
defined on an infinite three dimensional lattice. Let us denote the input factor represented
by the 3D MA RF model Y, then Y{; ;) is the intensity value of a pixel at (4, j) in k-
th spectral plane of this factor. The model assumes that each factor is the stochastic
texture and therefore the output of an underlying system which completely characterizes
it in response to a 3D uncorrelated random input. This system can be represented by
the impulse response of a linear 3D filter. The vectors of intensity values of the spectral
planes of the most significant pixels together with their neighbours (defined by relative
shifts N(i,j) € N, i €{0,...,|N| =1}, j € {0;1} ) are collected and averaged and the
resultant 3D kernel is used as an estimate B of the impulse response of the underlying
system. A synthetic factor YT can be generated by convolving an uncorrelated 3D RF E
with this estimate:

IM]=1 c—1
T _
}/(ivjvk) - Z Z B(n,k7kl)E(i—‘y—N(n,O),‘j—‘,—N(n,l),k‘/) ) (1)

n=0 r'=0

where ¢ is the number of the spectral planes of the modelled texture.

2.1 Parameter Estimation

The parameters of B have to be estimated to fit the model equation (1) to certain image
Y performing extended method used for two dimensional MA (2D MA) BTF model [4].
The procedure begins by selecting thresholds yi, & € {0,...,¢ — 1}, usually chosen as
some percentage (0—65) of the standard deviation of the intensities of the spectral plane
k. The analysis itself starts from the top left corner of the image and proceeds to the
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bottom right corner identifying pixels at which the intensities in individual spectral planes
cross the thresholds ie. (Y ) > yx) and ((Y_y 0y < yp) or (Yiyi,x) < Yx)) and
((Yiij—iay < Yw) or (Y p1ay < Yx)) holds. When such threshold crossing occurs the
intensity values of all spectral planes of the support region defined by A around the
crossing point are saved. The same procedure is followed at the next threshold crossing
point and these intensity values are added to the previously saved. The summed up
values are divided by the total number of contributions for the corresponding parameter
estimates, i.e. averaged.

2.2 Synthesis

The underlying 3D MA model is able to generate synthetic images, i.e. stochastic smooth
textures, YT directly from the parameters saved in B. The synthetic factor can be gen-
erated simply by convolving an uncorrelated 3D RE E with the estimate of B according
to (1). All generated factors form new G-L pyramid. Fine resolution synthetic smooth
texture is obtained by the collapse of the G-L pyramid i.e. an inverse procedure of that
one creating the pyramid. Visual appearance of the resulting BTF texture is enhanced
by including information from the estimated and enlarged range map using either the
bump mapping or displacement mapping technique.

3 Results

We tested the model on BTF textures from the University of Bonn BTF database |7|
which consists of several materials such as aluminium foil, corduroy, graved granite stone,
leather, upholstery, wood. Each BTF material sample included in the database was mea-
sured in 81 illumination and 81 viewing angles and the resulting images have a resolution
800 x 800 pixels. Several achieved results can be observed in Fig.1 showing BTF tex-
ture of lacquered wood applied on nontrivial geometrical body. The presented scene was
rendered with several different light conditions to demonstrate the effect and meaning of
BTF texture use. We used used BTF texture plug in for Blender (a free and open source
3D animation suite) [6].

Comparison of the presented model with existing alternatives is hardly feasible as
there is still a need for a reliable criterion for such validation. Many already developed
approaches are limited to monospectral images that is clearly major disadvantage as
colour is arguably the most significant visual feature. Currently, psychophysical experi-
ments, i.e. quality assessments performed by humans, represent the only reliable option.
Methods of this type require time demanding experiment setup design, strictly controlled
laboratory conditions and representative set of human testing subjects. So that such
experiments are extremely impractical, expensive, generally demanding. We simply ren-
der several common three dimensional textures modelled both by 3D MA model and its
simpler two dimensional variant (2D MA). Several examples, which can be seen in Fig.2,
clearly shows the information loss and therefore visual quality of the result caused by
spectral decorrelation and thus definite advantage of the extended model.
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Figure 1: Several achieved results. BTF texture of lacquered wood applied on non-
trivial geometrical body rendered with several different light conditions. Comparison of
3D MA BTF model (odd rows) with 2D MA BTF model (even rows).

Figure 2: Demonstration of the advantage of the extended model. Comparison
of original common three dimensional texture (the first image in each triplet) with 3D
MA synthesis (the second image in each triplet) and with 2D MA synthesis (the third
image in each triplet).
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3.1 Future Work

Presented MA 3D model can be used as well as the core of compound texture model
similarly to three dimensional causal autoregressive random field model in [3].

4 Conclusion

The presented BTF 3D MA model offers the possibility to compactly represent and
theoretically unlimited enlarge BTF textures playing role as a simple alternative to the
existing RF based BTFE models. It is based on the extension of two dimensional BTF
MA model.

The algorithm has very low computation complexity and does not require any in
general time consuming numerical optimization such as the usually employed Markov
chain Monte Carlo method or some of their deterministic approximations. Since this
model is three dimensional and therefore outfitted for the treatment of multispectral
data no spectral decorrelation is needed. Such decorrelation, necessary in case of two
dimensional models, increases computing demands and is a cause of certain infomation
loss leading to colour quality degradation of synthesized images. On the other hand, the
inevitable spatial factorization increases overall time, memory, and computing demands.

BTF 3D MA model may be also used to reconstruct BTF space i.e. for the synthesis
of missing BTF measurement. Due to its simplicity this method can be also potentially
implemented taking advantage of new graphics cards to increase overall speed of both
analysis and synthesis.

The results of the experiments on the BTF data are promising although they are only
approximation of the original measurements. The presented method enables extremely
fast and seamless enlargement of the BTF texture to arbitrary size and also very high
BTF texture compression ratio which cannot be achieved by any alternative sampling
BTF texture method. This is applicable for transmission, storing or modelling visual
surface data.
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Abstract. It is a well-known fact that when 8 > 1 is a d-Bonacci number, i.e., f¢ = g4 1 +
B2 4 ... 4 B+1 for some d > 2, then the Rauzy fractals arising in the greedy B-expansions tile
the space R4~ However, it was recently shown that the Rauzy fractals arising in the symmetric
Tribonacci expansions form a multiple tiling with covering degree 2, i.e., almost every point of
R? lies in exactly 2 tiles. We show that the covering degree for symmetric d-Bonacci expansions
is equal to d — 1 for any d. We moreover characterize which tiles lie in the same layer of the
multiple tiling.

Keywords: beta-expansions, Rauzy fractal, tiling, multiple tiling

Abstrakt. Je znamo, ze je-li § > 1 tzv. d-Bonacciho &islo, tedy plati-li f¢ = g4 14592 4... 4
B+41 pro néjake d > 2, pak Rauzho fraktaly pro hladové S-rozvoje dlazdi prostor R%~!. Nicmeéné
nedavno se ukizalo, Ze Rauzyho fraktaly pro symetrické Tribonacciho rozhove tvoii 2nésobné
dlazdéni, jinymi slovy, skoro kazdy bod R? lezi pravé ve 2 dlazdicich. Ukazujeme, 7e nasobnost
tohoto dlazdéni je d — 1 pro kazdé d-Bonacciho ¢islo 8. Také ukazujeme, které dlazdice tvoii
jednotlivé vrstvy nasobného dldzdéni.

Klicovd slova: beta-rozvoje, Rauzyho fraktaly, drazdéni, nasobnd dlazdéni

This work was presented at Numeration 2015 conference held in Nancy on May 18-22,
2015 [I]. It has been submitted for journal publication [2].
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Abstract. State transfer across discrete quantum networks is one of the elementary tasks
of quantum information processing. Its aim is the faithful placement of information into a
specific position in the network. However, all physical systems suffer from imperfections, which
can severely limit the transfer fidelity. We present selective dynamical decoupling schemes
which are capable of stabilizing imperfect quantum state transfer protocols on the model of
a bent linear qubit chain. The efficiency of the schemes is tested and verified in numerical
simulations on a number of realistic cases. The simulations demonstrate that these selective
dynamical decoupling schemes are capable of suppressing unwanted errors in quantum state
transfer protocols efficiently.

Keywords: quantum state transfer, dynamical decoupling, quantum information

Abstrakt. Ptenos stavu po diskrétnich kvantovych sftich je jednim ze zdkladnich stavebnich
kament zpracovani kvantové informace. Cilem pfenosu stavu je umisténi kvantového stavu na
danou pozici v siti. Nicméné, vSechny fyzikalni systémy trpi nedokonalostmi, ty v tomto pfipadé
mohou zasadné snizit spolehlivost pfenosu stavu. Vypracovali jsme schémata pro dynamical
decoupling, kter4 jsou schopna stabilizovat pfenos stavu na modelech ohnutych linearnich fetizka
qubiti. Efektivnost nalezenych schémat jsme ovérili pomoci numerickych simulaci fyzikalnich
systémil s redlnymi parametry. Simulace ukazaly, Ze tato schémata jsou schopné efektivniho
potlaeni nezadoucich efektii.

Klicovd slova: pienos kvantového stavu, dynamical decoupling, kvantova informace

Full version of the paper: H. Frydrych, A. Hoskovec, I. Jex, G. Alber. Selective dynamical
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Abstract. This study investigates numerically the potential of high-frequency ultrasound to
detect changes in inner organized structure of articular cartilage. Specifically, we examined
the effects of increasing distances between horizontally oriented layers of cells on the spectral
backscatter characteristics.

Several studies have examined the interaction of ultrasound backscattered waves with super-
ficial zone of the cartilage [5|, where the backscattered signals were analyzed using amplitude,
spectral and envelope statistical parameters and were related to degenerative changes of the
cellular matrix given by the Mankin score. In [3|, authors suggested that variations in apparent
integrated backscatter coefficient reflect changes in shape, size and/or density of scatterers in
the cartilage matrix and could also be related to constitutional and strucutral changes in the
extracellular cartilage matrix.

It is known that the cartilage has a well organised structure [4]. Based on the data from
the literature |8|, we determined the shape and size of the cartilage cells and we modeled the
cartilage matrix as isotropic and linearly elastic.

In order to investigate the effect of periodic cell structure in the superficial cartilage layer
on the ultrasound backscattered signals, two-dimensional numerical models were developed. We
designed several 2-dimensional cross-sectional geometries, mimicking the cellular alignment of
cartilage in a cross-sectional view. Material parameters, i.e. elastic coefficients and density, were
obtained from [6] and [2|. The computational solution of the 2-dimensional wave propagation
problem is based on an Finite-Difference Time-Domain code (SimSonic, LIP, Paris, France;
www.simsonic.fr [1]).

The configuration of the numerical model consists of the cartilage layer attached to the bone
and immersed in water. The cartilage model contains cell-mimicking scatterers of elliptical shape.
The values of the major (horizontally oriented) and minor axes of scatterers were 20 um and 10
pum [9], respectively. Scatterers were randomly arranged, according to the uniform distribution,
along the horizontal axis in parallel lines. A virtual linear array was positioned in the middle

*This work is funded by the grant SGS12/197/OHK4/3T /14, the State Scholarships Foundation /IKY-
Greece and the German Academic Exchange Service (Program "IKYDA-DAAD 2013") and by the BMBF
project PrevOP — SPPG6.
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of the horizontal axis. The array consists of 50 unfocused transducer elements for transmission
and reception of signals at the same position with the angle of incidence perpendicular to the
cartilage surface, i.e. similar to pulse-echo experiments. Perfectly matched layers with 80 dB
attenuation were added as a boundary condition. Grid step of the geometry is Az = 0.002 mm
(i.e. 1 pixel corresponds to 2 pum). The stability of the model is provided by the CFL stability
condition (Courant, Friedrichs and Lévy). A broadband Gauss pulse with a central frequency
25 MHz and a -6 dB bandwidth of 80% was used to excite the emitters of the array to generate
a plane wave.

Regarding spectral analysis, the backscattered signals were gated using a Tukey window with
a window that covers the time range between the front-side reflection and the second back-side
reflection, coming from the cartilage/bone interface. From the logarithmic power spectrum,
the logarithmic power spectrum of the reference signal (calculated from the geometry without
scatterers) was subtracted, and the result is called a difference spectrum.

Difference spectra show a distinct highly-reflective frequency band centered at the certain
frequency, whereby the center of the band depends reciprocally on the spacing of the regular
arrangement and obeys excellentlly the Brag’s law. This feature was observed for all evaluated
geometries with periodical structure. Moreover, for larger spacing a second band at higher
frequencies was observed. For reference geometry with randomly distributed cells within the
whole cartilage layer, no high-reflective frequency bands in difference spectrum were observed.
The observed phenomena can be explained by the constructive interference of waves reflected
from multiple interfaces in the periodic structure of the studied geometry.

It was shown that the frequency dependence of the cartilage backscattered signals is closely
related to the distances between cells, chondrocytes. The presented results are promising for the
development of a new non-invasive method for the quantitative assessment of cellular features
that may be related to the degree of the cartilage tissue degeneration.

In the outlook, we want to compare the presented model with experimental measurements. In
order to obtain the desired effect, we can estimate the optimal frequency range of the transducer
based on the simulation results. Histological data from human donors are being assessed to
determine characteristic parameters (e.g. size, shape and spacing of the cartilage cells or Young
modulus of the cartilage) of the model. A 3D numerical model is currently under development.

Keywords: articular cartilage, scattering, high-frequency ultrasound, numerical simulations

Abstrakt. Tato studie zkouma numericky potencidl vysokofrekvenéniho ultrazvuku pro de-
tekei zmén ve vnitini organizované struktuie kloubni chrupavky. Konkrétné je zkoumdan vliv
uspofadani horizontalné orientovanych vrstev bunék na spektralni charakteristiky zpétného
rozptylu.

Nékolik studii se zabyvalo interakei ultrazvukovych vin s vrchni vrstvou chrupavky [5], kde
byly analyzovany zpét odrazené signaly pomoc{ amplitudovych, spektralnich a obalkovych stati-
stickych parametri a byly dany do souvislosti s degenerativnimi zménami v bunéfné matrici
danymi Mankinovou gkilou. V [3] autofi uvadéji, ze rozdily v AIBC (apparent integrated
backscatter coefficient) odrazeji zmény ve tvaru, velikosti a/nebo hustoté chondrocytt (chru-
pavkovych bunék) v matrici chrupavky a mohly by také tzce souvisloset se zménami ve skladbé
a struktufe extracelularni matrice chrupavky.

Je znamo, ze chrupavka mé dobfe organizovanou strukturu [4]|. Na zékladé dat z literatury
[8], jsem stanovila tvar a velikost bunék chrupavky ve vrchni vrstvé a chrupavkovou matrici jsem
modelovala jako izotropni a linearné elastickou.

Za telem zkoumani vlivu pravidelné bunécné struktury ve vrchn{ vrstvé chrupavky na
rozptyl ultrazvukovych signali, byly vyvinuty 2D numerické modely. Navrhla jsem nékolik 2-
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dimenzionélnich prifezii geometrii chrupavky, simulujicich buné¢né uspofadani v fezu. Ma-
teridlové parametry, tj. elastické koeficienty a hustota, byly ziskany z [6] a [2]. ReSeni je
ziskdno metodou kone¢nych diferenci vyuzitim programu SimSonic (SimSonic, LIP, Pariz, Fran-
cie; www.simsonic.fr [1]).

Konfigurace numerického modelu sestava z vrchni vrstvy chrupavky pfipojené ke kosti a
ponoiené do vody. Model chrupavky obsahuje inkluze napodobujici buiiky eliptického tvaru.
Hodnoty hlavni (horizontélné orientované) a vedlejsi osy inkluzi jsou 20 pm a 10 pm [9], re-
spektive. Inkluze jsou nadhodné uspofadany, podle uniformniho rozdéleni, podél vodorovné osy
v rovnobéznych liniich. Virtualni ultrazvukovy snimaé typu linedrni array je umistén ve stiedu
vodorovné osy. Snimac se skladé z padesati nefokusovanych elementii pro vyslani a pifjem
signali ve stejné poloze s thlem dopadu kolmo na povrch chrupavky, tedy podobné jako u puls-
echo experimenti. Okrajové podminky tvoii PML (perfectly matched layers) s utlumem 80 dB.
Prostorovy krok geometrie je Az = 0,002 mm (tedy 1 pixel odpovida 2um). Stabilita modelu
je zajisténa CFL podminkou stability (Courant, Friedrichs a Lévy). K excitaci snimace a ke
generovani rovinné vlny byl pouzit Sirokopasmovy Gaussovsky puls s centralni frekvenci 25 MHz
a -6 dB sitkou pasma 80 %.

Pro spektralni analyzu modelovych signali jsem pouzila okno typu Tukey, které zahrnuje
¢asovy rozsah merzi pfednim odrazem od povrchu chrupavky a zadnim odrazem, ktery pochéz{
z rozhrani chrupavky a kosti. Odetenim ,power spektra" referen¢nich signala (ziskanych z
geometrie bez inkluzi) a modelovych signala ziskame tzv. diferenéni spektrum.

Diferen¢ni spektra vykazuji vyrazné vysoce reflexni frekvenéni pasma se stfedy na urcitych
frekvencich, pri¢em? stiedy pasem zévisi recipro¢né na rozteci pravidelného usporadani a ridi se
Braggovym zakonem. Tato vlastnost byla pozorovana u vsech zkoumanych geometrif s period-
ickou strukturou. Navic, pro vétsi rozestupy vrstev inkluzi byl pozorovan druhy pas pfi vyssich
frekvencich. Pro referencni geometrii s ndhodné rozmisténymi bunkami v celé vrstvé chrupavky
nebyla v diferenénim spektru pozorovana zadna vysoce reflexni frekvenéni pasma. Pozorované
jevy lze vysvétlit konstruktivni interferenci vin odrazenych od rtiznych rozhrani v periodické
struktufe studované geometrie.

Bylo ukizano, ze frekvenéni zavislost modelovych signali tzce souvisi se vzdalenosti mezi
bunkami, chondrocyty. Uvedené vysledky jsou slibné pro vyvoj nové neinvazivni metody pro
kvantitativni hodnocen{ bunécné struktury, kterd muize byt v souvislosti se stupni degenerace
chrupavkové tkané.

Dale bychom chtéli porovnat predloZzeny model s experimentalnimi méfenimi. Na zdkladé
vysledki simulace mzeme pro dosadzeni pozadovaného efektu odhadnout optimalni frekvencni
rozsah ultrazvukového snimace. Pro dalsi pfibliZzeni jsou na zakladé histologickych dat z lidskych
darci vyhodnocovany charakteristické parametry (napiiklad velikost, tvar a rozmisténi bunék
chrupavky nebo modulu pruznosti chrupavky) modelu a je vyvijen 3D numericky model.

Klicovd slova: kloubni chrupavka, rozptyl, vysokofrekvenéni ultrazvuk, numerické simulace

The full text of this study is available under DOI: 10.1109/ESUCB.2015.7169913.
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Abstract. Let A C R? be a non-closed piecewise-C'! curve, which is either bounded with two
free endpoints or unbounded with one free endpoint. Let ux|y € L?(A) be the traces of a
function v in the Sobolev space H'(R? \ A) onto two faces of A. We prove that for a wide
class of shapes of A the Schrédinger operator HA with ¢’-interaction supported on A of strength
w € L>®(A;R) associated with the quadratic form

HI(R2\A)3ur—>/ |Vu|2dx/w’u+\Au|A‘2ds
R2 A

has no negative spectrum provided that w is pointwise majorized by a strictly positive function
explicitly expressed in terms of A. If, additionally, the domain R? \ A is quasi-conical, we show
that o(H2) = [0, +00). For a bounded curve A in our class and non-varying interaction strength
w € R we derive existence of a constant w > 0 such that o(H3) = [0, +-00) for all w € (—o0, wH];
informally speaking, bound states are absent in the weak coupling regime.

Keywords: Schrodinger-type operators, §’-interactions, non-closed curves, negative spectrum,
min-max principle, linear fractional transformations

Abstrakt. Necht A C R? je neuzaviena po ¢astech-C' spojita kiivka, kone¢na s dvéma volnymi
konci ¢ polonekonetna s jednim volnym koncem. Necht us|y € L2(A) jsou stopy funkce u v
sobolevové prostoru H'(R? \ A) na obou stranach kiivky A. Pro velkou tifdu tvart kiivek A
ukdZzeme, 7e Schrodingeriav operator Hf} popisujici §’-interakci lokalizovanou na kiivce A se silou
w € L>®(A;R) asociovany s kvadratickou formou

HI(RQ\A)S’LLF—)/ |Vu|2dx—/w‘u+\A—u|A‘2ds
R2 A

nemd zadné zaporné vlastni hodnoty pro w, které je shora omezené striktné positivni funkci
lokalizovanou na kiivece A. Pokud je mnozina R? \ A quasikonicka, tak ukdzeme, ze o(HA) =
[0,400). Pro omezené kiivky A z nasi t¥idy s konstantni silou w € R odvodime existenci
konstanty wx > 0 takove, ze o(HA) = [0,4+00) pro w € (—oo,wx]; tzn. pro slabou interakci
neexistuji vazané stavy.

*The research was supported by the Czech Science Foundation within the project 14-06818S and by
Grant Agency of the Czech Technical University in Prague, grant No. SGS13/217/OHK4/3T/14.

93



54 M. Jex

Kliéovd slova: Schrodingerovy operédtory, ¢’-interakce, neuzaviené kiivky, zaporné spektrum,
princip mini-maxu, linearné lomend transformace soufadnic

This paper was submitted to Annales Henri Poincaré and it was presented at the confer-
ence XVIII International Congress on Mathematical Physics in Santiago de Chile from
July 27th to August 1st, 2015.

References

[1] M. Jex, V. Lotoreichik: On absence of bound states for weakly attractive §'-interactions
supported on non-closed curves in R?. arXiv: 1508.04577.



Convolution and Cross-correlation
Generalized to Weyl Group Orbits

Ondrej Kajinek

3rd year of PGS, email: kajinond@f jfi.cvut.cz
Department of Software Engineering
Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

advisors:

Goce Chadzitaskos, Department of Physics
Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

Jiti Hrivndk, Department of Physics
Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

Abstract. The current boom of orbit functions and orbit transforms based on Weyl groups
became an impulse for exploring properties of certain operations on Weyl groups. There are
several families of orbit functions that differ by so called sign homomorphism — function de-
scribing how the orbit function behave under operations of Weyl group. Two operations, orbit
convolution and orbit cross-correlation are described using the sign homomorphisms available
for Weyl groups of rank 2. Their properties are described in the later part of this article.

Keywords: convolution, cross-correlation, Weyl groups, orbit transforms

Abstrakt. Soucasny rozvoj funkci a transformaci na orbitach, zaloZenych na Weylovych grupéch,
se stal podnétem ke zkoumani vlastnosti dalsich operaci na Weylovych grupach. Existuje nékolik
rodin funkci na orbitdch, které se lisi tzv. znaménkovym homomorfismem — funkci popisujici
vlastnosti funkce na orbitdch p¥i pusobeni operaci Weylovy grupy. Dvé operace, konvoluce a
k¥izova korelace na orbitach jsou popsany pomoci znaménkovych homomorfismi dostupnych pro
Weylovy grupy ranku 2, véetné jejich vlastnosti.

Klicovd slova: konvoluce, kiizova korelace, Weylovy grupy, transformace na orbitach

1 Introduction

Many types of orbit functions and related transforms were introduced in a series of recent
articles, e.g. [1]-7]. Related Weyl groups which are utilized by these functions and
transforms provide a solid framework for defining families of operation for systems with
non-orthogonal basis. In this article we deal with two orbit operations, in particular orbit
convolution and cross-correlation. These two operations can be defined using Weyl groups
in a natural way which leads to operations with properties that are close to properties
of common convolution and cross-correlation. Moreover, common convolution and cross-
correlation are special cases of orbit operations described in this paper.
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2 Weyl groups

2.1 Definition and fundamental domains

Let us have a root system with simple roots A = {1, as} spanning space R?. Reflections
r; are defined with respect to hyperplanes orthogonal to simple roots and intersecting at
the origin. Weyl group W is generated by reflections rq, 7.

For definition of orbit functions and transform we use the following set of lattices:

e Root lattice Q) = Zay + Zas,

e Dual root lattice Q¥ = Zay + Zay, where o) = (j%)’

e Weight lattice P = Zw; + Zw,, where <wi, 04;-/> = 0y},
e Dual weight lattice PY = Zw, + Zwsy, where (w;, a;) = d;;

Longest root in a-basis is expressed as ag = & = mjay + moas. The coefficients m;
are called marks. We deﬁne another reflection hyperplane orthogonal to the highest root
and containing pomts and

Affine Weyl group Waff can be defined in two ways. The first way defines affine Weyl
group as a semi-direct product of Weyl group W and translation group defined by lattice
QV,ie. W =W x QY. Equivalently we can define W2 to be generated by a set of
reflections {rg,r1,7r2}.

wy

Fundamental region of W is a triangle with vertices {O, :L—lvl, m—2}, ie.

F = {0 + xowy | 2o, 21,22 > 0 A zg + myxy + moxze = 1}.

For arbitrary M € N we define discrete fundamental domain Fj; of affine Weyl group
W= as an intersection of fundamental domain F' and a finite lattice --PY/QV. The
explicit form of the discrete fundamental domain is as follows

S1

S
MW¥+_2

Mw;/ ’ So, S1, S2 € ZZO N Sog+mMm1S1 + MasSe = M}

-

2.2 Sign homomorphism

Weyl group can also be defined by set of conditions laid upon the reflections r;:
r; =1, (rer))™ =1, 4,j=1,2 (1)

Coefficients m;; are entries of Coxeter matrix related to reflections r;.
Sign homomorphism o : W — {£1} has to fulfil the conditions (1):

a(ri)® =1, (o(ri)o(r;)™ =1, i,j=1,2 (2)
Two homomorphisms satisfying (2) are available for all Weyl groups:

1(w) =1 o¢(w) = det(w)



Convolution and Cross-correlation Generalized to Weyl Group Orbits b7

For groups with short and long roots we denote the reflection with respect to hyperplane
orthogonal to long root as r; and call it “long reflection”, the term “short reflection”,
denoted as r,, refers to the reflection by a mirror orthogonal to short root. Let’s define

o’(rs) =1 o®(r) = —1
'(ry) = —1 ‘() =1
Each group operation w can be decomposed into product of reflections r;1, ..., i, where

rij € {rs,m}. For groups with long and short roots there are two more sign homomor-
phisms satisfying (2):

k k
of(w) = HUS(Tz‘j)7 ol (w) = Hal(ﬂ‘j)

3 Orbit functions and transforms

In this section we define orbit functions, introduce their properties useful for further
definition of scalar product and transforms.

3.1 Orbit functions

For any sign homomorphism o : W — {£1}, x € R? and A € P we can define orbit
function

()= Y olw) e

weWw

The choice of homomorphism leads to different orbit functions:

o function

1 (C'—function
o¢ S—function
o® S®—function
ol S'—function

These orbit functions are either invariant or anti-invariant to actions of w € W

o () = o(w)ef (z) (3)
P (wr) = o(w)e3 (v) (4)

and are also invariant to shift ¢ € QY
Pz +q) = ¢3(2) (5)

Due to the invariance (3), (4) and (5) we can restrict parameter x and label A to the
following lattices and regions
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o T A

1 I Pt

o¢ intF Pt

o F\H® Pt\(H*NPY)
ol F\H' P*\(H'NnP")

where H® = {z € F | (z,a,) =0} and H' = {z € F | (x,oq) =0V (x,0) = 1}. Orbit
functions with non-trivial sign homomorphism are anti-invariant on some edges of funda-
mental domain. These functions vanish to zero on the edges due to the invariance, thus
we remove the edges from the set of parameters and labels.

int FF N FM:‘

D id

N

Figure 1: Fundamental region for Weyl group C for different sign homomorphisms o.

From left to right: 1, o¢, 0%, o'.

3.2 Orbit transforms

Scalar product over a discrete fundamental domain is defined as

(fo9)py = ) (@) f(2)g(x)

TE€EF N

The coefficient e(z) is called weight of point x and is computed as e(z) = %,

staby () = {w € W | wx = x}. Since orbit functions for o # 1 are zero-valued on certain
parts of boundaries of Fj;, the summation range is sometimes shrunken, e.g.

(83,05 )5, = Y c@)f ()05 (&) for ¢’

IEﬁ]u

where

where Fv]\/[ =int F'N FM
We define discrete set of labels A,; as

Ay = P/MQ N MFY

where IV is dual fundamental domain, simplex with vertices { , &, %}, coefficients m,’
1 2

are called dual marks and are the coordinates of dual long root £ in o basis. The set A, is
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restricted in a similar way as fundamental domain F; with respect to sign homomorphism
o, we use Ay for C—function, Ay, for S— function, Ay, \ H® for S*—function and Ay, \ H'
for S'—function.

For A\, ' € Ay, orbit functions hold orthogonality relation

(85, 83) p, = M2 [W| [staby (A)] Sax

Constant ¢ denotes determinant of Cartan matrix C' = (c;;)7,;—;, ¢ij = (i, a;).
The expansion of function f is the following

fl@) =Y F7¢ () (6)

AEA N

PO _ (fs 90 py, (7)

(0%, 50 £

4 Orbit convolutions and cross-correlations

In this section we introduce the orbit convolution and orbit cross-correlation and discuss
their properties. There are several types of orbit convolutions and cross-correlations, each
related to one type of orbit functions. The way how they are defined allows us to use
orbit transforms in a similar way the Fourier transform is used with common convolution
and cross-correlation, i.e. change the operation into spectra multiplication in frequency
domain. Some details about two types of orbit convolutions are to be published in [2].

4.1 Orbit convolution and cross-correlation

Let W be a Weyl group, F), its discrete fundamental domain. Let functions f and g be
defined on F); and x € F); be an arbitrary point in F);. For sign homomorphism o we
define orbit convolution as:

(f =" g)(x) == > e f(y) Y olw)g(z — wy)

yGFM weW

Orbit cross-correlation is defined as follows:

(f*" g)x) = > e fly) Y ow)g(z +wy) (8)

yeF

For o # 1 we might need to remove appropriate edges from Fj;, otherwise we need
to define both functions on the whole fundamental region F),.

We will use the term “orbit operations” for both orbit convolution and orbit cross-
correlation in the following text.

There can be up to four types of orbit operations on Weyl group or rank 2. However,
Ag group has all roots of the same length, thus providing only two types, with sign
homomorphisms 1 and o°.



60 O. Kajinek

4.2 Orbit convolution properties

In this subsection we describe properties of orbit convolution. Its properties coincide with
properties of common convolution.

commutativity fx7g=gx" f

associativity f 7 (g7 h) =g+ (f *, h)

distributivity f*7 (g+h)=f*"g+ f*h

scalar multiplication associativity a (f 7 g) = (af) *° g

One of the ways to prove the commutativity of orbit convolutions uses orbit convo-
lution theorem. Orbit convolution (8) is commutative for all four homomorphisms 1, o€,
o® and o',

When both convolutions f+” g and f*° g are commutative, the associativity property
can be written as f 7 (g 5’ h) = (f %% g) *° h. The commutativity is held for orbit
convolution regardless the sign homomorphism o.

4.3 Orbit convolution and cross-correlation theorem

Similar to common convolution and cross-correlation, orbit operations are changed to
spectra multiplication in frequency domain. There are three transforms involved in the
process — one type of transform is used for obtaining spectrum of each function involved,
one inverse transform is used for bringing the result from frequency to spatial domain.
Generally, these transform are not of the same basic function ¢§(z). Types of transforms
involved are bound be certain rules which will become obvious from the formulas of
theorems.

For orbit operation theorems we need the formulas for orbit function multiplication.
The proof of the following property can be achieved by direct computation.

(@) (y) = Y o' (w)g3” (x +wy)

weW

Complex conjugation of any factors on the left side changes the sign of the related argu-
ment on the right side of the equation.

Let’s have two functions f and ¢ and sign homomorphisms ¢ and ¢’. The o—orbit
operations can be expressed as

(f 7 g)(@) = > (85,650, GV 705 (x)

AEA N
(f*"g)(@) = > (85,65, VGV 70 (x)
)\GA]W

For o # 1 we should use set Ay, without edges on which ¢$(z) = 0, as noted in section
3. For X laying on the mentioned edge, we can define FY to be equal to zero to help us
solving this problem and thus obtaining the generic formulas above.
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The orbit convolution theorem can be used for a proof of commutativity of orbit
convolution. Let’s fix the homomorphism ¢’ = 1. Since 10 = o, we can easily see that
both (f +7 g)(z) and (g f)(x) are equal to Sycy. (65, 65) 5, FIVGO0A (2).

The main advantage of orbit operation theorem is the speed at which we could com-
pute the operation, as long as we can do fast computation of orbit transform. We know
fast orbit transform algorithms for Weyl group A; or semi-simple groups A; x ... x Ay,
i.e. family of n—dimensional Fourier transforms. We still can’t provide any way leading
to fast orbit transform algorithm for Weyl group of rank above 1.

4.4 Mixed orbit operations

It is also possible to define mixed orbit operations, i.e. convolution and cross-correlation,
based on subgroups W7 = {w € W | o(w) = 1}. These mixed operations will have dif-
ferent fundamental domains and domains of labels for pairwise orthogonal mixed orbit
functions. Details about this subgroups and mixed functions can be found in [1]. Sub-
groups W would provide up to six types of orbit operations for groups with short and
long roots, or only one type for group with single-length roots (As).

Mixed orbit operations will most likely hold both convolution and cross-correlation
theorems, we suppose they are going to be associative, scalar multiplication associative
and distributive, however, the commutativity might not be held for mixed orbit convolu-
tions.

4.5 Kernel (anti-)symmetry

All orbit operations introduce some sort of kernel symmetry. The sign homomorphism o
determines which group operations produce symmetric reflections and which reflections
are anti-symmetric. The required symmetry of kernel is somehow limiting in applications
of orbit operations.

5 Concluding remarks

The topic of orbit functions and related Weyl groups provide strong opportunities for
further research. There are several problems to be explored, e.g. fast orbit transform
algorithm, mixed orbit operations, application of orbit operations. Orbit convolutions and
orbit cross-correlation described in this article are defined to generalization of common
convolution and cross-correlation. All types of orbit convolution share several properties
known from common convolution.
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Abstract. We present the CUDA implementation of the parallel multigrid solver for the lin-
ear complementarity problem (LCP). The linear complementarity problem is considered in the
following form

Ax > b, (1)
X > c, (2)
(Ax—-b)' (x—¢c) = o, (3)

where A is symmetric positive definite matrix and c is a given vector (constraint). This kind of
problems arises for example in computational mechanics [2], financial mathematics [4] or image
processing [3].

To solve such problems the Projected SOR (PSOR) method introduced in [5] can be used. If
the problem arises from the discretization of a PDE with a constraint, the geometric multigrid
method [1] with the PSOR method used as a smoother can be applied [4, 6]. We present a
parallelization of this approach which is applicable even to problems with sparse matrix A. The
parallel solver is implemented in CUDA to run on the GPU.

The efficiency of the final algorithm is demonstrated on the constrained level-set method used
for image segmentation. For this task, the speed-up up to 3 was achieved on Nvidia GeForce
GTX 480 compared to the more expensive 12 core AMD Opteron.

Keywords: LCP, geometric multigrid, projected SOR, GPU.

Abstrakt. Tento ¢lanek predstavuje CUDA implementaci multigridniho fegice pro linearni
systém s podminkami. Za line4drni systém s podminkami je povazovan systém v nésledujici
formé

Ax > b, (4)
X 2> c, (5)
(Ax—b) (x—¢c) = o0, (6)

kde A je symetricka pozitivné definitni matice a ¢ je dany vektor podminek. Tento typ problémi
vznika napfiklad pfi simulaci elastickych jevi [2], ve finan¢ni matematice [4] nebo ve zpracovani
obrazu [3].

Pokud dany problém vznikl diskretizaci diferencialnich rovnic s omezenimi (a tudiz je vysledna
matice A Fidka), je mozno ho velmi efektivné Fesit pomoci geometrického multigridu [1], ktery
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bude jako zhlazova¢ vyuzivat projekéni SOR (PSOR) metodu [4, 6]). NaSe implementace pied-
stavuje pravé tuto moznost, ktera je navic plné paralelizovana pomoci technologie CUDA a mize
tak k feSen{ vyuzivat vykon grafické karty.

Uéinnost vysledného algoritmu je demonstrovana na tiloze segmentace obrazu pomoci con-
strained level-set metody. Reeni tohoto problému bylo v GPU verzi b&zici na GeForce GTX 480
t¥ikrat rychlejsi nez v CPU verzi pouzivajici drazsi dvanacti jadrovy procesor AMD Opteron.

Klicovd slova: LCP, geometricky multigrid, projekéni SOR metoda, GPU.

The article was published in International Journal of Applied Mathematics 45.3 (2015).

References

[1] W. L. Briggs, V. E. Henson and S.F. McCormick, “A Multigrid Tutorial", Society for
Industrial and Applied Mathematics, 2000.

[2] Y. Hailing, Z. Depei, “Solving Elastic Contact Problems with Friction as Linear Com-
plementarity Problems Based on Incremental Variational Principles", in Computa-
tional Mechanics’ 95, Springer Berlin Heidelberg, pp. 1504-1509, 1995.

[3] V. Klement, T. Oberhuber, and D. éevéovié, “On a constrained level-set method with
application in image segmentation", submitted for publication, arXiv:1105.1429v1.

[4] C. W. Oosterlee, “On multigrid for linear complementarity problems with application
to American-style options", Electronic Transactions on Numerical Analysis, voL. 15,
no. 1, pp. 165-185, 2003.

[5] O. L. Mangasarian, “Solution of symmetric linear complementarity problems by iter-
ative methods", Journal of Optimization Theory and Applications, voL. 22, no. 4, pp.
465-485, 1977.

|6] I. Yavneh, “On Red-Black SOR Smoothing in Multigrid", STAM Journal on Scientific
Computing, voL. 17, no. 1, pp. 180-192, 1996.



Evolving Dislocations under
Total Strain Control Regime*

Miroslav Kolar

4th year of PGS, email: kolarmir@fjfi.cvut.cz
Department of Mathematics
Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

advisor: Michal Bene§, Department of Mathematics
Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

Abstract. We study the evolution and mutual force interaction of two distinct dislocations in
the channel of the persistent slip band, and under the total strain controlled loading condition.
In our investigation, we focus on estimation of the endurance limit, i.e., on the value of the
applied stress needed for dislocations to escape each other. Our description of the model is
based on the parametric method, and for the numerical solution, the semi-implicit flowing finite
volume method is used.

Keywords: mean curvature flow, dislocation dynamics, parametric method

Abstrakt. Tento piispévek se zabyva studiem vyvoje a silové interakce dvou dislokavi v PSB
kanale. Pohyb dislokaci je fizen v tzv. total strain controlled rezimu, ktery je diskutovan v
¢lanku. Nasim cilem je odhadnout hodnotu aplikovaného napéti, pii kterém dojde k odtrzeni
silové interagujicich dislokaci. Matematicky popis problému je zaloZen na parametrické metodé
a k numerickému feSeni je pouzita metoda plovoucich kone¢nych objemii.

Klicovd slova: pohyb krivek Fizeny stfedni kiivosti, disloka¢ni dynamika, parametrizace

1 Introduction

Crystalline structure of real materials contains imperfections, i.e., the defects and irreg-
ularities in the regular arrangement of atoms. These irregularities occur in nanoscale. In
microscale, they have the volume, the surface, or most typically, the line character, and
their presence significantly influences the macroscale mechanical properties of crystalline
solids. Thus, these imperfections are considered as the key elements to understanding
the phenomenon of crystal plasticity [1, 2|. In this contribution, we are concerned with
imperfections of the line character, also called dislocations — they act in such a way that
the crystallographic arrangement of atoms is disturbed along a so called dislocation line.

Where dislocations are exposed to external forces, they tend to glide in so called slip
planes, i.e., the crystallographic planes with high density of atoms. The forces acting
on the dislocation originate, e.g., in loading of the crystal by some applied stress, in
mutual interactions of multiple dislocations, or in the response of the actual structure
the dislocations are gliding in.

*This work has been supported by the grant Two scales discrete-continuum approach to dislocation
dynamics, project No. P108/12/1463 and by the grant Multidisciplinary research cntre for advanced
materials, project No. 14-36566G of the Grant Agency of the Czech Republic.
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Throughout the last century, the comprehensive theoretical framework concerning the
dynamics of dislocations was developed, and many modelling techniques were proposed
and estabilished. Among them, we recall the standard discrete dislocation dynamics
(DDD), which acts on microscale and tries to predict the material properties further
usable on higher spatial scales. See, e.g., [3, 4].

In standard DDD, it is typically assumed that the stress applied on the crystal is
uniform (see [7, 8]). Thus, we call this a stress controlled regime and discuss it in [9].
Unlike this approach, we evaluate the same DDD problem, assuming different loading
condition. In our case, we consider the sum of elastic and plastic strain to be uniform
in the crystal, and call this a total strain controlled regime [5, 6]. We have studied the
effect of different loading conditions in |9, 15|, and our interpretation is that the total
strain control regime provides the lower estimate of the endurance limit of the crystal.

Our model problem is the following. We consider the two initially straight dislocations
I'M and T'® of the opposite signs with the Burgers vector b = (b,0,0), defining the
distorsion of the crystal lattice. The dislocations are positioned to be parallel with the
zr-axis of the standard x, y and z coordinate system, and both evolve in distinct slip
planes, both of them parallel to the xz-plane and in mutual distance h. The motion of
dislocations is also restricted to the channel of the persistent slip band (for details about
the PSB structure, see [9]) of the width d..

As the dislocations evolve and draw near, their mutual force interaction is to be
taken into the account. The nearer they are, the stronger their attractive interaction is,
which speeds up their motion. When dislocations overlap, the force interaction becomes
repulsive, which slows down their movement, and eventually stops it, forming a dipole
configuration. The objective of our investigation is to determine the value of the applied
stress needed for the dislocations to pass each other (i.e., the endurance limit) under the
total strain control loading condition (compare with [15]).

2 Mathematical model

Our modelling approach is based on the mathematical theory of moving curves |7, 8, 10,
11]. Considering an evolving planar curve, or generally an interface, its motion can be
captured by the mean curvature flow, which schematically reads as

normal velocity = (mean) curvature + force. (1)

Now let us consider a dislocation curve I'; gliding in its slip plane. Within the context
of dislocation dynamics presented in this contribution, we employ the following form of
the motion law

B?)F = —TI{F + F. (2)

Here vr is the velocity in the outer normal direction, kr is the curvature of the I';, and
F' is the sum of external forces acting on I'; in the normal direction. Also, B denotes
the drag coefficient and T is the line tension and depends on the tangential angle £. In
accordance with [1], line tension is aproximated as 7'~ E(©)(1 — 2v + 3v cos?¢), where
E(© is the dislocation edge energy and v is the Poisson ratio. All parameters of the model
are tabulated in Table 1.
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Our aim is to find a family {I'; : t € [0, 7]} of open planar nonselfintersecting curves
with fixed endpoints evolving from given initial curve 7;,; and satisfying (2). We treat
equation (2) in such a way that the curve I'; is parametrized by the following vectorial
function

X= X(t,u) = (Xl(ta u)a XQ(tv U’)) (3)

for the dimensionless parameter u € [0,1]. At u =0 and u = 1, the fixed ends boundary
conditions are prescribed, i.e., X|,—o = X and X|,—; = Xj. The parametrization of X
and the outer unit normal vector nr are orientated in such a way that det(nr,tr) = 1
holds for the unit tangential vector tr.

The geometrical quantities of our interest are derived from parametrization X. The
unit tangent and normal vectors are given as

0, X 9,Xt

tr = _ Jur

and the curvature is expressed from Frenet formulae as

_ L (aXN
T e \Jaux])

Here, X+ = (X5, —Xj). Also notice that the curvature of the unit circle is kr = 1. The
normal velocity is

Ur = 6,:X - p.
Finally, the evolution of dislocation curve T’ is driven by the motion law (2) provided the
parametric mapping X satisfies the following system of degenerate parabolic equations

1 Oy X &LXL

0, X = O, ) gty

270X meo*'\mxr (4)
X‘t:O = Xinia

for t € [0,7] and u € [0, 1].

3 Force term analysis

Here we recall the main idea of modelling of external forces acting on the dislocation
curve I';. In our model, we consider the three following force term contributions

e The applied forceF,,, = b7y,,. This force is caused by the resolved shear stress
aplied on the crystal sample.

e The wall force F,u; = bTwey. This force is generated by the walls of the chammel
of the persistent slip band.

e The interaction force Fj,; = br;,;. This force is caused by interaction of multiple
dislocation curves.
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3.1 The applied force

The stress applied on the crystal is the only external component of our model. In this
article, we investigate the so called "total strain controlled regime", which can be basi-
cally interpreted as a lower estimate of the reality used in discrete dislocation dynamics
techniques (see [5, 15]).

Here, we consider a uniform total shear strain 4,(¢) in the whole PSB channel. In
our computations, we use a simplified linear model in time with the constant total shear
strain rate €, i.e.,

ot (t) = Et.

Then, we use the decomposition of total shear strain into the elastic part 7,,,/p and the
plastic part ob fot vr(u, 7)dT, ie.,

t
Eior(t) = ét = Tapp | Qb/ vr(u, 7)dT.
1% 0

Here, 7,,, is the actual applied stress, p is the shear modulus, g is the density of the
dislocations, and vr is the normal velocity as in (2). The geometrical interpretation
of the relaxation term fot vr(u, 7)dr is the area slipped by the dislocation I';. In our
computations, the slipped area is approximated by areas of parallelograms constructed
as in |5, 6].

Finally, the applied force acting on the crystal reads as

Fopp = bTapp.

3.2 The wall force

The glide of a dislocation is considered within the PSB (persistent slip band) channel
[1, 2]. Generally, it is a structure consisting of areas with high density of dislocations
(channel walls) and low density of dislocations (channel itself). This pattern typically
arises from a cyclic loading of a crystal. Dislocation gliding in the channel interacts with
the dipolar loops (another closed dislocation curves inside the crystal). Many clustered
dipolar loops create the walls of the channel. This force interaction is usually simulated
as elastic fields of infinite edge dipoles in the channel walls, which act like a potential
wells generated by the dipoles.

For detailed analysis, we refer the reader to, e.g., [9]. In this article, we restrict
ourselves to schematic description, where the stress generated by the PSB channel is
approximated as a higher order polynomial

pb 1 (m(xf — i) w2l —y3) | wa(@i—yi)  wa(ed - ?ﬁ))

Twall = %1 v -

(zi+91)? (3 +93)?  (@F+u3)? (2] +y)?

where 21934 and y; 234 are coordinates in the psb channel centered to the two pair of
dislocation dipolar loops forming a dipoles on both sides of the channel. Then, the wall
force reads as

Fwall = bTwall-

From the construction, it follows that the channel wall force Fyu = Fpai(X) =
Fuan(X1) and acts in the z-axis of the channel. The graph is in Figure 1.
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Figure 1: Wall force function, the x-axis is in nanometers, the y-axis is in Newtons.

3.3 The interaction force

As the dislocations glide, they are also influenced by their mutual interaction. Since
we approximate the dislocations as polygonal curves, all force interactions are sums of
contributions of straight dislocation segments.

To solve this problem, one needs to determine the stress tensor field 7, = (7;n¢(X)); 5
at a position X from a straight segment AB of a dislocation. This issue is discussed
in paper by Devincre [13], where a general formula providing the 3D stress tensor field
(X) = (71)(X);; at a position X generated by the dislocation half line from the point
A to infinity is derived.

The stress tensor generated at the point X by a straight dislocation segment, let us
say AB, is given as the difference of the tensors 74 and 77

(Tine(X))557 = 7(X)55 — 7(X)7}-
Then the total interaction stress is calculated as the sum of all stress contributions from
all the segments of the particular considered dislocation

(Tint)ij = Z(Tint)ZW

k

where k goes over all segments of the considered dislocation.
The force acting on the dislocation exposed to the stress field 7;,; is given by Peach-
Koehler formula [14], which reads as

-F_:int - (Tintb> X t1"- <5>
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The normal component of the interaction force is
-Fint = Fint -nr.

Because of the geometry of the model we use, and the particular direction of the Burgers
vector described in the Introduction, after some calculations (for more details, check
19, 15]) we see that only 75 component of the interaction tensor 7;; is required, and the
interaction force reads as

Fipy = b(Tmt)m-

4 Numerical approximation scheme

We deal with motion law (4) by means of the semi-implicit method as in [7, 8, 12, 16].
For spatial discretization, the flowing finite volumes method is used. Along the curve Iy,
we place the discrete nodes X; = X(t,u;) for i =0,1,... M, and denote

dj = |X; — X,

for j =1,2,... M, where Xy and X}, are the fixed ends boundary conditions. Discretiza-
tion in time is provided by the forward differences as

0X, Xkl _ Xk
ot At

The superscript k is the k-th time level for ¢, = kAt. The time step At was chosen as
At = 1/h% where h = 1/M. The discretized forcing term is denoted as F} = F(X¥) The
resulting scheme reads as follows

XE - XEdh, T (XX XX ARG XU
At 2 B ., dF B 2 (6

For more detailed discussion on the numerical scheme, we refer the reader to, e.g., [9],
where we also discuss the effect of tangential terms and redistribution of the discretization
points based on previous work of Sevéovi¢ and Yazaki [12].

5 Computational studies

We show the results of our numerical experiment of two initially straight dislocations of
the opposite sign, approaching each other in their slip planes and constrained in the PSB
channel. The parameters of the model are tabulated in Table 1. The dynamics of the
evolution is depicted in Figure 2.

The objective of our studies is to determine the lower estimate of the value of the
passing stress, i.e., the stress when the dislocations break the dipole steady state and
escape each other. For this task, we employ the method originally proposed by Mughrabi
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Figure 2: Time evolution of two dislocations (black — lower and blue — upper). When the
dislocations draw near, they slows down and tend to straighten, while the applied stress
still increases. When overlap, they continue to glide and bow out again.

and Pschenitzka in [17]. According to their approach, to obtain the passing stress, one
wants to maximize the following quantity called the overall stress

T(u,t) = Bu(u,t) — Tapp(u, t),

where u € [0, 1]. To neglect the nonintended effect of the channel walls, we measure this
quantity in the middle of the channel, i.e., in u = 0.5. The graph of the passing stress
is in Figure 3. Here we can see that the passing stress for our configuration as about
Tpass ~ 23.8 MPa.

Burgers vector magnitude b =0.256 nm
Dislocation edge energy E(©) =235 nN
Drag coefficient B=10x10"Pa-s
Plane distance h =50 nm
Channel width d. = 1200 nm
Shear modulus ©w=42.1 GPa
Poisson ratio v =0.43
Density of glide dislocations | o =1 x 2-107° nm 2
Total strain time rate §=19x103s7!

Table 1: Parameters of the numerical experiment
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Figure 3: Overall stress reaching its maximum of 23.8 MPa (measured in the middle of
the channel).

6 Conclusion

We presented geometrical evolution equation describing the motion of planar curve rep-
resenting a dislocation. We discussed the parametric description of the problem and
analyzed the character of driving forces including the loading condition under the total
strain controlled regime. For the numerical solution of the problem, we employ the semi-
implicit method with spatial discretization based on the flowing finite volume method.
We also presented one of our results of numerical experiments concerning the estimation
of the passing stress (i.e., the endurance limit), which is in a good agreement with our
previous modelling and also with literature [17].
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Abstract. Recent developments in particle physics have established the “standard model” of
particle interactions which is in great agreement with the collider experiments, the discovery
of the Higgs boson being the last missing part. However, going beyond this standard model is
motivated by several hints such as the non-zero mass of the neutrinos, the observation of the
dark matter or the matter-antimatter asymmetry.

In this paper, we survey a few minimal extensions of the standard electroweak model by
scalar particles that provide a simple setup for massive neutrinos in connection with a dark
matter candidate, so called “axion”. The presence of a chiral U(1) symmetry drives the pattern
of Majorana neutrino masses while providing a dynamical solution to another problem of the
standard model, the strong CP problem, similarly as in the original work of Peccei and Quinn
3]

We paradigmatically apply such a renormalizable framework to type-II seesaw [4] and to two
viable models for neutrino oscillations where the neutrino masses arise at one and two loops,
respectively |2, 5, 1]. We comment on the naturalness of the effective setups as well as on their
implications for vacuum stability and electroweak baryogenesis.

Keywords: axion, neutrino mass, type-II seesaw

Abstrakt. Diky soucasnym pokrokium v Casticové fyzice byl ustaven tzv. standardni model
¢asticovych interakci, ktery je v dobrém souladu s experimenty na urychlovaéich, zavrsenim této
shody byl objev Higgsova bosonu. AvSak existuji jevy, které tento standardni model vysvétlit
nedokéze, jako napiiklad nenulova hmota neutrin, pozorovani temné hmoty ¢i nerovnoviaha mezi
hmotou a antihmotou ve vesmiru.

V tomto ¢lanku se zabyvame nékolika rozsifenimi standardniho modelu elektroslabych inter-
akci o skalarni ¢astice tak, aby vysledny model obsahoval hmotna neutrina a zaroven tzv. axion,
ktery muze byt kandidatem na temnou hmotu. Pfitomnost chirdlni U(1) symetrie udava jednak
strukturu Majoranovskych hmot neutrin, ale hlavné pomahé vyfesit dalsi problém standardniho
modelu, naruseni CP invariance silnymi interakcemi, podobné jako v originalni praci Peccei a
Quinnové [3].

Tuto myslenku aplikujeme na t¥i jiz existujici modely hmot neutrin: tzv. seesaw mechanis-
mus II. druhu [4] a dva modely, kde je hmota neutrin generované jedno- resp. dvousmyckovym
diagramem |2, 5, 1]. Diskutujeme téz otazky stability elektroslabého vakua ¢ moZnosti elek-
troslabé baryogeneze pro tyto modely.

Klicovd slova: axion, hmota neutrin, seesaw mechanismus II. druhu
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The full paper was published as S. Bertolini, L. Di Luzio, H. Kolesova, and M. Malinsky.
Massive neutrinos and invisible axion minimally connected. Phys.Rev. D91 (2015),
055014.
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Abstract. We show how the prices of options can be determined with the help of double-
fractional differential equation in such a way that their admixture to a portfolio of stocks provides
a more reliable hedge against dramatic price drops than the use of options whose prices were fixed
by the Black-Scholes formula. We focus on the application of several definitions of fractional
derivatives to obtain several classes of temporally-spatially fractional diffusion equations. We
test the fit of the model to the real option prices of index S&P 500 traded in November 2008.

Keywords: Double-fractional diffusion, Lévy option pricing, Risk redistribution.

Abstrakt. Nasim cilem je ukazat, jak miZeme s pomoci frakéni rovnice v prostoru i ¢ase modelo-
vat ceny opci tak, Ze jejich portfolio poskytuje relevantéjsi zajisténi proti dramatickym propadim
nez v piipadé Black-Scholesova modelu. Zaméiime se také na aplikaci nékolika moznych definic
frakéni derivace, abychom dostali nékolik t¥id frakéni difuzni rovnice. Tento model pak otestu-
jeme na realnych cenach opci indexu S&P 500 obchodovanych v listopadu 2008.

Klicovd slova: Frakéni difuze, Lévyho modely cen opci, Redistribuce rizika

This article has been submitted to Physica A and is available online at http://arxiv.
org/abs/1503.05655.
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Abstract. This contribution is focused on the development of special astronomical telescope,
and especially its image processing. The physical model, designed for tests of functions and
algorithms for an image reconstruction uses a reflective strip with a length of 30 cm. When
comparing the rotational and Newtonian telescope, the main advantage of the rotating telescope
is simple design of optical element and the allowance to produce high-resolution with the same
objective area. Disadvantage in relation to other its need of one more rotational moving and
subsequent image reconstruction. The rotational telescope is a promising technology. It has a
potential to supplement the existing types of telescopes used to observe the Universe. Although
rotational telescopes are more complex in terms of their assembly and the processing of a final
image, but contrary to standard reflectors, the mirror of this type of a telescope is much lighter
and cheaper. This enables to construct telescopes with the primary optical element of a size of
tens of meters, while the construction remains to be simple and production costs low. The ideal
deployment of the telescope will be on an orbit where the size of mirrors could run to hundreds
of meters and their resolving abilities will be sufficient for direct tracking of extra solar objects.

Keywords: Rotational Telescope, angular resolution, image processing, astronomy.

Abstrakt. Tento ¢lanek se zaméruje na popis vyvoje speciadlnfho astronomického dalekohledu
a na zpracovani obrazu z tohoto p¥istroje. Fyzicky model dalekohledu vytvoreny pro testovani
technologie a rekonstrukénich algoritmt vyuziva odrazovy pas v délce 30 cm. Pokud srovnédme
rotacni teleskop a klasicky Newtonuv teleskopicky systém, je hlavni vyhodou rota¢niho teleskopu
jednodussi design optického elementu pfi srovnatelném rozliSeni dalekohledu. Nevyhodou to-
hoto systému v porovnéni s ostatnimi typy dalekohledu je nutnost dalstho pohybu primérniho
obrazového elementu a néasledné zpracovani obrazu. Rotac¢ni dalekohled je slibna technologie,
kterd méa potencial, nahradit stavajici dalekohledy pro pozorovani vesmiru. I pies nutnost zpra-
covani obrazu a slozitéjsi konstrukci je proti klasickému feSeni, rota¢ni teleskop levnéjsi. To
umoznuje stavét dalekohledy s optickym elementem v délce desitek metri. Idealni umisténi
tohoto dalekohledu bude na obéZné draze Zemé, kde velikost odrazové plochy miize dosdhnout
az stovek metru a tim umoznit primé sledovani objektti mimo nasi sluneéni soustavu.

Klicovd slova: Rotacni teleskop, tthlové rozliSeni, zpracovani obrazu, astronomie.

This contribution was presented at International Conference on Innovative Technologies
IN-TECH 2015, http://www.in-tech.info/.
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Abstract. This paper was focused on analyse the data of soil radon and the temperatures
measured at a height of 2m, ground temperature at a height 5 cm and the temperature below
ground at a depth of 80 cm. Data was provided by Czech hydrometeorological institute (CHMI).
Data are in weekly frequences in the period from 7.10.2002 to 15.6.2011. To analyse data series
was used autoregression model AR(p), which is generally decsribed by the equation: X; = ¢+
3P | ¢iXi—i+u. According to the graphical representation it shows inverse relationship between
temperature and concentration of soil radon. Indicator of correlation was the highest between
time series radon concentration and temperature at a height of 2 m. When the appropriate
model was selected, the residues was investigated and the exact period, which leads to higher
deviations, was detected. In the context of exact period is used database of earthquakes in a
world with magnitude higher than 7.0.

Keywords: Soil Radon, temperature, Data analysis, Time series, Autoregressive model.

Abstrakt. Tento c¢lanek se zabyva analyzou dat pudniho radonu a naméfenych teplot ve
vySce 2m, pfizemni teploty 5cm a teploty pod zemi v hloubce 80cm, které poskytl cesky
hydrometeorologicky tstav (CHMU) Data maji tydenni frekvenci v obdobi od 7.10.2002 do
15.6.2011. K analyze ¢asovych fad se vyuZziva autoregresni model AR(p), obecné popséan rovnici:
Xy =c+ 3" ¢:X;—i +w. Dle grafického znazornéni je vidét nepfima tméra mezi teplotou
a koncentraci radonu. Ukazatel korelace byl nejvyssi mezi ¢asovou rfadou koncentrace radonu
a teploty ve vySce 2m. Po zvoleni vhodného modelu jsou dale zkouména rezidua a zjistuji se
pfesna obdobi, kdy dochézi k vy$sim odchylkdm. V souvislosti s témito daty je pak vyuzita
databédze zemétieseni ve svété s magnitudou vyssi jak 7.0.

Klicovd slova: pudni radon, teplota, analyza dat, Gasové fady, autoregresni model.

Full version of this paper was accepted for publication in Bezpecnost jaderné energie
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Abstract. The demand for proper sport match prediction tools is constantly increasing together
with the amount of money put into sports betting. A previously developed model based on
Markov chains was further examined and tested against real life bookmaker odds in this paper.
The results are based on the 2008-2014 ATP seasons.

Keywords: discrete Markov chain, tennis, in-play modeling

Abstrakt. Celosvétove vzriustajici mnozstvi prostiedki vlozenych do sportovnich sézek stupnuje
poptavku po kvalitnich nastrojich k predikci sportovnich vysledki. V tomto ¢lanku je testovan
diive predstaveny model tenisovych utkani zaloZeny na diskrétnich Markovskych Fetézcich, a to
proti skuteénym kurztim vypsanych bookmakery. Zéavéry jsou postaveny na vysledcich svétové
tenisové série ATP z let 2008 az 2014.

Klicovd slova: diskrétni Markovovy Tetézce, tenis, modelovani hernich situaci

1 Introduction

Tennis is one of the oldest and most traditional sports, which is pursued worldwide
and on all possible levels. It is an industry that operats with billions of dollars every
year. It is therefore no wonder that even in such a traditional sport as tennis there
are always new methods and technologies introduced. Computer imaging is used in the
hawk-eye technology helping to determine whether a ball was out, material science allows
to manufacture better and better rackets and other equipment, medicine science develops
new methods of effective training etc. Mathematics is becoming a very important part
of tennis as well as it can produce models simulating game situations and predicting
their probabilities. This can be useful for the trainers who can use such models to better
prepare their players for their matches, but most of all it is used for sports betting.
The market of sports betting is despite strict regulations continuously growing both in
revenues as in profits not only in the Czech Republic, but worldwide. It is therefore no
wonder that the demand for accurate sport models is tremendous.

This paper is organized as follows. In the next section the odds provided by book-
makers and their relation to probability are discussed. Next follows basic application
of Central Limit Theorem to the problem of tennis match prediction. Sections 4 and 5
describe the data and the experiments conducted on that data. Section 6 concludes the

paper.
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2 0Odds

Suppose there are M possible outcomes j = 1... M of a random variable X representing
a sporting event.! Let p = (p1,... par) be the probabilities of the respective outcomes
j and a = (ay,..., ap) bookmaker’s odds, i.e. the bookmaker pays a; units if one bets
1 unit? on event j and j is the actual outcome of the observation of random variable X
and nothing otherwise[4].

Odds in general are some representations of the underlying probabilities, i.e. a; =
f(p;). More specifically, it holds that a; = pi In order to make profit, bookmakers alter

-
their odds such that a; < ]%. Let us define
J

and further define payout as P(a) = #@ and margin as M (a) =1 — P(a). Payout and
margin represent the amount of money lost by the bettor and won by the bookmaker,
respectively, in case the bettor bets on all possible outcomes of the random variable the
amount of money corresponding to the bookmaker’s odds.

We say that the set a is sub fair odds if S(a) < 0, fair odds if S(a) = 0 and super fair
odds if S(a) > 0. The special situation where a; = pij, Vj e M implies a is fair, however
a fair does not necessarily imply the equation. In real life, the majority of odds is sub fair,
as the bookmakers want to make profit. However as the competition between bookmakers
sharpens, there sometimes occurs a situation, when it is possible to find super fair odds
as a combination of odds provided by two (or more) different bookmakers.

Odds provided by a single bookmaker are always sub fair (unless there occurs an error
in which case the situation is ignored). They also provide the bookmaker’s estimate of the
actual probabilities p; of the respective outcomes. In order to obtain those probabilities,

1

a normalizing function a’ = f(a) has to be introduced such that S(a’) = 0 and p; = =
J

The obvious approach is to use the standard normalization procedure, that is

fila;) = a; - (1 — S(a)).

However, this approach does not correspond well with the reality. It consist of lowering
the odd-corresponding probabilities to obtain actual probabilities by the formula

b= —+—-S(a).

That is, the margin related “extra probability” —S(a) is subtracted from the possible
outcomes accordingly to their weights. As a consequence, the outcome with the highest
probability is affected most, i.e. the probability of such outcome is lowered significantly
more than that of the unlikely outcome. Empirical observation suggest that the most
extreme pair of odds describing a tennis match is @ = (1.01, 20). This would suggest that
the biggest favorite would only have about 95 % probability of winning which is almost

LOr any other event such as the result of a roulette wheel spin, loterry draw etc.
2For example $1, 1 CZK or 5% of total assets.
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certainly not true. Also, if the bookmaker would like to keep a fixed margin (for example
10%)3, then the inverse function of f would very often produce odds such that there
would be a; < 1 for some j € M. This is certainly an unwanted situation from a business
point of view.

Empirical observation suggests that an opposite approach should be used, that is the
more probable an outcome is the less is the odds-related probability lowered. For that,
new normalization function ¢ is introduced.

(IJ(M—]_)

M—1)+a;-(1— ;5) - S(a)’

gjla;) = (

That is, the respective probabilities are obtained using

1

1 1- fi(ay)
=) o).
p] aj ]‘[_1 (a')

Finally, by introducing a parameter ¢ a linear interpolation of the two approaches F'(a,t)
can be obtained. Theoretically, ¢ € R, however it only makes sense for ¢t € [0,1]. In
practice it is however easier to use ¢ € [0, 2], that is F'(a,2) = f(a) and F(a,0) = g(a).

3 Tennis match as a random variable

The result of a tennis match is an observation of a random variable X distributed by
a Bernoulli distribution with unknown parameter p € (0, 1). When modeling a tennis
match we thus focus on point estimate p of the actual parameter p. The biggest issue
in this estimation is the fact that there is always only one observation of the random
variable. Even if the conditions are as identical as possible, there still would be some
differences in two tennis matches. The subject of examination is an interaction between
two human beings and such an encounter is always unique.

Let say we want to examine the likeliness of the event that the favorite wins a game.
If we consider N games, i.e. N random variables X; which are all distributed by Bernoulli
distributions with parameters p = (py, ..., pn), p;i € [0.5, 1)*, then the random variable

N
i=1

can be by Lyapunov Central Limit Theorem|1]| approximated by a normally distributed
random variable U ~ N(XN, E(X;), SN, D(X,)). This allows us to test the null
hypothesis that the actual parameters p are equal to the estimated parameters p =
(P1, ..., pn). Moreover, this hold also for every large enough subset N’ C N, which is
further used for model testing in Section 5.

In case of odds this can be viewed from a slightly different point of view. Instead of
observing the random variable Yy, we can take into account variable Yy representing the

310 % is still the most common margin on a pair of odds.
4p is at least 0.5 as we consider the win of the favorite.
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total profit after N bets. First let us assume we bet 1 unit on each match, say we bet
always on the favorite. The expected value is then E(Yy) = 2% E(X,), where

E(X:) =pi- (ai— 1)+ (L —p) - (1) = pie; — 1

and standard deviation

D(X;) =pi-(ai =1 = (pia; = 1)) + (1 =pi) - (=1 = (pia; = 1))* = p; - (1 = pi) - a;.

For the special case of fair odds where a; = pli this yields E(Yy) = 0 and D(Yy) =
DA

Let us now define a random variable Yn(s,b) which represents the total profit after
placing N bets with a betting strategy s and bet type b € {F, O} for betting on either
favorite or outsider. The above mentioned function Yy = Yx(1, F). Now assuming the
fair odds with a; = [% we get E(Yy(1,F) = E(Yn(1,0) = 0, but we get different values
for the standard deviations. This can have some negative effects towards odds quality
testing. For example, a good property would be if Yy(s, F') = —Yn(s,0), YN. This
does not hold for the strategy s = 1. It can even happen that the results for favorite and
outsider are both positive or negative for a given set of matches. However, if we choose
5= % (and still assume a; = pii), then we get

B(Yx(2,F) = B(Y(2,0) = 3 pil1 = pi) + (1= pi) - (i) =0

and
D(YN(E, F) = D(YN(17O) = ipi(l —p)?+ (1L =p) - (=pi)* = pi(1 = pi)
a a i1
and finally X X
YN(g,F) = _Y<E’O)’ VN

4 Data description

In order to test all possible models a database was created using information publicly
available from www.livesport.com. The database contains information about men tennis
games for 2008 thru 2014 ATP seasons. It has data about the game itself, such as who
played, when, where, the final score, surface etc. and also about bookmakers’ odds. It
contains both game winning odds and first set winning odds from 9 bookmakers (two
Czech bookmakers Tipsport and Fortuna and seven international bookmakers bet365,
bwin, bet-at-home, Interwetten, Sportingbet, Unibet and William Hill). Additionally the
maximum and average values for each match were computed and further considered as
two different bookmakers.

The experiment considered in this paper only handles matches where there is necessary
to win two sets in order to win a match, therefore the best-of-five matches (i.e. Grand
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Figure 1: Development of the random variable Yy(s,b) for different s and b and actual
maximal odds for a win in a match and odds by Fortuna for win in the first set.

Slam tournaments, Davis cup and The Olympic Games) were omitted from the database.
Also, only ATP tournaments were considered, as these are much more prestigious than
Challenger or I'TF tournaments and thus the data as well as the bookmakers’ odds should
be more accurate. Altogether there were about 20 000 matches in the database. There was
some information missing for most of them (such as the odds from a certain bookmaker),
this however did not affect the usability of such database. If there was certain piece of
information missing that was important for a given experiment, the match was simply
omitted. In all modes of the experiment there were still enough matches remaining
(usually well above one thousand).

5 Experiments

5.1 Bookmaker odds quality

To test bookmakers’ odds the betting strategies s; = 1 and sy = % defined in Sec. 3 were
used. Figure 1 shows some examples of the development of the total profit when employing
the two basic betting strategies on the actual odds provided by different bookmakers both
on winning the match and winning the first set of a match. The outcome is very similar
for all bookmakers as the odds are sub fair. When taken the maximum value there were
1 333 cases when the odds were super fair which opens the opportunity for winning
without a risk. The matches in the graphics are ordered by the favorite odds a;, lowest
first. The shape of the curves confirms the suggestion mention in Sec 2, that is the
odds of the biggest favorites are very close to those corresponding with the true winning
probabilities. No further testing was done as the situation is obvious. The odds are sub
fair and do reflect the reality is some way.
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5.2 Model derivation

Tracking all the individual variables that might influence the outcome of a tennis match
(and the probabilities of an outcome) several years backwards is a difficult task. Some
parts of it, such as the past results, past player’s rankings or even point by point match
development can be done with the help of computers. On the other hand, there are some
variables that certainly influence a tennis game which are very difficult to track in real
time and virtually impossible to track backwards. Those are especially some life events of
individual players, such as a small illness or injury, change of a personal physiotherapist
or even a baggage lost during a flight. Such variables can (but not necessarily have to)
influence match outcomes and without their knowledge, computing probabilities from
past results can introduce some kind of bias. However, professional bookmakers keep
(and have always kept) track of all those individual variables and already incorporated
those into their match odds. The odds provided by the bookmakers thus serve as a good
starting point in deriving any model.

As a first step the simple odds-based models were derived from the odds by differ-
ent bookmakers. That is, the pair of odds for the win of a match (sub fair odds) were
normalized using the normalization function F'(a,t) introduced in Section 2 and 9 dif-
ferent parameter values. There were also together 99 odds-based models for the match
probabilities.

In [3] a Markov chain based model is introduced. It computes the set winning probabil-
ities using the game winning probabilities provided by bookmakers under the hypothesis
that all sets played in a match are independent identically distributed random variables,
that is

Pmatch = pget +2- pget : (1 - pset)- (1)

The results of [3] suggest that this independence assumption is false in general, but quite
accurate for the first set of a match.

The iid model is derived by applying Equation 1 to the odds-based model from a
certain bookmaker. This cubic equation can be numerically solved for example using the
Newton-Raphson algorithm [2], allowing us to obtain a set of first set winning probabilities

Pset = (pset17 ceey psetN)'

5.3 Model testing

To test the quality of the models, new fair odds were derived from the model (a; = pi)

and three betting strategies were applied on each model and the corresponding values of
random variables Yy (1, F), Yx(1,0) and Yx(2, F) (as defined in Sec 3) for all N. For
each such strategy the maximum absolute value and the average value (for all possible
n < N) were computed as a quality parameters.

For each® n < N, a null hypothesis Hy can be stated as the matches is a series of
Bernoulli distributions with parameters p = (pi, ..., pn), L.e. Y, ~ N(0,> D(X;)). To
test the hypothesis the critical value of the 95% confidence interval was computed for
each point. Then, the ratio of Y,, and the critical value was observed. Again, the maximal
and average values were computed (here, the maximal value greater than 1 indicates that

n has to be big enough to satisfy CLT, usually at least 30.
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at some point the data were sufficient to decline the null hypothesis on a 95% level).
Finally, the standard log-likelihood was computed for each model.

These 13 criteria were computed for all 99 odds-based models to determine which one
should be used as a base for the 7id model. As these criteria are hardly comparable with
each other, the models that “scored” best in one of the criteria were taken into account for
further examination. This procedure indicated 4 odds-based models for match winning
probabilities. The models and their scores in the testing criteria can be seen in Table 1.

Criterion bet365, 0.75 Tipsport, Fortuna CZ, Fortuna,
0.25 0 0.25
Log-likelihood -0.563 ~0.576 ~0.574 ~0.576
MaTnen |V (1, F)] 162.974 30.567 39.685 59.9
Mmazn<n|Y,(1,0)] 217.501 124.105 104.188 167.459
ma:vn<N]Y (2, F)] 96.605 23.302 21.714 39.749
v Zz Yi(1,F) 39.177 10.189 7.04 16.379
LY Yi(1,0) 74.034 63.765 14.191 87.289
LY Vil F) 25.146 7.864 4.579 11.755
maz,<n (3 5s) 1.049 0.641 1.58 0.827
maanN(%) 0.783 0.57 1.446 0.539
ma, <y (etatl) 0.964 0.621 1.578 0.82
;Y Nenns 0.363 0.212 0.145 0.258
% 1 N5 0.163 0.24 0.069 0.200
E3N % ;)Df/l) 0.333 0.212 0.138 0.259

Table 1: Best odds-based models for match win. The first line suggest the original
bookmaker and the parameter value that was used to transform the sub fair odds into
fair odds.

Then the #id based probabilities were derived from these top odds-models. Again the
model quality was tested using the 13 test criteria, the results are in Table 2.

5.4 Comparison with actual betting

Finally, the quality of the 4 7id based first set models was tested against actual odds.%
The two betting strategies (s = 1 and s = 1) were used, but this time one would bet
only when the bookmaker’s odd was higher than the odd corresponding to the probability
given by the model. Bets were done on both favorite and outsider and were ordered as
the matches were actually played thorough the time. The results are in Table 3. The
results do not show any significant profit and some models even show loss. To improve
this result, the betting strategy was slightly altered in the way that the bets were placed
only on the odds that are at least 10 % higher than the probability related odds. The

results from this upgraded strategy are shown in Table 4. These results are much more

60dds that were publicly available for betting.
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Criterion bet365, 0.75 Tipsport, Fortuna CZ, Fortuna,
0.25 0 0.25
Log-likelihood -0.617 -0.631 -0.627 -0.631
maz,<y|Yn(1, F)] 216.761 91.193 117.122 58.169
maz,<n|Yn(1,0)] 627.829 125.874 165.810 92.646
maxn<N]Y (57 F)| 151.54 52.221 67.745 29.061
NZZ Yi(1, F) 100.22 28.577 35.976 14.579
L7 vi(1,0) 412.731 50.073 64.761 36.522
L3N V(L F) 76.689 18.043 22.954 8.66
maz,<n (3 5s) 1.936 0.747 1.145 0.91
maz,<n (3 5es) 1.936 0.659 0.987 0.678
Vo (L F)]
maxn<N(N(D(7Do)/n)) 1.912 0.699 1.082 0.895
N Y (LF
N Dicl N DG 0.982 0.339 0.482 0.232
N Y1,
¥ 2ot N B 1.351 0.253 0.365 0.223
N Yi(LF)
N Dicl NS 1.056 0.325 0.471 0.215

Table 2: Best did-based models for first set win. The names suggest the original book-

maker and the parameter value that was used to derive the itd odds.

interesting. It can be seen that the best model was able to generate profit over 20 %,
which is a significant gain.

| Criterion [ Fortuna, 0 | Fortuna, 0.25 | Tipsport, 0.25 | bet365, 0.75 |

Yy (1) 61.4 45.06 ~10.28 ~38.24

Y (2) 4.59 -2.26 -11.54 2.5
Minn<yYn(1) ~30.46 “44.85 23.11 "129.76
ming<nYa(3) -15.51 -20.59 -13.9 -15.72
Yarll) 0.0232 0.0153 -0.0045 -0.0075
Ivla) 0.0017 -0.0008 -0.0051 0.0005

T

g(j) 0.0051 -0.0024 -0.0153 0.0015

Bets on favorite 335 221 230 1088
Bets on outsider 2644 2715 2033 4040

Table 3: Results when betting on odd higher than those obtained by the #id derived

model. The first line indicates which original odds where used as a baseline to derive the
11d odds.

6 Conclusion and future work

This paper discusses the possible ways of predicting the result of a tennis match and espe-
cially the first set. It uses a simple 7id assumption to derive first set winning probabilities
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| Criterion | Fortuna, 0 | Fortuna, 0.25 | Tipsport, 0.25 | bet365, 0.75 |
V(1) 14.82 89.01 35.24 65.47
Y (2) -0.23 14.35 8.79 18.59
Min<n Yo (1) -27.46 -28.71 0 -26.54
ming<nYa(3) -7.16 -7.65 0.16 -3.02
Yall) 0.0284 0.12 0.0794 0.1104
vl -0.0004 0.0193 0.0198 0.0314
1

Mvle) -0.0022 0.0934 0.0974 0.2177

Bets on favorite 2 2 1 5
Bets on outsider 520 740 443 588

Table 4: Results when betting on odd at least 10 % higher than those obtained by the
i1d derived model. The first line indicates which original odds where used as a baseline
to derive the 4d odds.

from the match winning probabilities provided by normalized bookmaker odds. These
probabilities were then tested on real data and the results suggest that the predictions
are more accurate than the bookmakers’ odds as there are possible winning strategies
available. The next step is to update the models in a way they could predict the result
of set two and possibly set three and also some other aspects of the game.
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Abstract. The pattern formation due to the chemical instability is one of the most impor-
tant phenomenon in many non-equilibrium systems, ranging from a developmental biology to
gas-discharge systems, a crystal growth in solidifying alloys, plasma or semiconductors. The
recognised fundamental symmetry breaking mechanism is a diffusion-driven instability (Turing
instability [2]|) in a reaction-diffusion system (RD-system). Turing showed that a small pertur-
bation of a well-mixed homogeneous system of autocatalic and inhibitory diffusing species could
cause an instability, which leads to an emergence of the spatial patterns.

The resulting patterns of the model are strongly periodic, which is not sufficient to describe
the situations when patterns depend on space; for example a distribution of mouse or cat whiskers
[3], alternating thin and thick stripes of Lionfish [6] and an emergence of fingers [4]. The
dissimilarities from the symmetric patterns in this cases cannot be elucidated by model simplicity
only by the idealization of the model — the non-symetry can be crucial. Hence, we will assume
a spatial dependence of coefficients of the RD-system and we will analyze the behavior.

The problem was analyzed numerically, see [6]. The analytic analysis of the solusion stability
of the system with spatial dependent coefficients is in general difficult since the stationary
solution depends on space. Afterall, some progress has been established; an analysis of so called
spikes for Gierer-Meinhardt model [5] or the stability in special cases of spatial dependence: only
in the absolute term of the kinetics using e-series [8] and [9] or if the same term is of the form
of a step function [7|. This article deals with the system with the spatial dependent coefficient
at the linear term of the activator kinetics.

Let us consider a RD-system in the interval (0, L) and similarly as in [7] we investigate the
simplest form of the dependence — a step function at £. In the case of linear kinetics the stationary
solution can be expressed analytically; in the case of non-linear kinetics it can be obtained, based
on the previous case, that the emergence of the non-homogenous pattern can be predicted from
the stability of the constant stationary solutions of the systems considered separately on the
intervals (0,¢) and (&, L). Therefore, the conditions to the pattern formation are obtained. The
results are ilustated by numerical experiments of RD-model with Schnackenberg’s kinetics.

The contribution of the article lies in the interpretation of obtained results. As it is expected,
the system behavior is continuous with respect to the size and the position of the step — except
when the system parameters do not lie near the border of the Turing’s space. In this critical
case, a step-driven instability can be said to occur. More importantly, as the stationary state
depends nonlinearly on the jump magnitude due to the kinetics, the resulting pattern can show
significant changes of wavelength in the considered domain even for small jump values. This is

*This work has been supported by the grant SGS15/215/0OHK4/3T/14.
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relevant in the biological examples mentioned above as a motivation. Moreover, the procedure
is promising to be used to analyze models with more complicated spatial dependence of the
coefficients, which is the direction of the future work.

Keywords: reaction-diffusion system, non-homogenous Turing’s model, pattern formation.

vvvvvv

nych systémech, pocinaje vyvojovou biologii pfes riist krystal v tuhnoucich slitindch, konce
plasmou nebo polovodici. Zakladnim mechanismem k naruseni symetrie je nestabilita zptisobené
difuzi (diffusion driven instability; Turingova nestabilita [2|) reakéné-difuznich systému (RD-
systém). Turing ukazal, Ze mala perturbace homogenniho systému autokatalyticky a inhibi¢né
difundujicich druhit mohou zpiisobit nestabilitu, ktera vede ke vzniku prostorovych struktur.

Vysledkem tohoto modelu jsou silné periodické vzorky, coz nepokryva pripady obrazctu
ménicich se s prostorem, napiiklad rozloZeni mysich fousku [3], ménici se $ifka pruht u pe-
rutyna [6] nebo rust prsti na koncetinach [4]. Odlisnosti od symetrickych obrazci uz v téchto
prikladech nelze odivodnit pouze idealizaci matematického modelu, jejich nesymetrie byva ziv-
otné dulezité pro dané organismy. Pro ziskani takovych obrazct uvazujme prostorovou zavislost
koeficienttt RD-systému a zkoumejme jeho chovani.

Tento problém se jiz zkoumal numericky, viz [6]. VySetfovat analyticky stabilitu FeSeni
systému s koeficienty zavislymi na prostoru je ale obecné obtizné, jelikoZ jiZz stacionarni reseni
na prostoru silné zavisi. V literatufe se mtizeme setkat s vySetfovanim stability tzv. spikes pro
Gierer-Meinhardtuv systém [5], nebo stability ve specialnich piipadech zéavislosti koeficientii:
v absolutnim ¢lenu kinetiky pomoci e-rozvoje [8] a [9] nebo koeficientu absolutniho ¢lenu ve
formé skokové funkce [7]. Tento ¢lanek se zabyva systémem s prostorové zavislym koeficientem
u linearniho ¢lenu aktivatoru.

Uvazujeme RD-systém nad intervalem (0, L) a podobné jako v [7] zkouméame nejjednodussi
pripad zéavislosti ve formé skokové funkce v bodé £. V pripadé linearnic kinetik jsme schopni
nalézt stacionérni feSenf analyticky, v pfipadé& nelinearnich kinetik pak na tomto zakladé dostane-
me, ze vznik prostorového vzoru jsme schopni predikovat ze stability konstantniho stacionédrniho
feSeni systému zvlast nad intervalem (0,¢) a nad (§, L). Odsud pak dostavame podminky pro
vznik prostorovych vzorti. Tyto vysledky jsou pak ilustroviny numerickymi vypocéty RD-modelu
se Schnackenbergovymi kinetikami.

Ptinos tohoto ¢lanku je v interpretaci téchto vysledki. Jak se dalo o¢ekavat, chovani systému
je spojité ve velikosti i poloze skoku skokové funkce — pokud ovSem nejsou parametry systému
blizko hranice Turingova prostoru. To pak dochazi, prenesené feceno, k nestabilité zptsobené
skokem. Podstatnéjsi ale je, Ze jelikoZ na skoku zavisi i stacionarni stav, a to nelinearné kviili
kinetikdm, mtzeme i pro malé skoky dosdhnout vzoru s vyraznymi odliSnostmi na levé a pravé
strané, coz je relevatni zvlasté vzhledem k aplikacim na popis obrazcii v piirodé zminéné vyse.

vvvvvv

dalsiho zkoumani.

Klicovd slova: reakéné-difuzni systém, nehomogenni Turingtiv model, pattern formation.
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Abstract. In this contribution we deal with coined quantum walks defined on graphs undergoing
dynamical percolation. This disruption of the walk leads to an asymptotic regime of the time
evolution that can be easily predicted once we have solved for so called attractors of the walk.
We are in particular interested in the scenario where not all configurations of the percolation
graph are allowed and we ask, in which cases this restricted percolation gives rise to the same
asymptotic state of the walk. We first present a general definition of a quantum walk able to
incorporate many studied special cases and present a canonical way how to define a percolated
version of a given quantum walk. The main result is a sufficient condition for the asymptotic
equivalence of restricted and fully percolated quantum walk. This contribution also brings
generalisation for walks with additional phase-shifts and walk with multiple walkers.

Keywords: quantum walk, percolation, asymptotic state

Abstrakt. Tento pfispévek se zabyvéi diskrétnimi kvantovymi prochézkami definovanymi na
grafech, které prochéazi procesem dynamické perkolace. Toto naruSeni prochazky vede k asymp-
totickému CGasovému vyvoji, ktery je mozné snadno predpovidat, zname-li takzvané atractory
této kvantové prochézky. Zde se konkrétné zabyvame situaci, kdy nejsou mozné vSechny kon-
figurace perkolovaného grafu a ptame se, v jakych piipadech tato omezena perkolace vede ke
stejnému asymptotickému chovini. Nejprve predklddame obecnou definici kvantové prochazky
schopnou pojmout mnohé konkrétni studované pripady a uvinime kanonicky zpisob jak defi-
novat perkolovanou vrzi téchto prochézek. Hlavnim vysledkem je postacujici podminka pro
asymptotickou ekvivalenci omezené a plné perkolace kvantové prochazky. Tento pfispévek dale
prinasi zobecnéni pro kvantové prochazky z dodateénymi fazovymi posuny a prochazky s vice

chodci.

Klicovd slova: kvantova prochéazka, perkolace, asymptoticky stav

1 Hadamard Walk on a Line

Despite the fact that the aim of this contribution is to present very general results, let us
start with a brief description of a particular coined quantum walk - Hadamrd walk on a
finite line. Coined quantum walks are defined on graphs. In this case the graph G(V, E)
will consist of N vertices aligned in a line and N — 1 edges connecting neighbouring
vertices. On this graph we define so called position Hilbert space H, = span({|v) },ev).
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We further define so called coin Hilbert space H,. = span({|L),|R)}) corresponding to
directions left /right.

The whole quantum walk is defined on the Hilbert space H = H, ® H.. The unitary
time evolution proceeds in discrete steps realised by an evolution operator U = SC'. Here
the step operator S is just a permutation matrix given by mapping: S |v;, R) = |v;11, R)
and S |vj, L) = |vj_1, L). The only exceptions are at the borders of the graph where the
walker is just reflected: S'|vy, L) = |v1, R) and S'|vn, R) = |vn, L). The coin operator in
every vertex is chosen as the 2-dimensional Hadamard matrix and on the whole H it is:

(&@@%(1 _i) (1)

where I, is the identity operator on #,. The coin operation therefore mixes the states in
particular vertices.

If the walk stars in a pure state |¢)(0)) or a mixed state p(0), than at the time-step
t the state will be |¢(t)) = U* [¢(0)) or p(t) = Up(0) (UT)t respectively. In analogy to
the classical random walk, in every step the walker "tosses a coin" and makes a step in
direction dependent on the result of the coin toss. The difference is that in quantum walk
superpositions are possible.

2 General Definition of a Quantum Walk

2.1 Basic Quantum Walk

We will understand quantum walks as discrete-time quantum processes defined on finite
undirected graphs in the following way: Let us have a finite undirected graph G(V, E),
where V' is the set of vertices and E is the set of edges. (No requirements are posed on the
structure of the graph.) With G' we associate new directed graph G (V, E(@) with the
same set of vertices V. The set of directed edges E? consists of two subsets. For every
edge e € E we have two edges e, e, € E@ going in opposite directions and connecting
the same two vertices as e. Further we may add some loops (edges beginning and ending
in the same vertex).

Now we associate a Hilbert space H with our graph G@(V, E@). Simply every
directed edge corresponds to one base state, so H = span({|e®)}.@cpw). From now
on we will be using the term directed edge and state from H interchangeably and also
sometimes denote base states just |z;) (j € {1, ...,|E@|}) without reference to particular
directed edges. The loops that we have introduced in G¥(V, E(9) allow us define directed
graphs where every vertex has the same structure - the same number of states associated
with it.

The time evolution proceeds in discrete steps governed by a unitary operator U. If
the state of the walk in the time step ¢ is given by a density matrix p(t), the state at the
following step will be

p(t+1) =Up(t)U". (2)
The evolution operator U has a special structure - it consists of subsequent applications
of two unitary operators: so called coin operator C' and step operator S:

U=SC. (3)
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The coin operator C' does not mix states from different vertices. More precisely stated,
every subspace H, of H generated by states in particular vertex v € V is an invariant
subspace of the map C.

The step operator has two important properties. The first is that we only allow
"almost permutation" matrices. By this we mean that it just maps every state to some
other state without creating superpositions, but some phase can be added to the resulting
state:

Slws) = e |za) (4)

where s is some permutation map and ¢; € R.
The second property is it’s association with the graph G@(V, E(d)). Simply put, it
must follow the direction of edges. Explicitly we may write

Slv,e) =lvdee), (5)

where we now denote states by a vertex v and an edge in this vertex ¢, v & ¢ denotes the
other end-point of the edge ¢ and ¢ is just some edge in vertex v @ c.

The remaining freedom i defining the step operator is the choice of ¢ for every |v, c).
On regular lattices there can be some simple rule for that as in the example of the walk
on a line. In any other case we just make some choice allowed by the underlying graph
while keeping the unitarity of S.

2.2 Percolated Quantum Walk

In our case we will use the percolation scheme to disrupt the underlying graph. In every
step of the walk we use the original undirected graph G(V, F) to generate a new graph
Gk (V, K) by removing (closing) some edges from G(V, E). This new graph is called a
percolation graph and is defined by the set (configuration) of remaining (open) edges
K C E. In what we call a full percolation we just choose some probability p € (0, 1) and
every edge is open with probability p and closed with probability 1 — p independently
of all others. Therefore, any configuration K € 2% is possible. In contrast to this full
percolation, we will consider scenarios where we allow only some subset of 2 (for example
only configurations with just one open edge). That will be called a restricted percolation.

Let us now have some percolation graph G (V, Fx). We need to modify the evolution
operator U of the quantum walk so that it respects the structure of this new graph. There
is a canonical way of how to define this step operator U once we have defined the operator
U for the walk on G(V, E'). We modify the directed graph G@(V, E@) to produce a new
directed graph GS;?)(V, Eg?)). We keep all the loops from G@(V, E(?) the same and also
all directed edges corresponding to edges that remain open. Let us now have an edge
that is not in K and connects vertices A and B. Instead of directed edges from A to
B and from B to A we introduce a loop in every of these two vertices. Note, that this
change does not affect the Hilbert space and also both the in-degree and the out-degree
of both vertices stays the same.

Now we need to modify the time evolution operator Uk of a quantum walk to respect
the new graph G%)(V, E;?)). The subspaces associated with vertices have not changed.
Only the endpoints of some directed edges may be different. It means, that there is no
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Figure 1: Visualisation of the step operator for an open (a) and closed (b) edge.

need for changing the coin operation C. Therefore, in a percolated quantum walk, the
coin operation is independent of the choice of the percolation graph.

Unlike the coin operation, the step operator S needs to be modified to Sk according
to the given configuration K. For loops and open edges, there is no difference. Let us
again have two vertices A and B and an undirected edge e € E that is closed (e ¢ K).
Now it is advantageous to use the example in figure 1. The edge connecting vertices A
and B has states |A2) and |B1) and the action of the step operator S when the edge is
open is §'|A2) = |B3) and S|B1) = |A4). For a closed edge one might want to let the
walker stay in place, so S|A2) = |A2) and S|B1) = |B1), but then no other state is
mapped to |3B) and there may also be different state mapped to |2A4) so the resulting
step operator Sk would not be a permutation.

For vertices A and B the resulting state after application of the step operator must
remain in the vertex. The canonical choice is the mapping Sk |A2) = |A4) and Sk |B1) =
|B4). In general, the end state for a walker that could not pass a closed edge must be
the state that would otherwise (with the edge open) be the end state for a walker coming
from the other direction.

2.3 Phase Shift

In previous definition of a percolated quantum walk we have left out the possible phase
shift in the step operator. In general, for every base state (every directed edge) |z;), there
can be unique phase shift ¢*¥7, so that

Slz;) = €% |zy)) - (6)
Than if the edge containing |z;) will be broken, there may be different phase shift:
Sk lag) = €™ |ag) (7)

where k is the permutation map describing the action of the step operator Sx. We only
allow the phase to depend on the edge determining k(j) being open or closed. It can not
depend on presence/absence of some other edges.
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3 Finding Attractors

3.1 Percolated Quantum Walk as a Random Unitary Operation

Since percolation introduces a classical uncertainty to the evolution of the quantum walk,
we use the description of the state by a density matrix. One step of the walk can be
described as:
+1) = Z T Ukp(t)UL, (8)
KCE

where U = SkC' is the evolution operator corresponding to the configuration of the
percolation graph K and 7k is the probability of occurrence of this configuration.

The asymptotic state (the limit for infinitely many steps) of the percolated quantum
walk is than given as [1]:

Ptsoo(t Z)\ttr( XL)XM, 9)

where X, ; so called attractors. Those are solutions of the equation
UxXUL = \X, forall K C 27, (10)

for some given A fulfilling |A| = 1. We can now use the procedure described in [2]. The
decomposition Ux = SkC' can be used to rewrite the equation (10) as

CXCt = \ST. XS (11)

Here we use the fact, that the coin operation is not affected by percolation of the graph
and therefore the left-hand side of the equation is constant for all configurations. This
allows us to solve it in two steps. Firs we choose one configuration Ky and find the
solution of the equation:

CXCT = \Sk X Sk, (12)

A typical choice is the configuration, where all edges are closed, since in such case the
equation can be solved locally in individual vertices. Nevertheless, any configuration from
2 can be chosen in principle. Now we restrict our solution by what we will call the step
condition:

Sl XSk =5IXS,, forall K,L C 2. (13)

We end up with the set of attractors {X),;}, where |A\| = 1 and ¢ distinguishes different
attractors for a given eigenvalue .

3.2 Step condition for general attractors

The step condition (13) can be investigated further. Let us use a general form of the step
operator:

SK—ZQK ‘xk (x|, ST—ZQK ) |z;) :ckj)| (14)
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where |z;) are base states corresponding to all directed edges of the graph G¥, k is
the permutation map defining the operator Sk corresponding to the configuration K of
the percolation graph, ag (i) is the phase shift for the state |z;) in the configuration K
(lax(i)] = 1) and the asterisk denotes a complex conjugate. We can decompose a general
operator X in a similar way as X = > _, X/ |z,) (z;]. Then the term of our interest will
be

SkX Sk = ZXk((jgaK(J)OZK(Z) EDXCIIE (15)

Z7j

By comparing two step operators Sk, and Sk, given by permutation maps k and [
respectively we obtain the condition

ZX i) |i) fE;I—ZXl(J )z (i) [xi) (] - (16)

We may now compare matrix elements one by one and by doing so we get

XD (ag i) = XiDar(j)ai (i), for all i, (17)

which can also be written as

ny

(j)ijj_l 0, foralli,j (18)

If we chose some state |7), then what is the state |k~1(;)) depends on the configuration
K. Nevertheless, there are only two options and both of them lie on one undirected edge.
Let us have a look at figure 1. If we chose |z;) = |A4), then there are two possibilities. If
in the configuration K the edge between vertices A and B is open, then |z;-14;)) = |B1).
If that edge is closed, then |z,-1;)) = |A2). In either case the state |z;-1( ) belongs to
the undirected edge between A and B. Also the phases ax(k~'(j)) and aL(k 1(4)) are
solely dependent on the edge between A and B being open/closed.

From now on, we assume that there are only two possible values of the phase shift for
all edges: « for traversing an open edge and 3 for "reflection" on a closed edge.

For every pair of indices 4, j there are two undirected edges (let us call them e, f € F)

determining the values of [k~1(7) and [k~1(j). If e is open or closed in both K and L,
ax(k71)@)
ag(k~1)@)
index j. If e is closed in K and open in L, then Ik71(:) # i and we will denote this index

as k71(1) = i. In general, 7 is the state that the walker ends up in when traversing e
a0 _ o
ar(k~H)@E) — B°
ax(0) _ B
n

then [k~1(i) = ¢ and the phases give = 1 and analogously for the edge f and

in the opposite direction than the one resulting in ¢. For phases we have

Finally when e is closed in K and open in L there is just different phase: L (E)(0)
The most restrictive condition that can be obtained for an attractor matrlx element
iy B B 0y i i @i i
Xi=5% =% =535 =55 -55=% (19)
This strongest condition does not hold if k~'(i) or k~'(j) belong to the loop in the
original graph - the part containing ¢ or j respectively is omitted allowing for more diverse
attractors.

1s:
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Figure 2: Relations between available configurations and matrix element equalities.

Another case with a weaker condition is when e = f (that is either i = j or i = j).
In such case we cannot have conditions with an edge open and closed simultaneously. In
this case the step condition reduces to:

Xi=XL. (20)

3.3 Restricted percolation

Let us now investigate what happens when we restrict the set of possible configurations
of the percolation graph. First we note that the step condition is redundant - multiple
pairs of configurations K and L give rise to the same condition. Now, our question is,
what is the minimum set of allowed configurations that gives rise to the same overall step
condition and therefore to the same asymptotic state.

Let us first solve the phase shifts. There is only one case when the step condition re-
quires equality of the same matrix elements with only difference in phases. This difference
arises from the order in which we make some edge open/closed. If it is open in K and
closed in L we obtain different phase than in the case of e ¢ K and e € L. It is obvious
that we may interchange K and L arbitrarily and the only important fact is whether
we have these two configurations at our disposal. Therefore, when concerning restricted
percolation, we do not need to care about phases at all. Equivalence of conditions with
phases is assured by equivalence of conditions for matrix elements on the level of states.

When leaving out the phases, the strongest step condition is:

Xi=X] =X =X (21)

For given indices 7, j, there are undirected edges e and f containing k~'(i) and k~*(5)
respectively for any configuration K. Let us now use symbol Kj for some configuration
where both e and f are missing (closed). Further in K, only e is present and f is missing,
in K the edge f is present and e is not and finally in K. both edges are present. The
figure 2 shows four matrix elements that can be connected by the step condition and
these connections. For every connection, there are two pairs of configurations that give
rise to the corresponding equality of matrix elements.

It is simple to check, that by removing any one of the configurations Ky, K., Ky, K.y,
all four matrix elements stay connected. On the other had, if any two configurations are
removed, the step condition is weaken. This means that for every pair of distinct edges
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we need any three of our four configurations to obtain the full step condition. Therefore,
we have a sufficient condition for the restricted percolation to be equivalent to the full
percolation.

3.3.1 Examples of equivalent restricted percolation schemes

As mentioned above, we may have restricted percolation where only one edge is present
in every time step. Provided that the original graph has at least three edges, there are
always configurations Ky, K. and K, so this scheme is equivalent.

Similarly to the previous case, if we only allow configurations with only one edge
broken and all other present, we have configurations K., Ky and K.y so this is again
equivalent. (Once more we assume |E| > 2.)

One may also think of a sort of a site percolation, where vertices are broken. We may
simulate this with our percolation when a broken vertex means broken all edges connected
to it. Here again, there is no problem to have even all configurations Ky, K., K¢, K.y and
also schemes wit just one vertex open/broken in every configuration will be equivalent.
There is just one requirement on the underlying graph G(V, E). It may not contain two
vertices connected by more than one edge.

It is very important to note that adding any other configurations to an already equiv-
alent scheme may not break the equivalence. This makes the model of a percolated
quantum walk very suitable for simulation of real system where one can not rely on
realisation of all configurations.

4 Percolation in Quantum Walks with Two
Non-Interacting Distinguishable Walkers

Apart from the possibility of some non-separable initial states of the walk, the percola-
tion brings another correlations - the two walkers walk the same graph. Therefore, the
percolated walk with two walkers in not just a product of two one-walker quantum walks.

Even in the case of two walkers, the time evolution can be written in terms of the coin
operator and the step operator with properties analogous to those for just one walker.
We can again separate the search for attractors into two steps where we first solve the
equation for one particular configuration and then apply the step condition. For the
equivalence of the asymptotic state, the only thing of our concern will again be the step
condition.

For two walkers we have just somewhat more involved step operator:

Sk = ZQK(Z')@K(J) |k Tai)) (il - (22)

Comparison of two configuration leads to the step condition for matrix elements of the

form:
ag (k71 (D) ax (k"1() ar(k” (D)ar(k™())) im0
o (k@) o (k=1 (5)) o (k= (I))ac (k=1 ()~ T DI
We are again interested in subsets of configuration leading to the same asymptotic
state as the full percolation on walk with two walkers. We will not list all possible

Xy = (23)
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equalities with phases. In fact, the phases again play no role for the same reason as in
the one-walker case. There are fewer restrictions or the matrix elements here than there
would be when applying the one-walker step condition on both walkers. Even in the
full percolation, there can not be configurations with some edge e closed for one walker
and simultaneously open for the other walker. Nevertheless, when concerning the edge
configuration, we again only have to deal with pairs of edges an the equivalence condition
is the same as for one walker.

In conclusion, for the restricted percolation of a quantum walk with two non-interacting
distinguishable walkers to be equivalent with the full percolation (to have the same asymp-
totic state), there is the same sufficient condition on set of allowed configurations as in
the one-walker case. Obviously, this holds also for any other finite number of walkers.

5 Conclusion

We have presented a sufficient condition for the set of allowed percolation graphs in
percolated quantum walks that assure the same asymptotic behaviour of the walk as the
full percolation. Also some examples of such sets of configurations were presented.

This result has two main applications. First, it shows that percolated quantum walks
may be well utilised for simulation of real physical systems since by far not all configura-
tions must be realised to give the same asymptotic behaviour. The second application is
in experiments where it may be difficult or even impossible to realise all edge configura-
tions. We have presented subsets with number of configurations linear in the number of
edges contrasting with the exponentially growing number of all possible configurations.
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Abstract. Quantum markov chains, i.e. iterated sequences of quantum operations, represent a
convenient way of time-evolution description of open quantum systems. In recent years, quantum
markov chains have shown great potential in many areas of quantum theory reaching from its very
fundamentals to practical applications, i.e. random quantum walks. Recently, the asymptotic
dynamics of a wide class of quantum markov chains on finite dimensional Hilbert space was
studied. For this class, it was shown that the asymptotic dynamics is governed by so-called
attractor space, which can be derived by solving a set of so-called attractor equations. The
relations between elements of this attractor space (i.e. attractors) and the integrals of motions
corresponding to the quantum markov chain were given. Here we show that the asymptotic
states of such quantum markov chain can be rewritten in a form, which resembles a well known
concept of a generalized Gibbs state. This so-called Gibbs-like states follow a principle, which
can be regarded as a general- ization of maximal entropy principle.

Keywords: Quantum markov chain, asymptotic dynamics, integrals of motion, Gibbs states

Abstrakt. Kvantové markovovské fetizky, tj. iterované sekvence kvantovych operaci predstavuji
vhodny zpusob popisu ¢asového vyvoje otevienych kvantovych systému. V poslednich letech
kvantové markovovské fetizky vykéazaly velky potencial v mnoha oblastech kvantové teorie s
vyuzitim jak pfi zkoumani fundamentélnich principi, tak i praktickych aplikaci, nap¥. nahod-
nych kvantovych prochazek. Nedédvno byla odvozena asymptotickd dynamika Siroké t¥idy kvan-
tovych markovovskych fetizkdl na koneénédimenzionalnim Hilbertové prostoru. Bylo ukézano,
ze tuto asymtptotickou dynamiku fidi tzv. atraktorovy prostor, ktery lze nalézt feSenim tzv.
atraktorovych rovnic. Byly nalezeny vztahy mezi elementy tohoto podprostoru (tj. atraktory)
a integraly pohybu piislusici danému kvantovému markovovskému fetizku. Cilem této prace je
ukazat, ze asymptoticky stav takovychto kvantovych markovovskych fetizkii muzZe byt prepsan
do tvaru, ktery pfipomina dobfe zndmé zobécnéné Gibbsovy stavy. Tyto tzv. pseudo-Gibbsovy
stavy se Fidi principem, ktery lze povaZzovat za zob&cnéni principu maximélni entropie.

Klicovd slova: Kvantovy markovovsy fetiezk, asymptotickd dynamika, Integraly pohybu, Gibb-
sovy stavy
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1 Introduction

To obtain the analytic form of a time evolution of a quantum systems is one of the basic,
yet most important tasks of quantum theory. Whereas the evolution of closed quantum
system is easily solved thanks to Hermicity of the generator of time evolution, evolution
of a general quantum system is a difficult task due to fact that the generator of time
evolution needs not to be Hermitean, nor normal and thus the diagonalization of the
generator in some orthonormal basis is not guaranteed.

Under the additional assumtion of the markovianity of the time evolution, one can
derive so-called Master equation |1, 2|, which describes the time evolution as a differential
equation of first order, however appart from a few special cases, complete solutions are
usually hard to find. Another approach utilizes properties of so-called completely positive
maps (CP maps) [1, 2|, which describe the most general change of a quantum state.
The evolution is then described as a discrete sequence of CP maps, resulting in so-called
quantum markov chain [3].

Motivated by results of equilibrium thermodynamics [4], one often assumes that the
stationary state (i.e. the state which remains unchanged during time evolution) of a
given system takes the form of so-called generalized Gibbs state [5], which maximalizes
the von Neumann entropy with respect to given constraints represented by mean values
of integrals of motion corresponding to system under investigation. As they fulfil relations
analogous to classical Gibbs states, manipulation with generalized Gibbs states is often
significantly easier than with general quantum state.

Here, we focus on the study of the asymptotic evolution (i.e. the limit ¢ — 00) of
a quantum markov chain in a finite-dimensional Hilbert space, which fulfils requirement
of existence of so-called faithful invariant state. First, we summarize known results con-
cerning asymptotic dynamics of a such quantum markov chain, with the stress putted
on the subspace in which the asymptotics takes place - attractor space. We then proceed
by derivation of the relations between elements of the attractor space and integrals of
motion corresponding to the system under investigation. After reviewing the exponentiel
map and its inverse - logarithm map, we show that stationary states corresponding to the
quantum markov chain can be rewritten in a form which resembles the generalized Gibbs
state. We then discuss the form of a entropy principle, which holds for this Gibbs-like
states.

2 Attractor method for dynamics generated by quan-
tum markov chain

The purpose of this section is to review important results concerning the asymptotic
dynamics of a quantum markov chain. For more detailed analysis see [6]. A quantum
markov chain is genereated by a CP map P. Action of map P on an arbitrary element of
the space of bounded operators on Hilbert space 7 (denoted by 9B(.7)) can be written
is Kraus representation as

PE) =3 4,004, &
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with {A;}; C B(H). The adjoint map PT is also a CP map, which takes the Kraus form
Py =) Al()A;. (2)
J

We distinguish several important classes of CP maps. First, we call a CP positive
map P unital (subunital), if it fulfils the requirement P(I) = I (P(I) < I). Next, P is
called trace-preserving (trace-nonincreasing), if it meets PT(I) = I (PT(I) < I). In the
subsequent discussion, we will be interested in CP maps, which are trace-preserving. We
will refer to these as to quantum operations. The dynamic of quantum markov chain is
thus generated by quantum operation P is given by its repeated applications, i.e. starting
from the initial state p(0) the state after n application is given by

w(n) = P"(w(0)). (3)

By asymptotic evolution, we thus mean the limit lim w(n). The stationary state of a
n—oo

quantum markov chain a quantum state ws, which fulfils the requirement P(w;) = ws.
There always exists at least one stationary state corresponding to given quantum
markov chain. Starting with an arbitrary state w, we define state w as

One can directly check that the equation P(w) = @ holds. However, to be able to
analytically describe the asymptotics of a quantum markov chain, we require the existence
of so-called faithful invariant state [7] p. This state fulfils

(1) p>0,
(2) Plp) =p.

In the following text, the symbol p will be reserved for this faithful invariant state. This
state is generally not unique - if there are two faithful invariant states, then the linearity
of quantum operation P implies that any convex combination of these two states is also
a faithful invariant state.

As was shown in [6], the asymptotic dynamics of a quantum markov chain is governed
by attractor space Atr(P) C B(s), which is defined as

Atr(P) = @ Ker (P — AI), (4)

A€oy

with o7 being so-called attractor spectrum defined as

o= {N € a(P)|]A| = 1}

The elements of the attractor space are generally not density matrices, as any attractor
(i.e. element of the attractor space) X corresponding to A # 1 must fulfil Tr[X] = 0. We
are however always able to construct valid density matrix out of them. This is due to
their algebraic structure, which we will discuss later.
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Having constructed the attractor space with {Xy1,...,X,q4,} as the orthonormal
basis of the subspace Ker(P — AI), we can write the asymptotic state as

pln>1) = 2 A'Tr [p(0)X™M] X (5)

AEoy,i=1

Here, X* are operators dual to X, (with respect to the Hilbert-Schmidt scalar
product), i.e. they fulfil

Tr [XMX;]-] = Oxu0ij-

These dual vectors are nontrivial (i.e. they do not generally fulfil property X = X, ;),
except for the case of unital quantum operations. This is due to the fact that the kernels
corresponding to different eigenvalues A and p are generally not orthogonal. However,
they fulfil the relation

with p being a faithful invariant state corresponding to P. Simultaneousely, operators
X,ip~t are attractors corresponding to map PT. This means that there exist a simple
relation between subspaces Atr(P) and Atr(PT). There are several ways, how to write
this relation:

X € Ker(P — M) & Xp* € Ker(P" — \I),
& ptX € Ker(PT — \I),
& p V2Xp71? € Ker(PT = M),

The importance of quantum operation PT lies in its relation with integrals of motion
corresponding to quantum operation P. Integrals of motion are observables, which have
constant mean value during time evolution. Operator A € B(s¢) is thus an integral of
motion, if it meets requirements

(1) A=Al
(2) Tr[Ap(n)] = Tr[Ap(0)], Vn.

A simple calculation yields the following:

Tr [Ap(n)] = Tr [AP"(p(0))] Tr [P™(A)p(0)] = Tr [Ap(0)],

and thus A = AT € B(#) is an integral of motion, if PT(A) = A, i.e. A is an attractor
of P! corresponding to eigenvalue A\ = 1. Quantum operation PT thus represents the
Heisenberg picture of evolution. We can thus say that while the subspace Ker(P — I)
contains all the stationary states corresponding to a given quantum markov chain, the
subspace Ker(PT — I) = Z(P) contains all the integrals of motion corresponding to a
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given quantum markov chain. Furthermore, we can write the relation between these two
subspaces as

Ker(P — I) = p2Ker(P! — I)p2, (6)
with p being the faithful invariant state corresponding to P. The obvious advantage
of this relation is that it maps Hermitean operators to another Hermitean operators.
Next, we state some simple algebraic properties of important subspaces concerning
maps P and PT. More exactly, we are interested which of important subspaces form so-
called C*-algebras [8|. Generally, the subspaces Atr(P) and Ker(P—1) are not C*-algebras
as they satisfy more complicated relations

(1) X; € Ker(P—\I) = X! € Ker(P — \I),
2) p'XiX;, Xip ' X, X;X;p ' € Ker(P — \A;)).

Only in case of unital P both Atr(P) and Ker(P — I) form C*-algebras. However,
thanks to the fact that the map P is trace-preserving, the map P is unital and p ~ I is
thus a faithful invariant state. Both subspaces Atr(P') and Z(P) thus form C*-algebras
as they satisfy relations

(1) X; € Ker(Pt = A1) = X! € Ker(PT — \iI),
(2) XX, € Ker(PF — \\).

Thanks to these properties, we can choose an orthonormal basis of Z(P) as the set
{I,Yy,...,Y,} with Yf =Y;. An arbitrary integral of motion A corresponding to P can
be thus written as

A = aOI+ZOij}.
J

The fact that we are able to choose an orthonormal basis of the subspace Z(P) made
from integrals of motion and relations between subspaces Ker(P — I) and Z(P) enable
us to write the asymptotic state in the Gibbs-like form.

3 Gibbs-like asymptotic states

Before rewriting the asypmototic state in the Gibbs-like form, we review basic facts
about the exponentiel map and its inverse, the logarithm map acting on the B(5¢)
space. Exponentiel map is defined by its Taylor series - for any A € B(#) we have

exp[4] == Z A

n!’
n=0

If A= A" and 0(A) = {\1,...,\}, then o(exp[A]) = {eM,...,eM}. As a conse-
quence, for any A = AT, exp[A] is a strictly positive operator, i.e. exp[A] > 0. Thanks
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to this property, density matrices are mapped again to density matrices, apart from nor-
malization. Thus if o represents a quantum state, operator 7 = m exp|o] represents
a valid quantum state, which is strictly positive. The same holds %or integrals of motion,
i.e. if A is an integral of motion, then exp[A] is a strictly positive integral of motion.
Furthermore, if we use relations between integrals of motion and stationary state, we can
say that apart from normalization, operator

[V

7 = p exp[Alp (7)

represents a strictly positive stationary state. In the following, we will call state in
the form (7) the Gibbs-like state. We ask, if for each stationary state there exists (in
some sense) an integral of motion such that the stationary state can be written in the

Gibbs-like form. To answer this question, let us study an inverse map. Logarithm map is
defined by following requirement:

log[B] = A < exp|4] = B.

Generally, the logarithm of an operator is not uniquelly defined, however, for strictly
positive A, log[A] is uniquelly defined.. The explicit form for A > 0 can be written again
as Taylor series:

log[A] =log[l + (A= 1)] =) _ (bl

n
n=0

(A - [)n’

which converges for all such A.
Let us have a strictly positive stationary state w. Operator 7, defined as

N[

Tw = p_%wp_

represents a strictly positive integral of motion. As the subspace Z(P) forms a C*-
algebra, we must have

log[r,] =) %(Tw — " e Z(P)

n=0

and consequently we can write

1 1
e [_Z%‘Yj

with
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This means that every strictly positive stationary state can be written in a Gibbs-like
form.

Let us now have a stationary state w > 0. We can define a one-parameter family of
states w(s) as

1
Trlw + sp]

w(s) =

with 7 an arbitrary faithful invariant state. One can easily see that there exists a
certain neighbourhood of s = 0 such that w(s) > 0. We can thus write

w(s) = Z p2 exp[ Za]

By taking limit s — 0, we obtain the result

s—0 Z p2 exXp [ ZO[]

(0 + s7), (8)

o = lim

pe. 9)

As 0 € 0(0), at least some of the parameters o; must meet |lin(1) a;(s)] = +oo. This
S—r

is not ambiguous, as analogous states exist in classical physics, e.g. degenerate gas of
fermions. However, the limit (9) is generally not unique for a given faithful invariant
state p, as we have the freedom in choosing an arbitrary faithful invariant state 7 in (8).
Unlike generalized Gibbs-states, Gibbs-like states do not maximalize the von Neumann
entropy under conditions given by mean values of integrals of motion (apart from case
of unital map P). Nevertheless, they follow a more general principle concerning so-called
relative entropy [1]. Relative entropy of states w; and w, is defined as

S(wifws) = Tr [wy loglwi] — wi loglws]] -

It is straightforward to prove that given the faithful invariant state p Gibbs-like states
w minimalize the relative entropy S(w|p). This principle reduces to the classical principle
of maximal entropy in case p ~ I, i.e. for unital quantum operation P which is in
consensus with a fact that for unital quantum operations, Gibbs-like states reduce to a
generalized Gibbs states.

4 Conclusion

In previous section, we presented a method of solving asymptotic dynamics of a quantum
markov chain, for which exists a special stationary state p, so-called faithful invariant
state. We have demonstrated previously unknown relationship of the attractor space
corresponding to quantum operation P, which defines the quantum markov chain and its
adjoint quantum operation P, which represents the Heisenberg picture of dynamics. By
doing so, we have uncovered the relationship of integrals of motion and stationary states
corresponding to given system.

In the second part, we have shown that every stationary state w corresponding to a
such quantum markov chain can be written in a Gibbs-like form as
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NI

wstzl

si~>0Z erXp[ ZO‘J P=

with

Z(s)="Tr

exp [— Yoy,

For strictly positive wg, functions o;(s) are constatnts, in other cases at least some tend
to infinity. The Gibbs-like form of a strictly positive stationary states is unique for given
faithful invariant state p, this property is generally not present for other stationary states.

Furthermore, stationary states of considered quantum markov chains follow a princi-
ple, which can be regarded as a generalization of a maximal entropy principle. In future,
obtained results can be completed by derivation of thermodynamic inequalities of quan-
tum markov chain. Also, at the moment, the relationship of two different Gibbs-like forms
of the same steady state is unclear. These questions will be focuse in a future work.
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Abstract. Let H be a real Hilbert space, let F' : H — H be a nonlinear, compact and positively
homogeneous operator, i.e. F(tu) = tF(u) for all t > 0, u € H. If there exists a function
¢ :H x R — R satisfying

e

im

t—0 ¢

=0, forall heH,
such that
(F(u+th),u+thy — (F(u),u) < 2t(F(u),h) +&(h,t), forallteR, foralluheH,

then the largest eigenvalue \g of the positively homogeneous operator F' can be characterized
variationally in an analogy with a linear case, i.e.

F
Ao = max 7< (u), u) )
ueHu#0  ||ul?

Let S : H — H be a compact linear operator. If the largest eigenvalue )\f of S has odd
multiplicity, then there exists 79 such that for any 7 € (0,79) and for any compact positively
homogeneous operator F satisfying || F'(u)|| < 7|jul| and (F'(u),u) > 0 for all u € H, there exists
a bifurcation point A, € (A — 7, Ag] of the equation

wueH: Iu—Su+ F(u)— N(u) =0,

where N : H — H is a small compact nonlinear perturbation.
These general results are further applied to reaction-diffusion systems with unilateral terms
of the type u™.

Keywords: reaction-diffusion systems, Turing patterns, positively homogeneous operators, Neu-
mann boundary condition, Dirichlet boundary condition

Abstrakt. Necht H je redlny Hilbertuv prostor, necht F': H — H je nelinearni, kompaktni a
pozitivné homogenni operétor, tzn. F'(tu) = tF(u) pro v8echna t > 0, u € H. Pokud existuje
funkce £ : H x R — R splaujici

{(h,)

lim >=—— =0, pro vSechna h € H,
t—0 t

*This work has been supported by the grant SGS13/217/OHK4/3T/14
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tak, ze
(F(u+th),u+th)—(F(u),u) < 2t(F(u),h)+&(h,t), pro viechnat € R, pro vSechna u,h € H,

pak Ize nejvétsi vlastni ¢islo A\g operatoru F' charakterizovat varia¢né, tzn.
(F(u), u)

A= B a2
coz je analogické vztahu pro lineadrni operatory.
Necht S : H — H je kompaktni linearni operator. Pokud nejvétsi vlastni ¢islo )\*19 operatoru
S ma lichou nasobnost, pak existuje 9 > 0 tak, Zze pro kazdé 7 € (0,79) a pro kazdy nelinearni,
kompaktni a pozitivné homogenni operator F, ktery spliiuje predpoklady [[F(u)| < 7lul a
(F(u),u) > 0 pro viechna u € H, existuje bifurkacni bod A, € (A{ — 7, Ao] rovnice

ueH: Iu—Su+ F(u)— N(u) =0,

kde N : H — H je mald kompaktni nelinearni porucha.
Tyto obecné vysledky jsou nésledné pouZzity na systémy reakce-diftize s jednostrannymi ¢leny
typu u™.

Klicovd slova: systémy reakce-diftiize, Turingovy vzory, pozitivné homogenni operédtory, Neu-
mannova okrajovad podminka, Dirichletova okrajovad podminka

This topic has been presented at VII. Symposium on Nonlinear Analysis in Torun [1] and
is a part of article [7], which is being prepared.
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Abstract. We consider the Laplacian in a tubular neighbourhood of a hyperplane subjected to
non-self-adjoint PT-symmetric Robin boundary conditions. Its spectrum is found to be purely
essential and real for constant boundary conditions. The influence of the perturbation in the
boundary conditions on the threshold of the essential spectrum is studied using the Birman-
Schwinger principle. Our aim is to derive a sufficient condition for existence, uniqueness and
reality of discrete eigenvalues. We show that discrete spectrum exists when the perturbation
acts in the mean against the unperturbed boundary conditions and we are able to obtain the
first term in its asymptotic expansion in the weak coupling regime.

Keywords: non-self-adjointness, waveguide, Robin boundary conditions, spectral analysis, es-
sential spectrum, weak coupling, Birman-Schwinger principle

Abstrakt. Uvazujeme Laplacian ve véalcovém okoli hyperroviny podrobeny nesamosdruzenym
PT-symetrickym Robinovym hraniénim podminkam. Jeho spektrum je nalezeno jakozto ¢isté
esencidlni a realné pro konstantni hranié¢ni podminky. Vliv poruchy v hranié¢nich podminkéach na
prah esencidlniho spektra studujeme pouzitim Birmanova-Schwingerova principu. Nasim cilem
je odvodit postacujici podminku pro existenci, jednoznac¢nost a realnost diskrétnich vlastnich
hodnot. Ukéazeme, ze diskrétni spektrum existuje, kdyz porucha pusobi ve stfedni hodnoté proti
neporuSsenym hrani¢nim podminkam, a jsme schopni ziskat prvni ¢len v jeho asymptotickém
rozvoji v rezimu slabé vazby.

Klicova slova: nesamosdruzenost, vlnovod, Robinovy hraniéni podminky, spektralni analyza,
esencidlni spektrum, slabéd vazba, Birmantv-Schwingeruv princip

This contribution is based on my paper accepted to journal Asymptotic Analysis.
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Abstract. This this paper we address the problem of identification of pictures and videos re-
captured from LCD screens. We show that they often exhibit detectable periodic patterns that
are caused by regular sampling grid of LCD screen and aliasing. We developed a method capable
of detecting these patterns by using the theory of cyclostationarity. The term cyclostationarity
refers to a special class of signals which exhibit periodicity in their statistics. Such signals have a
frequency spectrum correlated with a shifted version of itself. Experimental results quantifying
the performance of the developed method are also shown.

Keywords: image and video re-capturing, cyclostationary, aliasing, spectral analysis, CFA, image
forensics

Abstrakt. V tomto ¢lanku feSime problém identifikace prefocovini LCD monitoru u obrazu a
videa. Poukazujeme na periodické poruseni, které je zpusobeno pravidelnym vzorkovacim ras-
trem u LCD obrazovky a aliasingem. Vyvinuli jsme metodu schopnou detekovat tyto vzory za
pomoci teorie cyklostacionarity. Termin cyklostacionarita se odkazuje na specialni t¥idy signalt,
jejichz pravdépodobnostni popis se periodicky opakuje. U téchto signali koreluje frekvencéni
spektrum s posunutou verz{ sebe sama. Experimentalni vysledky kvantifikujici tisp&Snost vyv-
inuté metody jsou rovnéz uvedeny.

Klicovd slova: prefoceni obrazu a videa, cyklostacionarita, aliasing, spktralni analyza, CFA,
forézni analyza obrazu

This work is published in Proceedings of the ICIP 2015: Babak Mahdian, Novozamsky
Adam and Stanislav Saic. Identification of Aliasing-Based Patterns in Re-Captured LCD
Screens. In ‘22th IEEE International Conference on Image Processing (ICIP2015)’, 27-30
Sept. 2015.
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Abstract. This paper concentrate on description of data flow through both hardware and
software parts of the data acquisition system (DAQ) of the COMPASS experiment at CERN.
It also describes system of data quality control. Ability to recover from errors coming from
frontend electronics and on possibility to easily identify origin of errors are important features
of reliable DAQ), thus tests are implemented on all hardware layers and additional headers are
added to data stream. These headers are later analyzed by software. System was deployed in
the end of year 2014. Run was successful and event checks proved to be very useful part of DAQ.
This paper is extension of paper |6] prepared for conference CSCAS2015.

Keywords: FPGA, Qt, data quality control

Abstrakt. Tento pfispévek popisuje cestu udalosti skrze jak hardwarové tak i softwarové Géasti
nového systému pro sbér dat (DAQ) experimentu COMPASS v CERN vyuzivajiciho technologie
FPGA k sestavovani udalosti. Také popisuje velmi dileZity systém kontroly dat. Schopnost
vyrovnat se s chybami pFichazejicimi z elektroniky detektort a moznost snadno identifikovat
puvod chyb je velmi dulezitou soucasti spolehlivého systému pro sbér dat, proto bylo nutné
implementovat testy ve vSech vrstvich hardwaru. Béhem testli se také pridavaji nové identi-
fika¢ni hlavicky. Tyto hlavicky jsou pozdéji analyzovany softwarem. Cely systém byl nasazen
koncem roku 2014. Sbér dat v tomto obdobi byl tispésny a systém testovani udalosti se ukazal
jako velmi uzitetna ¢ast DAQ. Tento pfispévek je rozsifenim piispévku [6] pfipraveného pro
konferenci CSCAS2015.

Klicovd slova: FPGA, Qt, monitorovani kvality

1 Introduction

This paper concentrate on description of data flow through both hardware and software
parts of the data acquisition system (DAQ) of the COMPASS (Common muon and proton
apparatus for structure and spectroscopy) experiment at CERN [10]. The COMPASS
is a fixed target experiment situated at the SPS accelerator in the north area of the
CERN laboratory in Geneva, Switzerland. Its goal is to study hadron structure and
hadron spectroscopy with high intensity muon and hadron beams. Details about scientific
program of the experiment can be found in [4] Data quality control and error control is
important part of any modern DAQ. The COMPASS DAQ have many different pieces of
equipment with different behavior during run which have to run in harsh environment,
thus it was necessary to prepare robust data processing chain. Data checks on many
levels of hardware and software were included to ensure this robustness. These checks
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allows DAQ to recover from errors in detectors and also to identify more easily where the
error appeared.

2 DAQ architecture

2.1 Hardware part

The DAQ of the COMPASS experiment consists of several layers. The frontend electronics
that form the lowest layer continuously preprocess and digitize analogue data from the
detectors. Data format vary based on detector in question. Many different kinds of
frontend chips are used in COMPASS, thus it is very complicated to fully check data at
this layer. There are approximately 300 000 detector channels; trigger rate can rise up to
45 kHz with 36 kB average event size. SPS accelerator operates in cycles that consist of
two 4.8 s long period with beam (called spill) spread in time interval of 36-58.8s (called
supercycle) with minimum of 4.8 s period without beam between two spills. Data from
multiple channels are readout and assembled by the concentrator modules called CATCH,
GeSiCA, and GANDALF. The first standard header is added at this layer. Structure of
this header is shown in Table 1. Similar header structure is also added by SMUX and
TIGER modules [10], but without last word. The next layers use slightly different version
of the header word meaning as is shown in Table 2.

Table 1: Format of header words

meaning ‘ mask meaning ‘ mask
1. word 1. word
event size 0x0000FFFF event size 0x0000FFFF
source 1D 0x03FF0000 source 1D 0x03FF0000
event type 0x7C000000 event type 0x7C000000
error flag 0x80000000 event size 0x80000000
2 word (the most significant bit)
event number | 0x0O00FFFFF 2. word
spill number | 0x7FF00000 event number 0xO000FFFFF
state 0x80000000 spill number 0x7FF00000
3. word state 0x80000000
status 0x000000FF 3. word
tes error 0x0000FF00 status 0x000000FF
error word 0x00FF0000 tcs error 0x0000FF00
format 0xFF000000 error word 0x00FF0000
format 0xFF000000

Table 2: Format of header words used by
DHC cards and spillbuffers

used by CATCH, GeSiCA, and
GANDALF

These modules receive signals from the time and trigger system; when the trigger
signal arrives, the readout is performed and data are sent over optical connection S-
Link to the following layer that is based on special FPGA DHC (Data Handling Card)
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cards as shown in Figure 1. It is further divided into two layers and is responsible for
building of complete events. This newly designed event building part allows usage of
more compact control system. The hardware event builder performs online verification
of data consistency. The last layer of the system consists of readout engine computers
equipped with spillbuffer cards that readout assembled events and transfer them to the
The CERN Advanced STORage (CASTOR) for long term storage.

2.2 Software part

The original DAQ system of the COMPASS was based the Data Acquisition and Test
Environment (DATE) software (see [1]), originally developed for the ALICE experiment
at CERN for control of the hardware, therefore many user programs expect that data
files are in the DATE data format. Transformation of read out data to DATE data
format is needed because of this limitation. Data quality monitoring and error control
is also important part. The DAQ package of the COMPASS experiment composed of
several processes; namely: Master, slaveReadout, slaveControl, GUI, messageBrowser,
messageLogger. This paper focuses only on slaveReadout process responsible for pro-

cessing of data stream. Details of other parts of DAQ software package can be found
in [8, 7,5, 2, 3.

3 Event processing in hardware

In the first step of the data acquisition process, data from detectors are prepared to the
Slink format [11] and sent over optical fiber to DHC module with multiplexer firmware [8|.
Module in this configuration contains up to 15 incoming links. Data from each link are
verified. If an error is detected, data are discarded and artificial header with size of
three words is generated. Otherwise header with correct size is generated and prepended
in front of normal data. Some errors can be masked and payload is then kept. Both
masked and unmasked errors are marked in appropriate bit of the added header. All
links are then combined to one pack and one additional header with summary of sizes
is prepended. Such data pack is sent to the following stage. This stage is represented
with a single FPGA module with switch firmware [8]. The switch works very similarly to
multiplexer from data handling point of view. However, it uses only 8 links instead of 15
as incoming. Remaining links are configured as outgoing and are connected to spillbuffer
cards. Spillbuffer verifies data in the same way but adds only one specific header as it
has only one connected link. This header has one additional word which contains precise
timestamp of the event. Data from spillbuffers are retrieved by the readout program.
Full diagram of the system is shown in Figure 2. The presented design is very flexible;
additional layers can be easily added or removed as needed.

4 Event processing in software

Software processing is done in slaveReadout processes in several separate threads; namely:
main readout thread, circular buffer thread, processor thread, transformation threads, out-
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Figure 2: Event processing in hardware part

put threads, and terminator thread. Events are exchanged between threads by signal-slot
mechanism (SSM) of the Qt framework [12]. Diagram of thread interactions is shown in
Figure 3. To decrease the influence of overhead of the SSM on the overall performance of
the system, we send several hundred events in one bunch. SlaveReadout processes have
also informator thread used for communication with rest of the system [2].

4.1 Main readout thread

Main readout thread is the most time critical thread. It is responsible for reading of
the events from spillbuffer through driver and for keeping of information about state of
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the process. The readout in this thread is done in following steps. In the first step,
event from the memory of the spillbuffer is readout into the memory of readout engine
computer. Memory for event is pre-allocated in super blocks of 512 MB. Memory pre-
allocation is necessary to speed up the readout and decrease load on CPU as dynamic
memory allocation with standard operator new can be slow. Influence of this scheme is
quite significant as in original design the operator new could have been called even 90000
times per second. At first, the main readout thread requests the space required to store
event from the memory manager object. If there is a free space in pre-allocated super
block, the memory manager takes two blocks of 1024 kB from it and returns its address
back to main thread. The first block is for raw event from driver and the second one is for
event transformed into the DATE format. If there is no free space in actual super block
memory, the manager allocates a new super block. Main thread prepares event object in
the memory block to which the actual data are filled by driver. When preset number of
events is readout, the message is formed and then it is sent to circular buffer thread for
temporary storage. Main readout thread has highest priority.

4.2 Circular buffer thread

Circular buffer thread is support thread used for handling events until the processor
thread declares readiness for new events and it is also used for monitoring of occupied
memory. It is sleeping the most of the time and have no resource demanding function
inside.

4.3 Processor thread

Processor thread has two parts in the first parts events are distributed to transformation
threads and in the second part events are passed to outgoing threads. In the present DAQ
version, a system for distribution of not transformed events to transformation threads is
used. Processor thread continuously checking for available transformation threads and
distributes events to them. Number of total processing threads can be change easily
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before start of the system. Events are sent to zero to N output threads according to
preselected options when the transformation is finished either one by one or in the whole
blocks. All outputs are based on abstract class, thus it is relatively easy to add new
ones. Main output represents file output which normally receives all events in blocks.
Secondary outputs are used for monitoring and gets just fraction of events. This fraction
is configurable and during normal physics run is in order of tenths of percent.

4.4 Transformation thread

Transformation thread is responsible for transformation of events into DATE data format.
This transformation is very resource demanding as it has to process the entire tree of error
checks in the structure of Figure 2, to analyze the additional headers, to remove them, to
add header appropriate for the DATE data format, and also to decode specific parts of
events for special information about run. Structure of event is compared to the structure
described in the XML structure file. This file is generated by master process and is
based on the active configuration stored in the database. Transformation process also
generates error and warning messages about data quality based mainly, but not only on
the additional headers. Transformation is not done on the place. The event in DATE
format is build on new place in memory from pieces taken from raw event, together with
newly created DATE headers. This system is more demanding on memory, but it is much
faster.

4.5 Terminator output thread

Terminator output thread is special output thread. Its task is to monitor if all other
outputs are finished with the event. This thread then decompose event when the event
is marked as processed or when it is stacked in processing for too long.

5 Conclusion

Full DAQ was successfully deployed during run in the end of 2014 after 3 years of de-
velopment. This system proved to be more flexible, scalable and resistant to errors of
detectors than the original one. Many useful experiences were gathered which are invalu-
able for further improvements in monitoring of the system. More types of error and data
checks were added before run 2015, but space for improvement still remains and many
new features are planned. Speed of readout process proved to be more than sufficient as
it is not the bottleneck of the system. Described system have also low peak and average
load of processor. Peak load is around 60 % and average load is approximately 5% on

XEON 3.6 GHz.
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Abstract. Unified Modeling Language (UML) is generally use in information technology to
deal with software projects. UML uses a wide variety of diagrams to handle different aspects of
software projects. In this artical, activity and state diagrams are used to model a data mining
projects.

Keywords: UML, data mining, state diagram, activity diagram

Abstrakt. Modelovaci jazyk UML (Unified Modeling Language) se pouZiva v oblasti informac-
nich technologii k planovani a realizaci softwarovych projektti. UML pouziva fadu diagrami,
které zachycuji riizné aspekty softwarovych projekti. V tomto pfispévku jsou pouzity diagram
aktivit a stavovy diagram k planovani projektd v oblasti dolovani znalosti z dat.

Klicova slova: UML, dolovani znalosti z dat, stavovy diagram, diagram aktivit

1 Uvod

Dolovani znalosti z dat prodélalo od ¢astu svého vzniku bouflivy vyvoj. Ve svych pocat-
cich se jednalo o feSeni néjaké realné tlohy pomoci matematickych modeli. Typickym
piikladem je datova sada Iris a problém spravné klasifikace kosatct podle Sitky a délky
okvétnich a kalisnich lista, coz je problém publikovany R. A. Fisherem [4].

Ke konci dvacatého stoleti, zejména s rozvojem informacnich technologii, se situace
dramaticky zménila. Vyrazné narostly datové sady i mnozstvi matematickych modeli,
které jsou pro jejich feSeni dostupné. Pro vyfeSeni tilohy je nyni tfeba vice odborniku z
riznych domén. Do popfedi se tak dostala nutnost cely proces feseni efektivné fidit.

Z manazerského pohledu vznikla fada metodik, které danou poptavku vyftesila, jako
jsou 5A, SEMMA, CRISP-DM |[2], [3], [7]- Rizen{ a sprava projektu z pohledu analytika
ale prili§ casto feSena neni, vyjma specializovanych néstroji. Na druhou stranu se obje-
vuji ptistupy, které vyuzivaji dobfe propracované a rozsitené metodiky z jinych oblasti. V
IT odvétvi se k vyvoji pouzivd modelovaci jazyk UML, ktery vyuziva diagramy pro mo-
delovani ruznych aspekttu vyvoje softwarového projektu. Existuje jiz nékolik ¢lanki, které
se zabyvaji vyuzitim UML pro dolovani znalosti z dat [6], [8]. V tomto piispévku bude
vyuzito diagramu aktivit modelovaciho jazyku UML pro modelovani procesu analyzy dat
vyuzivajictho klasické matematické modely a modely zalozené na jadrovych funkcich. Dale
pak stavového diagramu pro modelovani redlného projektu na klasifikaci Alzheimerovy
choroby.
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Obrazek 1: Vyuziti jadrovych funkei k modelovani.

2 Jadrovy pristup k modeliim

Jadrovy piistup [10], [11] je moderni komplexni piistup k dolovani znalosti z dat.

Méjme soubor pozorovani a modelované vlastnosti {(x1,41), ..., (Xn,¥n)}, kde x; €
X jsou pozorovani, y; € ) je modelovana vlastnost a n € N. Klasickym piistupem
je néasledné vyuziti vztahti mezi pozorovanimi v prostoru X a pomoci téchto vztahu
modelovat pozadovanou vlastnost ).

Myslenka, kterou vyuzivaji jadrové funkce, je vlozit mezi prostor X a ) dalsi prostor;
oznacme jej H. Prostor H je zaveden jako Hilbertiv prostor a obraz pozorovani x; v
prostoru H dostaneme pomoci zobrazeni ¢ jako x; = ®(x;). Takto ziskdme novy soubor
pozorovani {(x1,41), .-, (Xn, Yn)} v prostoru H. Nyni, v prostoru H, budeme skrze vza-
jemné vztahy mezi pozorovani x; modelovat prostor ). V kontextu teorie jadrovych funkei
jsou vzajemné vztahy modelovany pomoci vzadjemnych vzdalenosti vyjadifenych pomoci
skalarniho soucinu (x;,x;). Cely tento postup je zndzornén schematicky na obrazku 1
pomoci tmavé sekvence Sipek.

Protoze je prostor H volen bud jako vysokodimenzionalni prostor, nebo dokonce spo-
¢etnédimenziondlni prostor, je vySe uvedeny piistup technicky obtizné realizovatelny, v
pripadé spocetnédimenzionalntho prostoru dokonce nerealizovatelny. Tento zasadni ne-
dostatek je odstranén tim, ze prostor H je konstruovan tak, aby bylo mozné skalarni
soudin (x;,x;) po¢itat pfimo z puvodnich pozorovani x; pomoci tzv. jadrové funkce k
jako k(x;,x;) = (x;,x;). Tento postup je znazornén na obrazku 1 pomoci svétlé sipky.
Vztahy mezi objekty muzeme shrnout nasledujicim zptisobem

k(xi, x5) = (xi,%5) = (P(x:), P(x;)).

Piimym dusledkem piedchozi formulace je skutecnost, Ze jednotlivé modely pro dolo-
vani dat zalozené na jadrovych funkcich prebiraji pozorovani ve formeé tzv. jadrové matice
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Obrazek 2: Zakladni komponenty diagramu aktivit. Zleva pocatek, ukonceni, dvé aktivity
a prechod.

K, ktera je definovana nasledujicim zplisobem

(K)ij = k(x4,x;),Vi,5 € {1,...,n}.

3 Modelovaci jazyk UML

Modelovaci jazyk UML (Unified Modeling Language) je nastroj slouzici hlavné k vyvoji
aplikaci [5], [1]. Obsahuje fadu postupt, jak modelovat cely proces vyvoje aplikaci od
pozadavki, pies analyzu a navrh az po samotnou implementaci. To vSe prostiednictvim
nazornych diagrami, které slouzi k jasnému a jednoduchému popisu danych ¢asti projek-
tového cyklu.

Vzhledem k tomu, Ze nedilnou soucasti dolovani znalosti z dat je préace v oblasti IT,
se vyuziti UML v této oblasti ptirozené nabizi.

Pro potieby modelovani projektového cyklu byly vybrany diagram aktivit a stavovy
diagram.

3.1 Diagram aktivit

Diagram aktivit slouzi v modelovacim jazyku UML jako nastroj pro modelovani procest.
Proces se sklada z aktivit a pfechodii mezi nimi. Diagramy aktivit jsou obdobou stavo-
vych diagramu (viz 3.2), kde stavy reprezentuji vykonavani aktivit a ukonceni aktivity
vyvolava pfechod. Diagramy aktivit se hojné pripojuji k pfipadim uziti, t¥fidam, rozhra-
nim, komponentam, uzlim, spolupracim, operacim a metoddm. Diagramy aktivit slouzi
vétsinou k modelovani manazerskych procesiu, diky ¢emuz se ukazuji jako vhodné nastroje
pro modelovani samotné analyzy dat.

Akce se znazornuji jako obdélniky s oblymi rohy (viz Obréazek 2) a popisem aktivity,
kdy se v pripadé, ze se jednad o prostou cCestinu, pouziva sloveso nebo slovesna fraze.

Kazdy diagram aktivit se sestava z akci, prechodi mezi nimi, které se znac¢i Sipkami,
a dvou specialnich staviy; poc¢atku a ukonceni (viz Obréazek 2).

Jednotlivé pfechody je mozné vyhodnocovat a vétvit na zakladé booleovskych pod-
minek. Vétveni se zna¢i pomoci kosoc¢tverce (viz Obrazek 3) a stejny symbol se vyuziva
i pro slouceni.

Pomoci diagramu aktivit je mozné modelovat i soubézné toky ¢innosti, kdy prechod
se rozvétvuje do dvou nebo vice soubéZznych toki, které se potom synchronizuji pomoci
spojeni (viz Obrazek 3).

Dalsi moznost prizplisobeni diagramu aktivit pfedstavuji zony, kdy jednotlivé ¢innosti
sdruzujeme podle potieby do ptibuznych oblasti. Zony se obvykle vyuzivaji ke znazornéni
soubéznych toki.
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Obrazek 3: Diagram aktivit. Zleva logickd podminka a vétveni.
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Obrazek 4: Stavovy diagram - stav.

Vyuziti diagrami aktivit pro dolovani znalosti z dat je velmi piimocaré, protoze do-
lovani znalosti z dat je posloupnost operaci, ktera se provadi na datech.

3.2 Stavovy diagram

Stavovy diagram je dilezitym nastrojem pro modelovani chovani reaktivnich systémi. Jak
bylo zminéno v ¢asti 3.1, diagramy aktivit jsou specidlnim piipadem stavovych diagrami.

V obecném smyslu se stavové diagramy pouzivaji k modelovani Zivotniho cyklu jed-
noho reaktivniho objektu. V kontextu dolovani znalosti z dat by se dala za tento reaktivni
objekt povazovat data, ktera "reaguji'"na pouzivané postupy, metody a modely a diky nim
se méni.

Syntaxe je analogickd jako u diagramu aktivit; opét mame pocatecni a koncovy stav,
samotné stavy jsou obdélniky se zaoblenymi rohy, pfechody mezi stavy jsou modelovany
Sipkami, udalosti jsou napsiny nad piechody, které jsou diky nim vyvolany.

Stav je v daném konkrétnim okamziku urcen hodnotami atributt daného objektu,
relacemi s dalsimi objekty a aktualné vykonavanou aktivitou. Diky tomu je popis stavu
komplexnéjsi nez popis aktivity. Obecna syntaxe stavu je na Obrazku 4. Dalsi soucasti
jsou stejné, jako u diagramu aktivit v ¢asti 3.1.
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4 Vyuziti diagramu

V ¢asti 3 byly predstaveny dva diagramy, které budou nyni vyuzity pro modelovani pro-
cesu dolovani znalosti z dat. V této ¢asti se omezime jen na klasifika¢ni ulohu.

4.1 Proces dolovani znalosti z dat s vyuzitim metod zaloZenych
na jadrovych funkcich

Klasicky proces dolovani znalosti z dat je zndzornén pomoci bilé série aktivit na Obrazku
5. Ma pomérné pevnou strukturu, v ramci které se postupuje od nejjednodussich operaci
po ty nejkomplikovanéjsi. Nejprve se provadi prizkumové analyza dat (EDA), na kterou
navazuje vybér a transformace atributi. Dalsi krok, deskriptivni modelovani (DA), byva
v klasickém procesu nepovinné a pouziva se podle potieby konkrétni analyzy. Nasledné
jsou na vybrané datové sady pouzity jednotlivé klasifikatory. Téch se obvykle voli nékolik
a v zavérecné fazi se vyhodnocuji.

Jadrovy piistup k analyze dat, ktery je na Obrazku 5 znazornén pomoci ¢ernych
aktivit, navazuje na tvodni prizkumovou analyzu dat a obvykle se vyuziva paralelné
s klasickym. Vzajemna soucinnost byva pouzita naptiklad v pfipadé analyzy hlavnich
komponent (PCA), kdy se na prvnich nékolik komponent z jadrové varianty PCA pouziji
klasické klasifikatory.

Vyhodnoceni vSech klasifikatori probihé v zavéreéném kroku spole¢né jak pro klasické,
tak pro jadrové klasifikatory.

Uvodni faze dolovani znalosti z dat, prizkumova analyza a vybér a transformace
atributa v prostoru X', predstavuji obvykle vétsinu ¢asu celé analyzy a maji zcela zasadni
vliv na kvalitu vysledku a tspésnost projektu. Stejny vliv na vysledek ma i reprodukujici
Hilbertuv prostor H a proto by bylo vhodné podobné pristoupit i k jeho analyze. Vzhledem
k vazbé obou prostori X a H bylo navrzeno upravené schéma procesu dolovani znalosti
z dat, které reflektuje tyto potieby a které je znazornéno na Obrazku 6.

V ramci upraveného procesu na Obrazku 6 se nejprve provede analyza vstupniho pro-
storu X pomoci pruzkumové analyzy dat, vybéru a transformace atributi a pfipadné
prizkumové analyzy dat. Vystupem je jeden nebo nékolik datovych soubori, které slouzi
bud jako vstup do klasickych klasifikitort, nebo jako zéklad pro transformaci do prostoru
‘H. Nasledné se provede stejny proces v prostoru H. Jeho cilem je vytvofit vhodné Hil-
bertovy prostory, coz je z datového pohledu ekvivalentni vytvoieni vhodnych jadrovych
matic K. Ty mohou slouzit bud jako vstup do jadrovych klasifikatori, nebo napiiklad jako
podklad pro jadrovou PCA. V piipadé PCA je nasledné mozné na vybrané komponenty
pouzit klasické klasifika¢ni modely.

4.2 Vyuziti stavového diagramu

Modelovani procesu dolovani znalosti z dat pomoci diagramu aktivit je uziteéné hlavné
z manazerského pohledu, nebo v ptipadé, kdy je tfeba zdiiraznit nuance v procesu, jako
tomu bylo v ¢asti 4.1. M4 vSak jeden zékladni nedostatek, neobsahuje informaci o datech.
Pro dobré modelovani procesu dolovani znalosti z dat by bylo uzite¢né zaroven postihnout
jak aktivity, tak data.
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Diagnostika Klasicky piistup Jadrovy pfistup

( ProvéstEDA )

( ProvéstFs,FE )

(__ Pprovést Dy Provést DA

( Aplikovat Klas. 1.k ) Aplikovat

—

CWhodnotit klasifika'tory)

.

Obrazek 5: Klasické schéma dolovani znalosti z dat s vyuzitim diagramu aktivit. EDA
- pruzkumové analyza dat, F'S, FE - vybér a transformace atributi, DA - deskriptivni
analyza, klas. - klasifikator.
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( ProvéstEDA )

( ProvéstFs,FE )

C Provést DA )

Provést EDA

Provést FS, FE

Provést DA

w C Aplikovat klas. 1...m ) C Aplikovat klas. 1...k )

(Whodnotit klasiﬁkétoryj

O

Obrazek 6: Upravené schéma dolovani znalosti z dat s vyuzitim diagramu aktivit. EDA
- pruzkumové analyza dat, FS, FE - vybér a transformace atributi, DA - deskriptivni
analyza, klas. - klasifikator.
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Tento pohled na projekt umoziuje stavovy diagram. Je urcité mozné vyuzit stavovy
diagram vice zptusoby. V navrzeném schématu je tstfednim bodem stav zpracovani dat,
v ramci kterého se provani urcitd ucelend interni aktivita s daty. Vystupni akei jsou
nasledné upravena data.

Na Obrazku 7 je znézornén stavovy diagram pro klasifikaci Alzheimerovy choroby
tak, jak byla provedena v [9]. Uvodni stav zacina nactenim hrubych dat. Nésledné se
data zpracuji vyjmutim nepotiebnych dat. Potom se data transformuji do matic normy
rozdilu pozorovani a skaldrniho soucinu, které slouzi jako zaklad pro tvorbu prostoru
‘H. Vzhledem k néroc¢nosti zpracovani hrubych dat jsou data pti opusténi tohoto stavu
ulozena.

V dalsim stavu se data opét nac¢tou a provede se jadrova PCA pro exponencidlni,
Gaussovské a polynomialni jadro. Pro exponencialni rodinu se pouZzije vytvofena sit pa-
rametru o, pro polynomialni jadro se zvoli stupeni jedna az deset. Data se v zavéru ulozi
do pfislusnych proménnych.

V zavéreéném stavu se provede kvadraticka diskrimina¢ni analyza (QDA) na piislusna
data. Vyzkousi se dvé az jedendct komponent a vSe se vyhodnoti s vyuzitim leave-one-out
kifzové validace.

Samoziejmé uroven detailu diagramu, toho, co je brano jako stav, a jednotlivych akei
zavisi na 1loze a uvazeni toho, kdo diagram tvori. Diagram na Obrazku 7 rozcleiiuje celou
a nazvy hlavnich proménnych.

Nespornou vyhodou takového diagramu je moznost piehledné a tGsporné vystihnout

vvvvvv

5 Zavér

UML je globalné rozsiteny standard pro tvorbu softwarovych projekti, ktery je zalozen
na tvorbé riznych diagrami. V tomto pfispévku byly vybrany dva diagramy, diagram
aktivit a stavovy diagram, a byly vyuziti pro modelovani procesu dolovani znalosti z dat.

Diagram aktivit byl pouzit pro formulaci procesu dolovani znalosti z dat, v kterém jsou
soubézné pouzity klasické i jadrové modely. Tento pohled na projekt je vhodny zejména
pti planovani ¢innosti.

Diagram aktivit vSak neobsahuje datovou stranku véci. Ta byla zaclenéna do pro-
jektu pomoci stavového diagramu, kde jednotlivé stavy byly pouzity jako stavy dat. V
jednotlivych stavech se s daty pracuje pomoci akei.

Vyhodou vyuziti diagrami je snadné vystizeni pribéhu projektu. Diky vyuziti rozsite-
ného standardu UML v kontextu dolovani znalosti z dat jsou navic diagramy srozumitelné
vSem, ktefi se s nim ve vétsi ¢i mensi mite jiz setkali.
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( Zpracovani hrubych dat

I

entry/nacteni hrubych dat

do/vyjmuti NOS1

do/tvorba matice normy rozdilu (NR)
do/tvorba matice skaldrniho soudinu (55)
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[ Proveden( jadrové PCA h
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Obrazek 7: Stavovy diagram pro klasifikaci Alzheimerovy choroby. QDA - kvadraticka
diskrimina¢ni analyza.
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Abstract. In this contribution, we present a mathematical and numerical model for non-
isothermal, compressible flow of a mixture of two ideal gases subject to a constant volume
force. The mathematical model is based on balance equations for mass, momentum and energy
combined with the ideal gas equation of state. The numerical model is based on the method
of lines, where the spatial discretization is carried out by means of the control volume based
finite element method, and for the time integration, the Runge-Kutta-Merson method is used.
Finally, we present results of a numerical experiment that illustrate the ability of our numerical
scheme.

Keywords: control volume based finite element method, multicomponent flow, compressible flow

Abstrakt. V tomto prispévku prezentujeme matematicky a numericky model neizotermélniho,
stlacitelného proudéni smési dvou idealnich plynt, na které ptisobi konstantni objemové sila.
Prezentovany matematicky model kombinuje zakony zachovani hmoty, hybnosti a energie se
stavovou rovnici idealniho plynu. Numericky model je zalozen na metodé primek, pficemz pro
prostorovou diskretizaci je pouzita kombinace metody kone¢nych prvki a metody kone¢nych ob-
jemu a vysledny systém obycejnych diferencidlnich rovnic feSen Mersonovou variantou Rungovy-
Kuttovy metody. V zavéru prezentujeme vysledky jednoho numerického experimentu, které
ilustruji schopnosti naseho modelu.

Klicovd slova: metoda kone¢nych prvki, vicekomponentni proudéni, stlacitelné proudéni

1 Introduction

Our research is focused on development of a numerical model for simulation of NAPL
(Non-Aqueous Phase Liquids) vapor transport driven by air flow in porous medium and
above its surface. The goal of this research is to put together a mathematical model based
on balance equations for mass, momentum and energy for both types of flow, where the
gases are considered to be ideal, and to implement a numerical solver in which these

*This work is partly supported by the project "Development and Validation of Porous Media Fluid
Dynamics and Phase Transitions Models for Subsurface Environmental Application" Kontakt IT LH14003
of Czech Ministry of Education, Youth and Sports and by the project "Advanced supercomputing meth-
ods for mathematical modeling of natural processes" No. SGS14/206/OHK4/3T /14 of the Student Grant
Agency of the Czech Technical University in Prague.
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flows are solved separately, and the information is passed between the flows via coupling
conditions on the interface between the media.

The model we develop is similar to the one described in [6], but it differs in the
following aspects:

1. Our model includes compressibility effects and gravity.
2. Our model is only singe-phase two-component.

Whereas the second item simplifies the model a lot, both the compressibility and gravity
effects greatly complicate the numerical solution.

In this contribution, we present the part of our model that describes the free flow and
we also present results of a numerical test that demonstrate the ability of our model.

2 Mathematical Model

According to the kinetic theory of gases summarized in [3|, [4], [5], a mixture of two
polyatomic ideal gases can be described by the following conservation laws:

e Conservation equation for the mass of the mixture

dp
EJrV-(pv):O. (1)

e Conservation equation for the mass of one of the gases (we choose the NAPL vapor)

%+v.[pn(v+vn>]_o. 2)

e Conservation equation for the momentum of the mixture

d(pv)
ot

+V - (P+ pv®v)=pg. (3)

e Conservation equation for the energy of the mixture

9(pe)
ot

+V-(Q+pev+ P-v)=pg-v. (4)

In these equations, the quantities without subscripts refer to the whole mixture; the
quantities related to the NAPL vapor and the second gas are denoted by the subscript n
and g, respectively. The components of vectors and matrices are printed in the non-bold
font, i.e. v = (v, v2)T, where T denotes transposition. p [kg-m™3] represents the density,
t [s] the time, v [m - s71] the velocity, p, [kg - m™3] the density of the NAPL vapor, V,,
[m - s71] the diffusion velocity of the NAPL vapor, P [Pa] the pressure tensor, g [m -s™?]
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the gravitational acceleration vector, e [m? - s72| the specific energy and Q [kg - s73] the
heat flow vector. The fluxes V;, P and @ are defined as

Vi=— Y Dij(dj+kr;VInT), i=g,n, (5)
j€{n.g}
P =pI —2uS, (6)
Q=-\VT+p 3 (kTﬁKfl%)Vé, (7)
i€{n,g}

where d; [m™!] is the diffusion driving force defined by
di:V(&)+<&—&)VIHp, (8)
p p p

where p; [Pa] and p; [kg - m™3] are the partial pressure and density (p = Zie{n,g} Dis p=
D ic{ng} Pi); respectively, and p [Pa] is the pressure. D; ; [m?-s71] is the multicomponent

diffusion coefficient, D; ; = D;;, D;; = —%Dm, it p; # 0; otherwise, D;; is not needed.
kr; [—] denote the thermal diffusion ratio, kr, = —kr,, 1 [kg-m~"-s7' is the dynamic
viscosity, S [s7!] the rate-of-shear tensor defined by
1 (0v;  Ov 1
Si;i== L+ —) ==V -0, 9
" 2 (81‘1 * ax]) 3 V0% ( )

where z; [m], ¢ = 1,2, are spatial coordinates, and 0, ; is the Kronecker delta. A [kg -
m - K™ - s73] denotes the thermal conductivity coefficient, 7' [K] the thermodynamic
temperature, and x = Z [—] is the ratio of specific heats, where ¢, [J - kg™t - K™'] and
cy [J- kg™t K_l] denote the specific heat at constant pressure and volume, respectively.
Moreover, it is useful to define the mass fraction of the species i in the mixture, X; [—],
X; = %.

The previous system is supplemented by the following formula relating the energy to
the temperature

1
pe=cypT + §p'02 (10)
and by the ideal gas equation of state
M
=p— 11

where R [J-K™-mol '] is the gas constant, and M [kg-mol '] is the molar mass defined
by
p

M=—"
Zie{n,g} ]C[_Z

(12)

where M; [kg - mol™'] is the molar mass of the component 7. Combining equations (10)
and (11) with the Mayer relation M (c, —c¢y) = R, we get the formula relating the energy
to the pressure

p=(k—1) (pe - %vzp) . (13)
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Note that for p, = 0, the governing equations reduce to the compressible Navier-

Stokes equations.

The equations are solved in a rectangular domain 2 C R? and on a time interval

I = [tini, tan]. The initial conditions are

p(tini, ) = pimi(x), T € Q,
Pn(tini, T) = Pn, mi(T), T € ﬁ?
T(tini, ®) = Tini(x), T € Q,
V(tini, ) = vi(x), T € Q.

14)
15)
16)

)

(
(
(
(17

As for the boundary conditions, there are many combinations of boundary conditions with
which our system can be supplemented [1]. In this contribution, the mixture is assumed
to flow in the horizontal direction from left to right, the gravitational force points in
the vertical direction (g = 0), and the following setup is considered (the division of the

boundary is depicted in Figure 1a):

e Inflow
,O‘in = Pin,
pn|in = Pn,in,
v|in - vin;
the pressure p is extrapolated via the relation %
1

order central finite difference.

e Outflow

plout = Pout;

L = 0 discretized by the second

(21)

the densities p and p,, and the velocity v are extrapolated via the same relation as

the pressure on the inflow edge.

e Top and bottom edge

'Ultop = Utop» 'Ulbot = Ubot;

(22)

the density p, is calculated from X, which is extrapolated linearly; the density p
and the pressure p are extrapolated exponentially because by hydrostatic conditions

at constant temperature, the pressure and density distribution is exponential.

3 Numerical Solution

The aforementioned mathematical problem is solved by means of the method of lines,
where the spatial discretization is carried out by the control volume based finite element
method [8]; for the time integration, the Runge-Kutta-Merson method [7] is employed.
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top
in out
bot
(a) Boundary of Q. (b) Primary (solid line) and dual mesh (dashed line).

All of the unknown functions (the products pv;, i = g, n, and pe are treated as a single
variable) are approximated using the classical finite element space based on the bilinear

clements [2], where the domain Q is covered by a mesh T = {T°}"7, of rectangles (see

Figure 1b), where N7 is the number of rectangles in 7. Each vertex x; of the mesh is
associated with the basis function ;. Further, we use the node-centered dual mesh of
finite volumes V = {V;}, where Ny denotes the number of nodes in 7. This mesh
will be described later on. Finally, the time interval I is divided by a strictly increasing
sequence (tn)ﬁio, where tg = ti,; and ty, = tgn.

The following notation will be used throughout this text:

o X = {m,}f\i"l is the set of all vertices in the mesh T

o A= {i|x; € T¢};

o A= {jl(3T° € T)(z: € A° Ay € A)}\ {i};

o N6 =ANA;

o A=A\, N {jlz; € 00},

o Aij={eli € A°Aj €A}

o A" ={e|x; € A°};

e 1, ; is the midpoint of the line segment connecting the vertices x; and x;;
e x. is the circumcenter of 7°;

° Ff,j is the line segment connecting the points . and x; j;

° Fi-’?j is the line segment connecting the boundary points x; and x; ;;
o [ = UjeAi UeeAi,j Ff,j;

o IV = UjeA? F?,j for x; € 09,

e

€ .
1,7

*x (VK

is the midpoint of '

e x}; is the midpoint of I

b .
K

o VE=V,NT*
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o f(xi) = fi, f(xij) = fig, f(x5;) = fi;, f(&2;) = £}, (@) = fe, where the time

coordinate is omitted;

e [f], denotes the k-th component of the vector f, when there are too many symbols
in the definition of f.

The preceding notation is used for scalar (f) as well as vector-valued (f) functions.

The finite volume V; associated with the node x; is defined as the open set surrounded
by the piecewise linear curve T'; (i.e., 9V; =T) for &; ¢ 0 and by the piecewise linear
curve [;UT? (i.e., OV, = T;UT?) for x; € 9Q. The dual mesh of finite volumes is depicted
in Figure 1b.

In our computations, the physical domain €2 is extended by one layer of dummy
elements [1], and the aforementioned boundary conditions are prescribed at the corre-
sponding dummy nodes. Therefore, equations (1)—(4) are solved in the whole of ).

The numerical scheme is derived by integrating equations (1)—(4) over a volume V;,
applying the Green formula and using the following approximation formulas:

o [, flx)dx = ZeeA? |Vl fi = |Vi| fi, where |V€| denotes the area of VE.

o Jy (VI (@)dz = T,cp [VEI(VS),.

o fr ndx =), ZeeAF |T¢.| f5; - n¢;, where |T¢;| denotes the length

1,57

of the hne segment I'j ;, and nf; is the unit outward normal with respect to I'f ;

The previous procedure yields the system of ordinary differential equations for k = n, g
and i = 1,2,... Ny (the dummy nodes are used),

Z Vill i + Z Z J ‘ pw w nzej =0, (23)

e€A? JEA; e€Ay j
Y Ve it D Y T | Py (Vi + Vi) -mi; =0, (24)
GEA;-” ]EA,L SGA,L"J'

> Vel )i+ S VYD) + D2 Y (T | [P =pD,miy ]

e€A? e€AT JEA; e€A; ; (25)
e
30 D0 T | vty iy = D IV s
JEN; GEAZ’J eeA;L

SOVE(pe) + > > T [Pv”+Q”+(pe)U u] ng; =Y [Velg-(pv);,

e€A} JEA; e€A; e€A}

(26)
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where

VTY,
n:Z:J - Z Dn NEN] ( lyi,g + lea 1,J TC ]) ) (27)

le{n.g}
e - SN\ Ve
k,z,] S v ( ) + (pkém . pk:,]) }Zz,]’ (28)
P /i, pi; Pij pi;
P = (T — 2S).,, (29)
e e K pleﬂ'f e
Qi = —A(VT);; + i Z (kﬂz] t— (ij)) Vi (30)
(2%

le{n.g}

For stability reasons, the term [, Vp is approximated as the volume integral in (25), and
the underlined terms are modified by the full upwind formula

o= {fn vi;mi; >0
Z’j

€ €
fng, vij-mi; <0

The terms Vv, and V (%) are calculated via

Vo, = V ((pzk)) v (pvk)p_Z

(pve) Vo o (m) _ pVpr — e Vp
) ; - —p2 .

4 Numerical Results

In this section, we present the results of the simulation of a traveling wave of NAPL vapor.
The domain © = (0.0,3.0) x (—0.5,0.5) is considered, where the units are [m|, and there
are 30 and 10 square elements in the vertical and horizontal direction, respectively. The
same squares are used as the dummy elements. The time step of the Runge-Kutta-Merson
method is bounded from above by 3.0 - 107*s. The initial (¢;,; = 0.0s) and boundary
conditions are

pini( )

pin(w)

Viop(T)

Pout (CB)

M 92 MgQZ
Pret 57— €XP

RTref ¢ RTref
Mgg2 exp Mg92
RTref RTref

Pret 57—

= Uref, vbOt(w) = Uref;

= Pref-

:L‘2> ) pn,ini(m) = 07 7_7i11i(33) - Trefa ’Uini(m) = Uref;

Zlfz) 3 pn,in(m) - Xn,refpin(a:)a ’Uin<m) = Uref,

Note that the initial density distribution is hydrostatic. The values of the physical
constants are listed in Table 1. The coefficient k7, is defined by the formula k7, =
0.35X, MM, which is based on information in [3].

The numerical results are presented in Figures 2-3. We can see how the wave of
non-zero mass fraction of NAPL vapor spreads towards the right edge. As we need to
model only slow flows over very long time intervals in our application, the fact that the
wavefront is smeared out should not pose any problems in our research.



148

parameter value unit parameter| value unit
Dy, —8.35-107° m?-s7! a 00 |m-s?
U 1.725-107° | kg-m=!.s7! s 981 | m-s2
A 0.02428 kg -m - K™.g3 Drof 101325 Pa
K 1.4 — Tret 295.15 K
M, 0.02896 kg - mol ™! Vref 1 1.0 |m-s7!
M, 0.13139 kg - mol " Vref.2 00 |m-s7!
R 8.3144621 | J-K'-mol™* X ref 0.01 -
Table 1: Values of constant physical parameters.
Pseudocolor
Var fﬁxaum
o o
—0.0075
™ 0.
0.0050
| .
—0.0025
l2.06—050'
Merx: 0.010
Min: 2.0e-06
Figure 2: X, at time ¢ = 1.5s.
Pssudacaolor -4
Var ff_Tzw 160
o
— 206,889
>~ 0.0
296310
— 295,730
lz%wsﬁ”“‘
Man: 207.469
Min: 205,150

Figure 3: T" at time ¢t = 1.5s.
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5

Conclusions

Our numerical scheme seems to solve the governing equations without producing non-
physical oscillations in state variables. Therefore, it can be coupled with the numerical
model for flow in porous medium.
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Abstract. The contribution involves a research part of further investigation into the Horava
gravity. The ADM formalism of general relativity is introduced as a tool used in the framework
of the Horava gravity, which may represent a modern-day candidate of renormalizable quantum
gravity. The theory is essentially based on anisotropic scaling of space and time in the UV,
resulting in relativistic invariance breaking.
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Abstrakt. Tento piispévek zahrnuje reSer$ni ¢ast dalsiho vyzkumu v oblasti Hofavovy teorie
gravitace. ADM formalismus obecné teorie relativity je zde uveden jako nastroj uzivany v rdmci
Horavovy teorie gravitace, kterd by mohla pfedstavovat soucasného kandidata renormalizo-
vatelné kvantové teorie gravitace. Tato teorie v principu vychézi z anisotropniho Skalovani pros-
toru a ¢asu v UV oblasti s naslednym narusenim relativistické invariance.

Klicovd slova: obecna teorie relativity, ADM formalismus, UV naruSeni relativistické invariance,
renormalizovatelnost, Hofavova teorie gravitace, kvantova teorie gravitace

1 Uvod

Albert Einstein zrovnopréavnil prostorové soufadnice ¢ a ¢as t, pii¢em? zavedl pojem
prostoroc¢asu M|z#] jako 4-rozmérné hladké variety a polozil tak zaklad obecné teorie rel-
ativity jako geometrické teorie gravitace invariantni vzhledem ke vSem prostorocasovym
difeomorfismim 7+ = Z#(x").

Nutnost fesit Cauchyho pocate¢ni tlohu v obecné teorii relativity vedla R. Arnowitta,
S. Desera a C. W. Misnera k zavedeni ADM formalismu jako Hamiltonovského formalismu
popisujictho 3 + 1 rozstépeni prostorocasu M na prostorupodobné nadplochy ¥(¢)[z'],
které jsou éislovany ¢asem t a pokryty soufadnicemi z¢. Prostorocas lze timto zptisobem
rozvrstvit na tzv. foliace.

Ukazuje se [21], Ze obecna teorie relativity je v souc¢asné podobé v 3+1 dimenzich
nerenormalizovatelnou teorii, nebot na turovni Feynmanovych diagrami vzrustajiciho
smyckového tadu vyzaduje pridavani stale dalsich kontraclenti. Problémem také je, zZe
gravita¢ni vazbova konstanta G neni bezrozmérné, |G| = —2 v jednotkach hmoty.

Vylepsené UV chovani lze ziskat pridanim korekei v podobé relativistickych vyssich
derivaci metriky do lagrangianu, viz. [8]. Modifikovany propagator pak sice nevykazuje
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UV divergence, ale na druhou stranu zde vyvstanou jiné patologie ve smyslu duchovych
excitaci, které narusuji unitaritu v ramci poruchové teorie.

Petr Hofava v praci [9], [11] naznacil moZnost renormalizovatelnosti gravitace v 3 + 1
dimenzich pomoci postulovani ur¢ité nerovnopravnosti prostoru a casu v UV oblasti,
ktera je zavedena ve smyslu jejich anisotropniho skilovani na kratkych vzdalenostech,
pricemz na velkych vzdalenostech by se jejich rovnopravnost zachovala jako odraz efek-
tivni platnosti obecné teorie relativity. Jedné se tedy o naruSeni relativistické invariance
v UV oblasti a jejimu pfirozenému vynoteni v IR oblasti. Tento mechanismus méa uzky
vztah k polnim teoriim fyziky kondenzovanych latek a ma zaklad jiz v popisu tzv. Lif-
shitzova skalaru. Horavova teorie gravitace v podstaté odpovida podobnému mechanismu,
ktery je nicméné aplikovan jako nerelativistickd limita ADM rozkladu obecné teorie rel-
ativity. Skute¢nost, ze narusenim relativistické invariance lze docilit tzv. power-counting
renormalizovatelnosti teorie gravitace, byla podpofena v praci [20].

2 ADM rozklad obecné teorie relativity

Regenti Cauchyho pocatecni tlohy v obecné teorii relativity predstavuje hledani ¢asového
vyvoje pocateéni 3-dimenzionélni hladké variety. Pokud z* jsou souradnice v hledaném
prostoroc¢asu, specialné 2° = t, pak t = 0 uréuje pocatecni varietu 3 jako jeho prostorovou
nadplochu. Obecné 3(t) oznacuje prostorupodobné fezy (tzv. foliace) odpovidajici ¢ > 0,
pricemz se standardné ptredpoklada, ze kazdym bodem vysledného prostorocasu bude
prochazet pravé jeden takovyto rez.!

2.1 Funkce lapse N, vektor shift N’ a geometrie nadploch h;;

Casupodobnou do budoucna orientovanou jednotkovou normélu n, k prostorupodobné
nadplose (t) a teéné pole k liniim ¢asu ¢ lze definovat? jako

- ﬁ, n,nt' = -1, tH= %

OxH ot
Vektorové pole t# udava Casovy postup 3(t) — X(t + At), pficemz bodum ruznych
nadploch ¥ lezicich na stejné integralni kiivce tohoto pole se pritfazuji stejné prostorové
souradnice z¢. Pole t* lze rozlozit do normélové a teéné slozky vzhledem k nadplose ¥
jako

n, =

t* = Nnt 4+ NH,
kde N je funkce lapse a N* je vektor shift definované jako
N = —n,tt, Nt =R K =0 +n'n,,

kde h* je projektor na nadplochu X.3

!Prostorocasy, které lze takto rozvrstvit na Cauchyho nadplochy, se nazyvaji globalng hyperbolické.
Cauchyho nadplocha je varieta, v jejiz minulosti ani budoucnosti neexistuji singularity.

2V principu se jedné o zavedeni diferencialni 1-formy ny, ktera v tzv. adaptovanych souradnicich (t, %)
ma tvar n, = (=N, 0,0,0), a nasledny prechod do obecnych soufadnic z# jako t = #(z#), 2 = &% (z#).

3Vektorové pole t# nenf nutné tmérné n*, tedy kolmé k ¥, nebot v adaptovanych soufadnicich (¢, z*)
plati t* = §¥, zatimco n* = —N g"°. V ramci stacionarnich axidlné symetrickych prostorocasii je tedy
th = Nn*, N* = 0 pouze v piipadé statické metriky ¢*° = 0.
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ADM rozklad prostoro€asové metriky g,, v adaptovanych soufadnicich (¢, %) je pak
urcen jako ‘ A A A
ds® = —N?dt* + hy;(N'dt + dz") (N’ dt + da?),

resp. jako
_N24 N,Ni N,
G = =Ny + Ry, = ( N; hij- ) ’ (1)
—72 e
g“”:—n”n”—l—h””:( N iy i.>,
&
pficemZ v adaptovanych souradnicich (¢, ") plati
4 7 1 )
=6y, t,=(-N*+ NN N;), n,=-Ng, n'= ~ (1,=N%),

Nt =(0,N%), gy =hu, I =0 K*=0 h)=0 hyh =0

Prostorocasova metrika g, tedy indukuje prostorovou metriku h,, na nadploSe X.

2.2 Tenzor vnéjsi krivosti

Uvazovany 3-+1 pohled je vyhodny, pokud v prostorocasu existuje néjaka privilegované
foliace na prostorupodobné nadplochy (t). Pak vektorové pole t# predstavuje tok ¢asu
a nadplochy Y(t) prostorovou geometrii v daném okamziku. Ve smyslu feseni Cauchyho
pocateéni tlohy je nicméné smysluplngjsi povazovat nadplochy X(t) za identifikované
prostiednictvim toku vektorového pole t# a uvazovat vyvoj prostorové geometrie h;; na
ur¢ité nadplose . Dynamickou proménnou tlohy je pak vnitini geometrie h;;(t) této
nadplochy. Dale je ovSem nutné sledovat vyvoj jeji casové derivace, ktera ale nepredstavuje
tenzorovou veli¢inu. Ukazuje se, ze vhodnou tenzorovou veli¢inou zadaného vyznamu je
ve skutecnosti Lieova derivace prostorové metriky ve sméru normaly n*.
Touto veli¢inou je symetricky tenzor vnéjsi kiivosti, ktery lze vyjadrit jako

1 1
K, = hehiVng = WiV, = Vi, + aun, = 5 Lnbuw = 5oz (Lo = Lahy)
kde a, = npvgl)nw pricemz fol) je 4D kovariantni derivace odpovidajici Riemannoveé
konexi metriky g, .

Ve smyslu 3D kovariantni derivace V, na nadploSe ¥ odpovidajici Riemannové konexi
metriky £, a definované pomoci projektoru h* na tenzorova pole T, piisobici pouze?
na te¢nych a kotec¢nych prostorech nadplochy X jako

YV TH o =h D T

o' p Vo

lze tenzor vnéjsi kiivosti zapsat ve tvaru
1 /.
] g

kde h,, je casova derivace prostorové metriky hy,,.

4Tenzorova pole fadu (m,n) splitjici pro kazdé i € m, j € f vztahy n@Tr  =mn, TH,  =0.
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2.3 Einstein-Hilbertova akce v ADM rozkladu

Einstein-Hilbertova akce obecné teorie relativity ma tvar

1
167TGN

/ d*zy/—g (R —2A),

Ser =
kde g = det(g.m), R® je 4D skalarni prostorocasova kiivost a A je kosmologicka konstanta.
V ramci ADM rozkladu lze Einstein-Hilbertovu akci vyjadrit jako

1
1671'GN

Spn = / d*zvVh N (K, K™ — K+ R —2A), (3)

kde h = det(hi;), R je 3D skaldrni kiivost nadplochy ¥ a K = MK, = K.
V adaptovanych soufadnicich (¢, %) nicméné plati

ViN; = VN, K'=0, K%=0, K=K
a akci (3) lze prepsat jako

1
167TGN

Sk = / d'aVh N (K K7 — K* + R —2A), (4)

pri¢emz prostorova ¢ast tenzoru vnéjsi kiivosti (2) je dana jako

K — % (hij ~ VN, — va-) . (5)

3 Horavova teorie gravitace

3.1 Anisotropni skalovani

Nerovnopravnost prostoru a c¢asu lze interpretovat ve smyslu zkoumani teorie vzhledem
ke specidlné zvolenému difeomorfismu v podobé anisotropniho skalovani prostorocasu,
které je charakterizovano dynamickym kritickym exponentem z € Ny jako

rt = br',  t— bt (6)

Modely kompatibilni s anisotropnim skalovanim (6) jsou bézné v polnich teoriich konden-
zovanych hmot. Piehled teorii gravitace s fadou hodnot z v riznych prostorocasovych
dimenzich D + 1 lze nalézt v [9], [11]. Piipad teorie Yang-Millsova kalibra¢niho pole
s hodnotou z = 2 byl diskutovan v [10].

V ramci anisotropnfho $kalovani (6) lze pro slozky obecné i netenzorové veliciny®
Tr (t,x%) zavést jeji Skdlovaci dimenzi jako

T (bt ba?) (M)

[T+ (t,2")]. = log, ( I, (0 2) ) .

SUvazujeme pouze takové veli¢iny, pro které ma vyraz (7) smysl, tj. veli¢iny, které jsou kompatibilni
s anisotropnim skalovanim (6).
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Skélovaci dimenze dané veli¢iny neni obecné invariantni vzhledem k prostoroc¢asovym
difeomorfismtim. Z tohoto diivodu je nutné vyraz (7) chapat pouze ve smyslu jistého
referenc¢niho systému (¢, z°), ktery odpovida feSeni uvazované teorie popisujici UV pevny
bod volného pole s vlastnostmi anisotropniho skalovani danymi pomoci (6). Skélovaci
dimenze viech objektii se tedy dale vztahuji k tomuto referenénimu systému.%

Podle vztahu (7) lze urc¢it kalovaci dimenze prostorovych souradnic a ¢asu jako

[2']. = -1, [t].=-=2 (8)
Z obecného zavedeni prostorocasové metriky g, , diferencialniho elementu intervalu
ds® = g, datdx”

a pozadavku

podle (8) a vztahu g,,g” = d}, plati

[g;w]z - [g'wj]z = 0.

0

V réamci standardniho zavedeni soufadnice 2" uzivaného v obecné teorii relativity ve tvaru

¥ = ct
plati, ze
[c],=2—1. 9)

Povaha gkéalovani rychlosti svétla (9) naznacuje, Ze pro z # 1 neni ¢ absolutni konstantou
nezavislou na soufadnicich (¢, %) v ramci teorie, ktera by byla kompatibilni s anisotropnim
gkalovanim (6), a tedy se v takovém piipadé jedna o striktné nerelativistickou teorii.”
Lze ukazat (viz. [20]), ze k tzv. power-counting renormalizovatelnosti teorie gravitace
v 3 4+ 1 dimenzich kompatibilni s anisotropnim $kalovanim (6) je potieba, aby dynam-
icky kriticky exponent dosahoval hodnoty alesponn z = 3 v UV oblasti, tj. na kratkych
vzdalenostech. Takova striktné nerelativisticka teorie byla predstavena praveé v praci [11].

3.2 Kalibra¢ni grupa symetrii

ADM rozklad obecné teorie relativity je popsan prostoroc¢asovou metrikou (1), ktera pii
relativistickém chovani rychlosti svétla

¢ = konst. # 1
je parametrizovana jako _
—N? 4+ NiN' N
Guv = < N; ¢? hc s (10)
c v

6Ve zvoleném referen¢nim systému (¢, %) jsou tedy prostorocasova tensorovd pole s anisotropnim
skalovani (6) kompatibilni.
"Pro konstantni skalar K nezavisly na soufadnicich (¢,z%) je [ K], = 0 pro libovolné 2 € No.
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kde prostorova metrika h;; predstavuje dynamicka pole, pficemz lapse N, resp. shift N;
jsou kalibra¢ni pole zodpovédna za Hamiltonovskou, resp. hybnostni vazbu v obecné teorii
relativity.

Obecnéa teorie relativity je invariantni vzhledem ke spojité grupé prostorocasovych
difeomorfismt ## = 7#(z"), které lze chapat jako infinitesimalni transformace soufadnic
s prislusnymi generujicimi vektorovymi poli ve tvaru

dat = ().

Infinitesimélni transformace slozek prostoro¢asové metriky gf;l, jsou dany Lieovou derivaci
podél generujictho vektorového pole £ jako

5guu = *Cfg;w = gmanguu + gfwa,ugm + g,lmaug’€~
Vzhledem k ADM parametrizaci (10) a standardnimu zavedeni ¢asové souradnice t jako
x“:(ct,x), a,u:(_ataai)a E“:(Cf,f)
c
lze infinitesimalni transformace dynamickych a kalibra¢nich poli zapsat jako

Ohij = fhi; + E°0chyy + N;Of + hy0iE® + N0 f + hidi",

S N; N
5Nz = f]\/vZ + §]8jNi + 62 (—N2 + 5
C

) Oif + N;O& + Nif +hyé,  (11)

5N:§j8jN+Nf+fN+O(C—12>.

Planované naruseni relativistické invariance v UV oblasti vynucuje nepiitomnost sin-
gularnich ¢lent ve vyrazech (11) pfi provadéni nerelativistické limity ¢ — co. Za timto
ucelem je tedy tfeba pozadovat dodateénou podminku

azf = 07

ktera omezuje obecné difeomorfismy na prostorocasové difeomorfismy prostoru a casové
reparametrizace ¢asu s generatory infinitesimélnich transformaci ve tvaru

it = £i(t,at), 5t = f(t). (12)

S ohledem na (12) maji infinitesimalni transformace (11) pfi nerelativistické limité tvar

dhi; = fhu + EFORhi; + hi0iEF + hir0;€F,
ON; = fN; + EFO;N; + N;Oi& + Nif + hisé, (13)
SN =E19;N + Nf+ fN.

Tvar generatoru infinitesimalnich transformaci (12) naznacuje, Ze grupa symetrii bu-
dované teorie nebude tvorena v8emi prostoro¢asovymi difeomorfismy, jak je tomu v pii-
padé obecné teorie relativity, ale pouze urcitou jeji podgrupou

Diff (M) C Diff(M)
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obsahujici pouze foliaci zachovavajici difeomorfismy
=3t 27), =11,

pricemz F oznacuje foliaci kodimenze 1, kterd odpovidd omezenému tvaru generatoru
infinitesimalnich transformaci (12). Z hlediska topologie se pak predpokladé, Ze pros-
torocasova foliace je dana jako

M=Rx X,

tj. vSechny listy foliace jsou topologicky ekvivalentni fixni nadplose . Poznamenejme, ze
pozadavkem mensi grupy kalibracnich symetrii ziskd budovana teorie vétsi volnost, nez
je tomu v piipadé obecné teorie relativity.

3.3 Akce Horavovy teorie gravitace

3.3.1 Obecny tvar
Za ucelem tzv. power-counting renormalizovatelnosti je akce Horavovy teorie gravitace
Sy =Sk — Sy
konstruovana na zékladé nésledujicich kritéri:
(i) Kinetickd ¢ast akce Sk je kvadratickd v hy;.
(i)
(iii) Sg je invariantni vzhledem ke kalibra¢ni grupé Diffz(M).
)

Potencidlova ¢ast akce Sy nezavisi na h;;, N; ani N.

(iv) Su je kompatibilni s anisotropnim skélovanim (6) pro dynamicky kriticky exponent
z € Ny, pricemz [ Sy |, = 0 pro libovolné z € Ny.

(iv) V UV oblasti teorie prechazi do z = 3.

(v) V IR oblasti teorie ptrechazi do z = 1, pficemz Sy je pouze uritou modifikaci
Einstein-Hilbertovy akce (4).

Podle kritérii (i) - (iii) ma akce Hotavovy teorie gravitace obecny tvar
2 g
Su == / dtd*zvVh N (K K7 — AK* — V), (14)
K

kde K = h K;;, pficemz K;; je tensor vngjsi kiivosti (5) odpovidajici preferované asové
foliaci F a potencialni ¢len V je funkce prostorové metriky h;;, jejich prostorovych derivaci
a také vektoru a; = 0;In N.

V referen¢nim systému UV pevného bodu volného pole jsou dle kritéria (iv) skalovaci
dimenze piislusnych veli¢in pro z € Ny vzhledem k (10) urceny jako

[hZ]]ZZO, [N]ZZO, [Nz]z:Z_17 [KZJ]Z:Z, [V]ZZQZ
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Koeficienty x, A jsou vazbové konstanty, které zustévaji neurceny kalibra¢ni grupou
Diff (M), se skalovacimi dimenzemi

Potencialni ¢len V lze podle [2] vyjadiit jako obecny invariant vzhledem ke kalibra¢ni
grupé Diff (M) sestaveny z objektt h;;, Rij, V; a a; ve tvaru®
V = wVs + 02V + p* Vs,

kde V,, oznacuje ¢len n-tého radu v prostorovych derivacich metriky h;;, resp. vektoru a;,
pricemz w, n a p jsou vazbové konstanty se skalovacimi dimenzemi

(wl.=2-3, [nl.=2-2, [pl.=2z-1

Poznamenejme, ze tato teorie obsahuje propagujici se 2-spinovy i 0-spinovy graviton
a v IR oblasti se redukuje na skalar-tenzorovou teorii gravitace s narusenou relativistickou
invarianci, viz. [2].

3.3.2 Akce minimalni teorie

Na zékladé kritéria (iv) a (v) lze podle [12], [13]| potencidlovy ¢len akce Hotavovy teorie
gravitace v ramci tzv. minimalni teorie? zapsat ve tvaru

VY =w?VWV 4+ 4 AV
kde
VOV = Vs = 0,00, [Cyl. =3,
V=V, = —(R-2A), [R].=[Al.=2,
pficemz C'% je Cotton-Yorkiiv tenzor'® definovany jako

ij etk i Lo
Y AL G B

R je 3D skalarni kiivost nadplochy >, A je kosmologické konstanta a symbol . .. reprezen-
tuje cleny radu n v prostorovych derivacich metriky h;;, kde 2 < n < 6.

Chovéani potencidlu V a tedy i celé teorie gravitace lze charakterizovat hodnotami
vazbovych konstant x, A, w a u v UV oblasti jako

z2=3, w#0, [k]3=0, [w]3=0, [plz=2,
resp. v IR oblasti jako
z=1, K =321cGy, A=1, p*=1, [khi=-1, [w]z=-2, [u]i=0.

8Tento tvar odpovida dodateénému pozadavku ve smyslu vynechani &lent lichého fadu v prostorovych
derivaci metriky narusujicich paritu.

9Miniméalni teorie se zabyva pouze ¢leny V dominujici v UV, resp. v IR oblasti, tj. ¢leny fadu 6, resp.
fadu 2 v prostorovych derivacich metriky h;;, kde nejvyssi rad je urcen tzv. Cotton-Yorkovym tenzorem
v ramci tzv. podminky detailni rovnovahy a tzv. podminky projektibility N = N (¢).

19Cotton-Yorkav tenzor je unikatni tenzor obsahujici 3. prostorové derivace metriky h;;, ktery navic
disponuje vlastnostmi C% = C9%, h;;C"7 = 0, V,C% = 0. Tento tenzor také nahrazuje Weyliv tenzor
ve 3 dimenzich na drovni testovani konformni plochosti Riemannovy metriky h;;, tj. vlastnosti Ci =0.
Tento tenzor lze odvodit ve smyslu podminky detailni rovnovéhy z gravitaéniho Chern-Simonsova ¢lenu.
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4 Zavér a dalsi vyzkum

V réamci Horavovy teorie gravitace se v nékterych pripadech za tucelem zjednoduSeni
mozného tvaru potencidlového ¢lenu V pozaduji 2 dodate¢né podminky, resp. jejich rtizné
kombinace. Jedné se o podminku projektivity ve tvaru

N = N(H), (15)
resp. o podminku detailni rovnovéhy ve tvaru'!
1 oW ow
v=" "G 2 16
h 6hi; Gt 550 (16)

tj. omezeni ve smyslu, Ze potencialni ¢len V lze odvodit ze superpotencialu Wh,;|, pficemz
Giji je inverze De Wittovy metriky G 12

Akce pavodni Hofavovy teorie gravitace [11] i akce minimalni teorie [12], [13] jsou
také odvozeny s uvazovanim obou dodateénych podminek. Tyto teorie ale disponuji fadou
patologii, napt. ¢leny narusujici paritu, resp. problém disperzni relace a power-counting
renormalizovatelnosti skalarntho modu, resp. znaménko a hodnota holé kosmologické kon-
stanty [1], [15], resp. IR chovani skalarntho modu gravitonu pii nepfijatelné nizkych
energiich [3], [4]. Nékteré zminéné problémy lze vyfesit narusenim podminky detailni
rovnovahy [14], [15], [16].

V soucasnosti je vSak na vzestupu predevsim neprojektivni verze Horavovy teorie
gravitace s podminkou detailni rovnovahy [17], [18], [19], kde se zkoumaji nové moznosti
superpotenciali z hlediska vektoru a; = 9;In N, ktery v projektivni verzi viibec nevys-
tupuje. Dale lze upfit pozornost na potfebné snizeni poc¢tu nezavislych vazbovych kon-
stant v celkové akci nebo na problém energie vakua. Zkoumat lze také power-counting
renormalizovatelnost vzhledem ke ¢lentim se smiSenymi derivacemi [5], [6]. A v neposledni
fadé zistava nadale otevienou otazkou renormalizovatelnost nad ramec power-counting
argumentu [7.
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Abstract. Studying multiphase equilibrium of multicomponent mixtures and development of ro-
bust and effcient algorithms for its computation play important roles in large-scale compositional
hydrocarbon reservoir simulations. While there was a main focus on two-phase compositional
modelling in the past, nowadays, there is an increasing interest in three and generally multi-
phase compositional models which is motivated by COq sequestration [1], processes related to
COg or steam enhanced oil recovery [2] or asphaltene precipitation from bitumens [3, 4].
Injecting a pure component (e.g. CO2) into a reservoir, it may dissolve in the reservoir fluid
or it can mix and the mixture can split into two or more phases. Let us consider a closed
system of total volume V containing a multicomponent mixture with mole numbers Ny, ..., N,
at temperature T'. To find out whether the system is under given conditions in single-phase or
splits into two phases, the single-phase stability at constant volume, temperature, and moles
(the so-called VT-stability) is solved. In case of phase-splitting, the two-phase split calculation
at constant volume, temperature, and moles (the so-called VT-flash) is performed to establish
amounts and compositions of both phases, and consequently the equilibrium pressure of the
system is calculated from the equation of state. In the previous work [5, 6, 7], these problems
were formulated for two-phase systems and algorithms were proposed and tested on a number
of examples. In [9], the results were partially extended to three phases for COs — HoO system
and the performance of the algorithm was shown on several examples of two- and three-phase
equilibrium calculations of CO2 — HoO mixtures under geologic carbon storage conditions.
The contribution deals with the investigation of multi-phase equilibrium of multicomponent
mixtures at constant volume, temperature and moles. In [7] we have proposed a numerical algo-
rithm for constant-volume two-phase split calculation which is based on the constrained mini-
mization of the total Helmholtz energy of the mixture. The algorithm uses the Newton-Raphson
method with line-search and the modified Cholesky decomposition of the Hessian matrix to
produce a sequence of states with decreasing values of the total Helmholtz free energy. Fast con-
vergence towards the exact solution is ensured due to the Newton-Raphson method. To initialize
the algorithm, the results of the constant-volume stability algorithm, which has been developed
in [6], are used. Now we extend the method and propose a general strategy for N-phase equi-
librium computation at constant volume, temperature, and moles, where N € N is the number
of phases. As the number of phases is not necessarily known a-priori, the proposed strategy

_“Prace vznikla v ramci projekti Vypocetni metody v termodynamice viceslozkovych smési LH12064
MSMT CR.
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is based on the repeated constant-volume stability testing and the constant-volume phase-split
calculation until a stable N-phase state is found. The performance of the algorithm has been
tested on many examples of two-, three- and even four-phase equilibrium calculations of multi-
component mixtures under various conditions. The mixture behavior is described using either
the Peng-Robinson equation of state [10] or the Cubic-Plus-Association equation of state [11].

Keywords: phase equilibrium, constant-volume flash, Helmholtz free energy minimization, Newton-
Raphson method, modified Cholesky decomposition.

Abstrakt. Zkouméni vypoctu vicefdzové rovnovihy viceslozkovych smési a vyvoj robustnich
a efektivnich algoritmu jejich vypoctu hraje dilezitou roli v kompozi¢nich simulacich ropnych
rezervoaru. Zatimco v minulosti byl zajem soustfedén na dvoufazové kompozi¢ni modelovani, v
dnesni dobé je rostouci zdjem o t¥i- a obecné vicefazové kompoziéni modely, coZ je motivovano
napt. COq sekvestraci [1], procesy spojenymi se zvySovanim vyt&Zznosti ropnych rezervoara po-
moci CO2 nebo pary [2] nebo modelovanim srazeni asfaltenti z bitumenu (Zivice) [3, 4].

Pii injektovani ¢isté komponenty (napt. COs2) do rezervoaru mize dochéazet bud k jejimu
rozpusténi v kapaliné nachazejici se v rezervoaru nebo k jejich smichani a naslednému rozdéleni
smési do dvou nebo vice fazi. Uvazujeme-li uzavieny systém obsahujici viceslozkovou smés s
latkovymi mnozstvimi Ny, ..., N, o celkovém objemu V pii teploté T', nachazi se tento systém
za danych podminek bud stabilné v jedné fazi nebo je nestabilni a dojde k jeho rozdéleni do
dvou nebo vice fazi; jedna se o problém jednofazové stability pii konstantnim objemu, teploté a
slozeni (tzv. VT-stabilita). V ptipadé rozdéleni do dvou fazi uré¢ime objemy a slozeni obou fazi,
a nasledné vypocitame rovnovazny tlak systému ze stavové rovnice; jedné se o problém vypoctu
dvoufazové rovnovahy pii konstantnim objemu, teploté a slozeni (tzv. VT-flash). V predchozi
praci [5, 6, 7] byly tyto problémy formulovany pro systémy ve dvoufazovych stavech a piislusné
vypocetni algoritmy byly navrZeny a testovany na fadé piiklada. V [9] byly vysledky ¢astecné
rozsifeny do tfech fazi pro smés COs — HoO a navrzeny algoritmus byl testovan na piikladech
vypoctu dvou- a t¥ifdzové rovnovahy za béznych sekvestracnich podminek.

Clanek pojednava o vySetfovani vicefazové rovnovahy viceslozkovych smési pii konstant-
nim objemu, teploté a slozeni. V |7] byl navrZzen numericky algoritmus pro vypocet dvoufazové
rovnovahy za konstantniho objemu, teploty a sloZeni zalozeny na minimalizaci celkové Helmholt-
zovy volné energie smési pii zachovani podminek na bilanci hmoty a objemu. Algoritmus je zde
zalozen na Newtonové-Raphsonové minimaliza¢ni metodé s pouzitim metody line-search a mod-
ifikovaného Choleskyho rozkladu matice Hessianu, ¢imz je vytvofena posloupnost stavii s kle-
sajicimi hodnotami celkové Helmholtzovy volné energie. Rychla konvergence k pfesnému feSeni
je zajistena pouzitim Newtonovy-Raphsonovy metody. K inicializaci algoritmu pro VT-flash se
vyuzivaji vysledky algoritmu pro testovani stability, ktery byl navzen v [6]. Nyni tuto metodu
rozsifime a navrhneme obecnou strategii pro vypocet N-fazové rovnovahy pii konstantnim ob-
jemu, teploté a slozeni, kde N € N je pocet fazi. Vzhledem k tomu, Ze pocet fazi neni nutné
znam predem, navrzena strategie je zaloZena na opakovaném testovani stability a vypoctu fazové
rovnovahy pfi konstantnim objemu, teploté a slozeni, dokud neni nalezen stabilni N-fazovy stav.
Navrzeny algoritmus byl testovan na mnoha piikladech vypoctu dvou-, t¥i- a dokonce ¢tyifa-
zové rovnovahy viceslozkovych smési pfi riznych podminkach. Chovani smési je popsano bud
pomoci Pengovy-Robinsonovy stavové rovnice [10] nebo kubické stavové rovnice s asocia¢nim
¢lenem [11].

Klicovd slova: fazova rovnovaha pii konstantnim objemu, minimalizace Helmholtzovy volné en-
ergie, Newtonova-Raphsonova metoda, modifikované Choleskyho dekompozice.
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Tato prace byla prezentovana na konferenci Interpore 2015 v Padové, Italie (17.—
22.5.2015) a cely ¢lanek [8] byl publikovan v impaktovaném ¢asopise Fluid Phase Equi-
libria.
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Abstract. In practical optimization tasks, it is more and more frequent that the objective
function is black-box which means that it cannot be described mathematically. Such functions
can be evaluated only empirically, usually through some costly or time-consuming measurement,
numerical simulation or experimental testing. Therefore, an important direction of research is the
approximation of these objective functions with a suitable regression model, also called surrogate
model of the objective functions. In [2] we combined two surrogate models for continuous
black-box optimization, Gaussian processes [8] and random forests [3|, with the state-of-the-art
evolutionary algorithm CMA-ES [4]. Results on the BBOB testing set showing that fitness
function evaluations can be saved especially in the initial phase of the algoritm were published
in [1]. In |7] we evaluate two different approaches to the continuous black-box optimization
which both integrates surrogate models with CMA-ES. The first Ranking SVM surrogate model
estimates the ordering of the sampled points as the CMA-ES utilizes only the ranking of the
fitness values [6]. However, we show that continuous Gaussian processes model provides in the
early states of the optimization comparable results. Comparison in [5]| shows the speed-up of
two methods based on Gaussian processes, Model Guided Sampling Optimization and Gaussian
processes as a surrogate model for CMA-ES, to CMA-ES with no surrogate model.

Keywords: benchmarking, black-box optimization, surrogate model, Gaussian process, random
forest

Abstrakt. Pii FeSeni optimaliza¢nich tloh z praxe je stale Castéjsi, Ze cilova funkce je tzv.
black-box funkci, coz znamena, Ze pro ni nelze najit spravné matematické vyjadieni. Hodnoty
takovéto funkce lze ziskat pouze empiricky, obvykle pomoci finanéné a ¢asové narocnych méreni,
numerickych simulaci nebo experimentalniho testovani. Z tohoto diivodu jsou aproximace téchto
cilovych funkci s vhodnym regresnim modelem, nékdy nazyvanym nahradnim modelem cilové
funkce, velice dilezitym smérem vyzkumu. V ¢lanku [2]| jsme zkombinovali dva ndhradni modely
urcené pro spojitou black-box optimalizaci, gaussovské procesy [8] a nahodné lesy 3], s v soucas-
nosti nejlepsim evolu¢nim algoritmem CMA-ES [4]. Vysledky testovani na bali¢ku testovacich
funkei BBOB ukazuji, Ze pocet vyhodnoceni fitness funkce lze snizit zejména v pocate¢nich fazi

*This work was supported by the Czech Science Foundation (GACR) grant P103/13-17187S,
by the Grant Agency of the Czech Technical University in Prague with its grant No.
SGS14,/205/0OHK4/3T /14, and by the project “National Institute of Mental Health (NIMH-CZ)”, grant
number CZ.1.05/2.1.00/03.0078 (and the European Regional Development Fund.).

tThis study has been provided in cooperation with Lukas Bajer.
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algoritmu, coz bylo publikovano v [1]. V [7] vyuZivame dva ruzné pfistupy ke spojité black-box
optimalizaci, z nichz oba pouzivaji ndhradni modely v kombinaci s algoritmem CMA-ES. Prvni
néhradni{ model nazyvany Ranking SVM odhaduje potfadi bodd, jelikoz poradi funkénich hod-
not bodu CMA-ES vyuziva [6]. My v8ak ukazujeme, Ze spojity model s gaussovskymi procesy
poskytuje v pocatec¢nich fazich optimalizace lepsi vysledky. Clanek [5] porovnava urychleni dvou
metod zaloZzenych na gaussovskych procesech, algoritmus Model Guided Sampling Optimization
a gaussovské procesy jako nahradni model pro CMA-ES, s algoritmem CMA-ES bez nahradniho
modelu.

Klicovd slova: benchmarking, black-box optimalizace, ndhradni modelovéani, gaussovské procesy,
nahodné lesy
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Abstract. Computerized adaptive testing (CAT) [6, 1] is an interesting and promising approach
to testing human abilities. CAT aims at creating shorter tests taking less time without sacrificing
their reliability. There is a promising possibility of applications in the field of knowledge tests |7,
8]. Tests are computer administered and use a model of tested subjects to make their decisions.
In our research we model students by Bayesian networks |2, 3, 4].

We collected data from paper tests solved by grammar school students. Tests focused on
mathematical knowledge in the domain of functions. Students were asked to solve different math-
ematical problems including graph drawing and reading, computing points on the graph, root
finding, description of function shape and other function properties. 281 students participated
in testing.

We propose 14 different models to serve as a student model. Each model is a Bayesian
network created with different settings. Each network consists of at least one skill node which
describes abilities of the modeled student. Skill nodes are parents of question nodes which serve
as data inputs of the model. Question nodes are used for estimations of consequent answers.
Some models operate with additional information collected during the test administration (such
as age, gender, grades,...).

Models described above were used in a simulated adaptive test with our data set. The
procedure of adaptive testing is formed by the following steps: (1) the next question to be asked
is selected, (2) the question is asked and a result is obtained, (3) the result is inserted into the
network as evidence, (4) the network is updated based on this new evidence, (5) answers are
estimated. This procedure is repeated. One of the most interesting part is the selection of the
next question. In our approach we select questions by the maximization of information gain.
This information gain is measured as the reduction of the Shannon entropy of skill variables’
marginal probabilities.

We have found out that most of the proposed models are making reasonable decisions.
The mean success rate of estimation of answers was over 75% during the whole process. An
interesting and important finding is that the additional information given to the model (i.e.
gender, age, grades, etc. of the student) is not very important for the quality of the model.
These factors make a difference only during the initial questions. After a few answers the
influence of additional information diminish and models without this information are behaving
similarly to those containing it.

In the following work we would like to further explore some of the tested models, namely
those with multivalued skill variables. We plan to compare proposed models also with other
psychometric models such as item response theory [1].

Keywords: adaptive testing, Bayesian network

*This work has been supported from the GACR project n. 13-20012S
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Abstrakt. Pocitacové adaptivni testovani znalosti (Computerized Adaptive Testing - CAT |6,
1]) je slibny pfistup k testovani lidskych schopnosti. Adaptivni test je vytvafen vybérem otazek
v prub2hu testovani tak, aby vysledny test byl kratsi. Test tak zabere méné ¢asu a vybér otazek
z banky otazek je nastaven tak, aby nedoslo k velkym ztratam informace. Moznosti aplikace
takovychto testii jsou znacné |7, 8. Test je Fizen pocitacem a vyuZiva model studenta. V nasem
pristupu je tento model realizovian pomoci bayesovské sité |2, 3, 4].

Nejprve jsme zajistili data pro nas vyzkum pomoci papirovych testi. Testovani se ti¢astnili
studenti stfednich 8kol. Testy byly zaméfeny na matematické ulohy v oblasti funkei (¢rtéani grafu
a ¢teni z grafu, hledani kofenti, vypo¢ty bodu funkei, atd). Testovani se zucastnilo celkem 281
student.

V na8em navrhu je 14 riznych modeli, které mohou slouzit jako model studenta. Kazdy
z modelt je bayesovska sit vytvorend s riznymi nastavenimi. V kazdé siti je alespon jeden
dovednostni uzel, ktery zachycuje schopnosti studenta. Dovednostni uzly jsou pak rodi¢i uzla
otézek. Uzly otazek slouzi jako datové vstupy modelu a soucasné jsou vyuzivany pro odhady
odpovédi. Nékteré z modeli pouzivaji ke své praci dodatecné informace (vék, pohlavi, znamky
studenta). Tyto informace byly také ziskdny b&hem testovani.

Vyse popsané modely jsme vyuzili k simulovanému adaptivnimu testu. Procedura testu je
nasledujici: 1) vybereme otazku, kterd ma byt poloZena, 2) otazku poloZime a ziskdme odpovéd,
3) vlozime odpoveéd do sité jakozto novou evidenci, 4) sit aktualizujeme s touto novou evidenci,
5) odhadneme odpovédi na otazky. Jedna ze zajimavych ¢asti procesu je vybér dalsi otazky. V
naSem piipadé jsme se rozhodli pouzit princip zalozeny na informa¢nim zisku. Tento informacni
zisk je vypocten jako tibytek Shannonovi entropie marginalnich pravdépodobnosti dovednostnich
uzli.

Zjistili jsme, Ze nami navrhované modely poskytuji rozumna rozhodnuti a odhady. Primérné
uspésnost modelt se pohybovala nad hranici 75% bé&hem celého procesu testovani. Zajimavym
zjisténim je, Zze dodatefné informace (vék, pohlavi, znamky) nehraje pro model vyznamnou
roli. Vliv téchto informaci je znatelny pouze pii prvnich poloZenych otézkach. Poté jiz vliv
odpovédi prevazi a modely, které tyto informace neobsahuji, se chovaji velice podobné tém,
které je obsahuji.

V budoucnosti bychom se chtéli blize zamérit na nékteré z modelt pfedstavenych v této
praci. Pfedevs&im se jednd o modely s vice-stavovymi dovednostnimi uzly. Také planujeme
provést srovnani s dalsimi psychometrickymi modely, jako je IRT [1].

Klicovd slova: adaptivni testovani, bayesovska sit

This work was presented at 12" Bayesian Modelling Application Workshop held on
16.7.2015 in Amsterdam as a part of UAI conference [5].
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Abstract. In our previous study [Plankova et al., EPJ Web. Conf. 92, 02071 (2015)], several
molecular simulations of vapor-liquid phase interfaces for pure water were performed using the
DL_POLY Classic software. The TIP4P /2005 molecular model was successfully used for the
modeling of the density profile and the thickness of phase interfaces together with the tempera-
ture dependence of the surface tension. In the current study, the extended simple point charge
(SPC/E) model for water was employed along with the TIP4P /2005 for the investigation of
vapor-liquid phase interfaces over a wide temperature range from 250 K to 600 K. Results of
the new simulations are in a good agreement with most of the literature data. TIP4P /2005
provides better results for the saturated liquid density with its maximum close to 275 K, while
SPC/E predicts slightly better saturated vapor density. Both models give qualitatively correct
representation for the surface tension of water.

This text is a short version of the one that will be presented at Experimental fluid mechanics
2015 in Prague (17— 0.11.2015). Whole text will be subsequently published in The European
Physical Journal.

Keywords: Molecular dynamics, TIP4P /2005, SPC/E, surface tension

Abstrakt. V predchozi praci [Plankova et al., EPJ Web. Conf. 92, 02071 (2015)] jsme provedli
nékolik molekularnich simulaci fazovych rozhrani kapalina-péara pro ¢istou vodu s pouzitim soft-
waru DL POLY Classic. Model TIP4P /2005 byl tspésné pouzit pro modelovani profilu hustoty
a tloustky fazového rozhrani spolu s teplotni zavislosti povrchového napéti. V této studii jsme
pouzili rozsifeny model simple point charge (SPC/E) pro vodu a TIP4P /2005 ke zkoumani f&-
zovych rozhrani kapalina-péra pro Sirokou skalu teplot od 250 K do 600 K. Vysledky novych
simulaci jsou v dobrém souladu s véts§inou dat z literatury. TIP4P /2005 dava lepsi vysledky pro
hustotu syté pary se svym maximem v 275 K, zatimco SPC/E predikuje trochu lepsi hodnoty
syté pary. Oba dva modely davaji kvalitativné spravné hodnoty povrchového napéti.

Tento text je kratkou verzi prace, kterd bude prezentovana na konferenci Experimental fluid
mechanics 2015 v Praze (17.-20.11.2015). Cely text nasledné publikovan v zurnalu The European
Physical Journal.

Kli¢ovd slova: Molekularni dynamika, TIP4P /2005, SPC/E, povrchové napéti
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1 Introduction

Molecular simulations (MS) represent a computational technique that allows to study
a large variety of physical and chemical processes on the molecular scale. MS works
particularly well for fluid systems as the liquid phase and the gas phase can be treated
simultaneously. The only difference between the phases is given by the local density.

There are two different methods of MS, the molecular dynamics (MD) and Monte
Carlo. MD solves a simple Newton equation of motion for every atom in discretized
time-steps while Monte Carlo uses the probability nature of the statistical mechanics.

One of the most important substances investigated using the approaches of MS is
water. Water is essential in daily life, industry, and biological and natural processes.
However, it has a typical non-standard behavior and many anomalies, which are still
hard to model theoretically. The non-trivial phenomena are caused especially by its
polar character and by the formation of hydrogen bonds.

In this study, we continue MD simulations of water [8] focused on the investigation
of properties at the vapor-liquid phase interface. A series of MS was performed with
both the SPC/E and TIP4P /2005 models in order to evaluate the density profiles, the
thicknesses of the phase interface, and the surface tensions. A "slab" geometry with water
molecules was simulated at various temperatures from the triple point of water to the
temperatures close to the critical point. The conditions and settings of MS were inspired
by the works of Vega and Miguel [13] and Sakamaki et al. [9]. All simulations were
performed using DL POLY Classic 1.9 [12, 10] running on a cluster with 4 x 2 Intel(R)
Xeon(R) CPU E5645 (12 cores effectively for each CPU) @ 2.53GHz CPUs. New results
were compared to both MS from the literature and the experimental data.

2  Water models

Despite the fact that water molecule is flexible and polarizable, simple rigid models are
used regularly in many MS. Therefore, systems with large numbers of molecules can be
modeled for a longer times. The most widespread simple models belong to the SPC and
TIPXP families. An extended modification of the simple bond charge, i.e. the SPC/E
model by Berendsen et al. [4], including empirical corrections to the polarization energy
is very successful and reproduces vapor—liquid data very well. The most widely used
TIPXP model is the TIP4P /2005 which was proposed by Vega and Abascal [1] in 2005.
They tried to combine the good phase diagram of TIP4P with target properties of SPC/E
improving the melting point.

In the present study, the two models TIP4P /2005 and SPC/E are employed to in-
vestigate vapor-liquid interfacial properties of water. Both the TTP4P /2005 and SPC/E
models consider the Lennard—Jones interactions only between the oxygen atoms, because
hydrogen atoms have a negligible mass compared to oxygen. The electrostatic interaction
occurs between the hydrogen atoms and oxygen atom in the SPC/E model and between
hydrogen atoms and the massless atom Q with the negative charge in the TIP4P /2005
model, respectively. A schematic representation of the SPC/E and TIP4P /2005 molecular
models is shown in figure 1.
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TIP4P/2005 SPCIE

Figure 1: Schematic representation of the SPC/E and TIP4P /2005 molecular models for
water.

3 Simulation methods

A series of MD simulations was performed with the NVT ensemble, i.e. for a constant
number of molecules, a constant total volume of the system, and a constant temperature.
The ensemble consisted of 1372 molecules, which is considerably more than in other stud-
ies, e.g., both Vega and Miguel [13] and Sakamaki et al. [9] considered 1024 molecules.
The simulations were carried out in two steps. At first, a cubic box consisting only of
liquid phase was simulated for 50 ps with 1 ps equilibration time. After a homogeneous
liquid phase was formed in the cubic box, the z-size of the simulation box was symmet-
rically expanded by a factor of 3. As a result, the liquid phase forms a slab in the centre
of the simulation box and the expanded empty volumes on each side of the slab allow
subsequent formation of the vapor phase. The slab configuration was simulated for 10 ns
in all cases. A constant time step of 2 fs was considered in all simulations.

In both simulations (in the cubic box and in the slab geometry), the periodic boundary
conditions were imposed on all walls of the simulation box.

The MD simulations do not fix the temperature implicitly, therefore a thermostat is
needed to correct kinetic energies of the molecules and thus regulate the temperature of
the system. For this purpose, we used the Nosé—Hoover thermostat with the relaxation
constant of 100 fs. The Verlet velocity integrator was used. The cutoffs of the Lennard-
Jones interactions and the van der Waals forces were set to 14.5 A. The direct Ewald
method with an automatic parameter optimization constant set to 107° was used for
electrostatic interactions.

4 Results

A series of 15 simulations at various temperatures spaced by 25 K was performed for each
of the two water models. One simulation of the slab geometry running on 22 CPU cores
took on average 48 hours in the case of the SPC/E model and 62 hours in the case of the
TTP4P /2005 model. The difference in the computational time is caused by the additional
massless atom @ that needed to be included in the TIP4P /2005 model.

The density profile p(z) at a given temperature was computed as an average from the
histograms of positions of water molecules in the z-direction calculated at each time step.
Properties of the phase interface can, according to Chapela et al. [5], be determined from
the correlation of the averaged density profile by a hyperbolic tangent function given in
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the following manner

pL+pv  pL — pv Z— 2o
p(z) = 5 5 tanh ( y ) : (1)
In equation (1), z marks the coordinate perpendicular to the phase interface, p(z) denotes
the density in A3 and 2, d, pL, and py are adjustable parameters. zy is the position
of the Gibbs dividing surface of the interface, d is a parameter of the phase interface
thickness, p;, denotes the saturated liquid density, and py is the saturated vapor density.
We note that Chapela et al. [5] used the term 2(z —2y)/d in the hyperbolic tangent, while
the subsequent studies, e.g., [2, 13, 9], considered only (z —zg)/d. To assure compatibility
with other MS studies of water, we decided to use the later definition in equation (1) as
well.

Figure 2 shows the saturated liquid and vapor densities obtained with the SPC/E
model compared to other MS and to experimental data. The experimental data are
represented by predictions of the reference equation of state IAPWS-95 [14] obtained
from the TREND package [11|. The new simulations are in good agreement with other
studies |2, 13, 9]. The saturated vapor density py obtained with the SPC/E model is in
a quite good agreement with the TAPWS-95 equation of state, while the saturated liquid
density pr, shows a clear deviation. The SPC/E liquid density is lower by 0.6% and 5.3%
than the experimental data at temperatures 250 K and 500 K, respectively. We note
that the difference becomes less pronounced when comparing the densities related to the
reduced temperature T, = T/T..

The melting point temperature of both water models considered in this work is be-
low the real triple point of water 273.16 K. The triple point values are 213 K for the
SPC/E model and 249 K for the TIP4P /2005 model [9]. Consequently, the vapor-liquid
equilibrium could be calculated down to 250 K for both models.

650
600+
5501
500+
X
— 4507
~
400t -
IAPWS-95
350! /N Alejandre et al.(1995) N = 512
A Alejandre et al.(1995) N = 1000
O Vega & Miguel (2007)
300¢ {> Sakamaki et al.(2011)
[ This study -
250 R 4 2 9 ‘ ‘ -
10 10 10 0.4 0.6 0.8 1

p/ g-cm‘3

Figure 2: Saturated liquid and vapor densities for water obtained from MS with the
SPC/E water model. Comparison of results from this study with the literature data
|2, 13, 9] and the reference equation of state TAPWS-95 [14].
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The densities for the TIP4P /2005 model are shown in figure 3. The saturated liquid
density obtained with TIP4P /2005 lies closer to IAPWS-95 than the SPC/E model data
(see figures 2 and 3). The TIP4P /2005 liquid density is lower only by 0.2% and 1.9%
than the experimental data at temperatures 250 K and 500 K, respectively. Moreover,
the TTP4P /2005 model provides relatively good representation of the maximum in the
density of liquid water at 277 K. The maximum of approximately 0.999 g/cm? lies close
to 275 K in our simulations. The saturated vapor density obtained with TIP4P /2005 is
slightly worse than in the case of SPC/E.

650
60071
55071
5001
< 450}
~
40071 -
IAPWS-95
3501 O Vega & Miguel (2007)
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Figure 3: Saturated liquid and vapor densities for water obtained from MS with the
TIP4P /2005 water model. Comparison of results from this study with the literature data
[13, 9] and the reference equation of state IAPWS-95 [14].

The surface tension was computed in a conventional way as a sum of the pressure
tensor (or initial) term v, and the tail correction to the long-range Lennard—Jones inter-
actions 7.y that corrects the cutoff truncation error,

Y= pt + Vtail- (2)
The pressure tensor term can be determined in the following manner

L, Py + P,
’thZT(pzz_Tyy>7 (3)

where L, denotes the box size in z direction, P;; is the ii-th diagonal component of the
pressure tensor. The tail correction 7, is given by

Vel = 12mea®(pL — pv)?

/ / coth (=) 33 % drds, (4)

where € and o are the Lennard—Jones parameters for oxygen atom, r. is the cutoff for the
Lennard—Jones potential and p;, and py are the bulk densities determined from equation

(1).
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Figure 4: Surface tension of water obtained from MS with the SPC/E water model.
Comparison of results from this study with the literature data [2, 6, 13, 9] and the TAPWS
standard |7]. Dash-and-dotted black line and dashed red line are results of relation (5).

The results for the surface tension obtained with the SPC/E model are shown in
figure 4. The new simulations are in a very good agreement with the previous studies by
Chen and Smith [6], Vega and Miguel [13], and Sakamaki et al. [9]. The surface tension
predicted in 1995 by Alejandre et al. [2| is much higher compared to other MS studies
and lies remarkably close to the experimental data represented by the IAPWS standard
for the surface tension of ordinary water [7]. Moreover, the data by Alejandre et al. [2]
show relatively large scatter compared to other studies. Alejandre et al. [2] performed
rather short simulations with 250 ps equilibration time and subsequent production runs
of 250 ps and 125 ps for samples with 512 and 1000 molecules, respectively. The time
step was set to 2.5 fs, i.e. a similar value as in other simulations. However, the overall
simulation time between 375 and 500 ps seems to be insufficient in order to obtain correct
and reproducible results. For example, Vega and Miguel [13| stated that a minimum time
for the surface tension simulations is above 0.5 ns. They performed their simulations for
1.5 to 2.0 ns, which is still at least five times less than in the case of Sakamaki et al.
|9] and this study. Chen and Smith [6] concluded that a minimum time for an accurate
surface tension simulations is around 2 to 5 ns. T

The TIP4P /2005 model gives a better prediction for the surface tension of water
compared to the SPC/E model. The difference between the models can be seen from the
deviations of the SPC/E and TIP4P /2005 results from the black line representing the
IAPWS standard [7] in figures 4 and 5. The new results for TIP4P /2005 are in good
agreement with our previous simulations [8] and the results by Vega and Miguel [13] and
Sakamaki et al. [9].

The surface tension data shown in figures 4 and 5 were correlated by the following
equation

V(T)=B(1-T/T)"* 1 =b(1-T/T.)], (5)
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Figure 5: Surface tension of water obtained from MS with the TIP4P /2005 water model.
Comparison of results from this study with the literature data [8, 13, 9] and the ITAPWS
standard |7]. Dash-and-dotted black line and dashed red line are results of correlation

(5)-

Table 1: Influence of the number of molecules N in the simulation with the SPC/E model
at a constant temperature 350 K on the following results: pp, liquid density, py vapor
density, ¢ 10-90 interface thickness, v surface tension.

Property / N 500 864 1372 2048
pL (g/cm?) 0.954 0.957 0.959 0.960
py -10° (g/em?)  9.85 1041 9.11 11.54
t (A) 3.879 4.256 4.332 4.550
v (mN/m) 53.38 53.71 53.35 53.65

where B and b are adjustable parameters and 7. is the critical temperature of the molec-
ular model. We continue using this equation for comparison purposes. We note that Eq.
(5) is of the same form as the IAPWS standard [7], except for the exponent, whose IAPWS
value 1.256 is closer to the current estimate 1.260 of the universal critical exponent [3].

Table 1 contains results for the saturated liquid and vapor densities, the thickness
of the phase interface, and the surface tension. The liquid density slightly increases in
a larger ensemble. The vapor density and the surface tension show small fluctuations
with no obvious dependency on the number of simulated molecules. The only significant
influence of the ensemble size can be seen for the 10-90 thickness of the phase interface
t, which continuously increases approximately by 17% with increasing the number of
molecules from 500 to 2048.



178 B. Plankové

5 Conclusions

Properties of the vapor-liquid phase interfaces of pure water were studied using the ap-
proaches of MD. Two commonly used molecular models of water, SPC/E and TTP4P /2005,
were used to model the density profiles and the surface tensions of water at temperatures
ranging from 250 K to 600 K. Results of our new simulations are in good agreement with
most of the previous MS studies. Both models were found to provide relatively good
results for the vapor-liquid phase equilibria and the densities of water at temperatures
up to 500 K. At higher temperatures, both models start to deviate from the experimen-
tal data as they underpredict the critical point of water. SPC/E gives slightly better
reproduction of the vapor density while TIP4P /2005 is more accurate on the liquid side.
The TIP4P /2005 model gives higher values for the surface tension lying closer to the
experimental data correlated by TAPWS [7] than the SPC/E model.

On the basis of the previous studies by Vega and Miguel [13| and Sakamaki et al. |9]
and our new results we conclude that the TIP4P /2005 molecular model is convenient for
modelling the interfacial properties and surface tension of pure water in the temperature
range from 250 K to 550 K, although a fully quantitative prediction cannot be expected
of these relatively simple models.
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Abstract. This paper discusses the current status of the new data acquisition system (DAQ)
of the COMPASS experiment at CERN. In the original DAQ, the event building is performed
by software deployed on switched computer network. The new system replaces the event build-
ing network with a custom FPGA-based hardware. The new DAQ software is based on state
machines and C++ with usage of the Qt framework, the DIM library, and the IPBus library.
The detail description of the new DAQ from hardware, software and process point of view is
presented. Moreover, several improvements for future development are introduced, namely, load
balancing across multiple transformation threads and crosspoint switch.

Keywords: data acquisition, FPGA, load balancing, crosspoint switch

Abstrakt. Tento ¢lanek popisuje soucasny stav nového systému pro sbér dat na experimentu
COMPASS. V pavodnim systému pro sbér dat bylo sestavovani udalosti zajisténo na softwarové
drovni na sitové propojenych pocitacich. Tento pristup byl nahrazen hardwarovym sestavovanim
udalosti a vyuzivd nejmodernégjsich FPGA technologii. Novy systém sbéru dat je postaven
na stavovych automatech, jazyce C-++ s pouzitim Qt frameworku, knihoven DIM a IPBus.
Podrobny popis systému pro sbér dat je prezentovan z hardwarového, softwarového a procesniho
pohledu. Kromeé toho je pfedstaveno nékolik vylepseni pro budouci vyvoj a sice vyvazovani zatéze
mezi vice transformac¢nimi vldkny a koncept crosspoint switche.

Klicovd slova: sbér dat, FPGA, vyvazovani zatéze, crosspoint switch

1 Introduction

This paper presents current status and proposed improvements for future development
of the hardware and software part of a new data acquisition system (DAQ), based on the
Field Programmable Gate Array (FPGA) technology [3], for the COMPASS (COmmon
Muon Proton Apparatus for Structure and Spectroscopy) experiment at CERN [1].
Development of the new DAQ software and hardware was started to improve reliability
and speed of system. Main idea of the hardware upgrade is to use FPGA technology
for event building purposes and consequently reducing number of used computers to
only eight. Reliable, flexible and cost-effective hardware event-building can be prepared
today thanks to improvements in FPGA technology. The new software has to cope with

*This work has been supported by grants LA08015 and SGS11/167/0OHK4/3T /14
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challenges linked to control of such new hardware event-building network and has to allow
users to operate whole system efficiently.

This paper is organized as follows. Section 2 provides information about experiment
COMPASS in a deeper way. In Section 3, the overview of current status of the DAQ
is described and its segments are discussed in detail. Proposed improvements for future
development of the DAQ are presented in Section 4. Section 5 concludes the paper.

2 Experiment COMPASS

The purpose of the COMPASS experiment is the study of nucleon spin structure and
hadron spectroscopy [7, 1]. The experiment, which utilizes a polarized target and is
situated at the Super Proton Synchrotron (SPS) at North Area, see Figure 1, at CERN
in Geneva, Switzerland, was approved conditionally in 1997 and commissioned in 2001.
In 2002, the experiment started operating. It’s main mission is to study the structure
and the spectroscopy of hadrons using high intensity muon and hadron beams. The
unique CERN SPS M2 beam line is used as a source of these particles, serving the
beam with energy within the range of 50 GeV and 280 GeV. Particle identification is
carried out employing a Ring-imaging Cherenkov (RICH) detector, two electro-magnetic
calorimeters, two hadron calorimeters and two muon filters.

Over the span of eight years from 2002 to 2009, data-taking had been taking place
with the exception of year 2005, in which an accelerator upgrade was realized. The beams
used during these years were primarily muon beams and partially hadron beams. As the
apparatus of the experiment had been proven to be very versatile, an extension of the
COMPASS program has been approved in 2010 by the CERN research board, prolonging
its lifespan by seven years and shifting the focus of the experiment to tests of chiral
perturbation theory, study of the Drell-Yan process and research in field of Generalised
Parton Distributions |7, 1].

During the previous years, it had a usual data rate of approximately 1500 MB/s dur-
ing approximately 10 seconds on-spill with the off-spill time between 30 and 50 seconds,
depending on SPS super cycle. The original DAQ of the experimentm was built during
years 1999-2001. The Data Acquisition and Test Environment (DATE) software, origi-
nally developed for the ALICE at CERN, was used to control DAQ and event building
in old system. Both software package and usage of FPGA-based cards have been widely
studied and as the result a design of the new DAQ was prepared.

3 Overview of current status of the DAQ

New DAQ replaces the old one, however, some parts do not change. The article is not
aimed at comparison of new and old one. In following section, the current status of the
new DAQ is discussed from hardware, software and process point of view.
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Figure 1: COMPASS location within the CERN accelerator complex [4]

3.1 Hardware structure of the DAQ

The COMPASS DAQ is currently undergoing a major hardware and complete software
replacement, the first part of which was finished in 2014, and the second part of which
is planned to be completed in 2016. As can be seen in Figure 2, the new DAQ can be
divided into five basic layers, the first one being frontend cards which process analog
data from the detectors and convert them to digital form. The front-end cards are
connected to HGeSiCA, CATCH and Gandalf modules which make up the second layer
[9, 6, 8]. The second layer handles the first level of multiplexing (consolidating multiple
data streams into a single stream). The data from some of the HGeSiCA and CATCH
modules go through SLink multiplexers and the data from Gandalf modules through
TIGER VXS data concentrators, creating a sublayer. SLink multiplexers and TIGER
VXS data concentrators are used for multiplexing.

Using SLinks, this sublayer is connected to the third layer, which comprises eight
FPGA cards which are referred to as Data Handling Cards (DHC) within this context.
The third layer handles another level of multiplexing. SLinks are also used to connect the
third layer to the fourth layer, which is made up of a single DHC with switch firmware
— this layer handles event building. The fifth layer, again utilizing SLinks for connection
to the previous layer, consists of readout computers which run the DAQ software. These
computers are collectively referred to as the readout engine. The connection of an SLink
and the memory of a readout computer is handled by a Spillbuffer — a PCI Express
card with an FPGA chip and 2GB RAM, which is also partially used for buffering. The
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acquired data which are to be stored are then sent directly to the CERN CASTOR facility
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Figure 2: COMPASS DAQ topology as used in the run 2015 [4]

3.2 Software structure of the DAQ

The DAQ software is deployed on the readout engine, the individual computers of which
run the Scientific Linux CERN 6 (SLC6) operating system [10]. The software is based
on C++ and uses the Qt Framework not only for its GUI, but also for its threading.
Furthermore, Qt data types and a variety of non-GUI classes are also used in the software.
The Qt version used in the DAQ software is 5.2.1. Python and Bash script also find use
in the DAQ), their scripts being particularly useful for starting processes remotely using
SSH. Finally, XML is used to describe the hardware configuration of the DAQ in so-called
XML structure files and the IPBus configuration in so-called XML connection files and
address files.

Six main functions are provided by the DAQ software: configuration of the hardware,
monitoring of the data taking process, remote control of the hardware, data flow control,
logging of information and errors and log browsing [4].

The DAQ software also includes a connection to an SQL database. The database is
used to store, among others: configuration information of the DAQ’s hardware, informa-
tion logs and error logs. The events read out from the detectors by the DAQ are stored
in the DATE format, which is the format used in the DATE (Data Acquisition and Test
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Environment) software. The DATE software is the data acquisition software that was
originally developed for the ALICE experiment and a modified version of which was being
used in the COMPASS DAQ before the overhaul [2].

3.3 Processes of the DAQ

GUI-control  {

— — — — DIM services and commands registration and information

Direct communication between nodes

_____ Communication without DIM through IPbus

Figure 3: The communication diagram of the DAQ [4]

The software comprises the following processes: Master, Slave Control, Slave Readout,
RunControl GUI, MessageLogger and MessageBrowser.

The Master is a vital process for the DAQ — using DIM, it mediates communication
between the RunControl GUI and the slave processes as well as the communication be-
tween the slave processes and the configuration database. It also plays a major role in
the DAQ’s error handling.

The purpose of the Slave Control process is to configure and monitor the FPGA
cards — it is the only process which communicates with the FPGA cards directly. All
communication with the FPGA cards is carried out using IPbus.

The Slave Readout is a very resource-demanding process responsible for readout of
data from connected devices, as well as its processing and subsequent storage. It com-
prises a large number of threads.

The RunControl GUI, which can run in two different modes, is the means of user
interaction with the DAQ. The first mode, Run Control, provides the user with complete
control over the DAQ as well as information concerning the current run and status of the



186 O. Subrt

hardware. Only one instance of this mode can run at a time. The second mode, Mon-
itoring, retains the information and status providing capabilities, but does not provide
the user with any direct control over the DAQ. There is no practical limit to how many
instances of this mode can run at a time.

The Messagel.ogger is a process which receives status and error messages from all
parts of the DAQ and stores them in the database.

The MessageBrowser is a GUI tool used for visualization of these messages [3].

A diagram showing communication between individual processes of the DAQ can be
found in Figure 3. The meaning of the colors is as follows:

e Blue: Processes vital for data acquisition
e Red: Optional monitoring tools
e Yellow: Main control GUI

e (Green: Firmware interface

4 Proposed improvements in the DAQ

New DAQ was built and prepared in 2014. Nevertheless, many ways how to improve it
have already risen. Some of them — namely load balancing across multiple transformation
threads and the crosspoint switch — are mentioned in following section. The work on
DAQ is never ending process including improvement in reliability, efficiency and amount
of execution time.

4.1 Load balancing across multiple transformation threads

The Readout Slave has several responsibilities. Besides the readout of data from con-
nected devices and their storage, it has a crucial responsibility for data processing as
well. Events have to be transformed and stored in DATE format. Nowadays, the data
processing run in ten parallel threads. Each thread processes only one event at once.
Ten events are assigned to ten threads at once, it waits until the last thread finishes its
work and then next ten events are assigned to those ten threads again and so forth. This
approach has one crucial drawback. Some threads are very often inactive and without
any work. For instance, nine threads must wait until the tenth one finishes its work.

To overcome this deficiency, the new approach concerning load balancing and entire
utilization of ten threads is proposed. In Figure 4, load balancing across multiple trans-
formation threads is stated. In this proposal, each thread processes only one event at once
and immediately starts to process the next event after finishing its work on the previous
one. The subroutine AssignThread is located on the right. In this subroutine, the loop
iterates the events in BlockOfFEvents starting at position indez. The event is assigned to
first free thread. If no free thread is available, the current index of event is returned.

The flowchart on the left represents loop iterating the events in BlockOfFEvents. 1t is
necessary to keep the same order of events BlockOfEvents for monitoring and storage.
For this reason, the loop has to wait until the transformation of current event is prepared,
however, the performance of load balancing is not affected by the waiting of this loop.
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Figure 4: Load balancing across multiple transformation threads

4.2 The crosspoint switch

In 2015, it is planned to wire all point-to-point high speed links via a fully programmable
crosspoint switch. The crosspoint switch will therefore provide a fully customizable DAQ
network topology between front-end electronics, the event building hardware, and the
online computers. The adaptability of the system topology allows to compensate for
hardware failure in the event builder by activating spare resources replacing broken or
malfunctioning modules. Algorithms shall identify hardware failure and synchronously
reconfigure the DAQ topology to substitute the broken module by a spare one without
human intervention.

In this way, the fully programmable crosspoint switch contributes substantially to an
improved system reliability since every broken FPGA module of the event builder as well
as the online computers can be exchanged on-the-fly and data loss is reduced. In Figure
5, proposed DAQ topology including the crosspoint switch is given.

The hardware is still not prepared and thus the final design is not exactly known. It
is assumed that the crosspoint switch will have 144 incoming SLinks and 144 outgoing
SLinks. The board will contain two chips connected together through data bus with 20
lines and one FPGA card controlling both of them by control bus.

Initially, 120 SLinks was leading to eight FPGA cards from frontend cards. In this
proposal, these 120 Slinks are connected directly to crosspoint switch and the chips handle
60 SLinks each. The crosspoint switch has 120 outgoing SLinks to 8 Multiplexer FPGA
cards, 8 outgoing SLinks to DHC-Switch FPGA card and 8 outgoing SLinks to 8 readout
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computers. It also consists of 8 incoming SLinks from 8 Multiplexer FPGA cards and
8 SLinks from DHC-Switch FPGA card. In sum, it uses 136 incoming SLinks from 144
and 136 outgoing SLinks from 144.

It is challenging to ensure the communication between Multiplexer FPGA cards and
DHC-Switch FPGA card through 20 lines between chips, since Multiplexer and Switch do
not have to be connected to the same chip and have to use data bus between chips. The
next challenge will be to ensure manually reconnection in GUI of incoming and outgoing
SLinks in crosspoint switch without stopping the run. The proposal even contains the
automatic reconnection without stopping the run based on finding the best path between
incoming and outgoing SLinks.

| Frontend cards (~300k channels)
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Figure 5: Proposed DAQ topology including the crosspoint switch

5 Conclusion

Design of the DAQ has been prepared with respect to demands and restrictions which
were extracted from the initial studies of the present DAQ of the COMPASS experi-
ment at CERN and discussion among collaboration of the experiment. All processes
were implemented in the C++ language using the Qt library. PHP, MySQL, javascript,
bashscript and python were chosen as languages for support function and web interface.
The first full version of software package has been tested and used during preparation
for winter 2014 data taking. The stable version of the new DAQ is currently taking data
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from the COMPASS experiment.

Load balancing across multiple transformation threads is designed to assign event
to free thread as soon as possible. The improved transformation process becomes more
effective and reduces the execution time. The concept of crosspoint switch brings the
improvement of system reliability, the exchanging of broken computers on-the-fly and the
reduction of data loss. The crosspoint switch is the most challenging part from commu-
nication, stability and optimization point of view. These improvements are considered
for future development and will be implemented and tested very soon.
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Abstract. This contribution is devoted to the study of number fields that can be generated
by Pisot units. A Pisot number is a real algebraic integer a > 1, i.e. a zero of " + ajz™ ! +
-+ + ap—1a, € Zlz], whose conjugates «; satisfy |ai| < 1. It has been shown by R. Salem in
1963 that for any real number field K there is a Pisot number « such that K = Q(«). In 2013,
Q. Chen and J. Zhuang showed that this Pisot generator can be found in polynomial time given
that the integral basis of K is known. It has been also known that any real number field can be
generated by a Pisot unit, i.e. a Pisot number that is invertible in the ring of algebraic integers,
see for example [1]. However, no explicit algorithm for determining such a generator was known
so far. Utilizing an integer programming methods for an integer lattice problem, we provide an
algorithm for finding the Pisot unit generator of the minimal magnitude. For complex fields, we
use the notion of complex Pisot units, an analogy to Pisot numbers where only one complex pair
of conjugates is allowed to lie outside the unit circle. For all complex fields with the exception
of CM fields without a nontrivial root of unity, we are able to adjust the algorithm to find the
Pisot unit generator of minimal absolute value. In case of CM fields containing a complex unit,
but not a nontrivial root of unity, one can still find a complex Pisot unit generator, but not
of minimal absolute value. The remaining case is a complex field without any complex unit.
Clearly, in this case the field cannot be generated by a unit. A characterization of such fields,
however, still remains an open problem.

Keywords: number fields, pisot units, cm fields, units

Abstrakt. Tento pfispévek se vénuje studiu ciselnych téles generovanych Pisotovymi jed-
notkami. Pisotovo &islo je realné algebraické celé ¢islo a > 1, tzn. kofen 2" + ajz" ' +
o+ ap_1ay € Zlz], jehoz sdruzené kofeny «; spliuji |a;| < 1. V roce 1963 ukazal R. Salem, 7e
pro kazdé realné téleso K existuje Pisotovo Cislo a takové, ze K = Q(«a). V roce 2013 ukazali
Q. Chen and J. Zhuang, Ze pokud je znama integralni baze K, pak je mozné tento generator najit
v polynomialnim case. Je také zndmo, Ze jako generator lze brat Pisotovu jednotku, tj. Pisotovo
¢islo, které je invertibilni v okruhu algebraickych celych ¢isel, viz [1]. Nicméné, dosud nebyl
znam algoritmus k najiti takového generatoru. Vyuzitim algoritmu celoCiselného programovani
na problém v celo¢iselné mfizce budeme schopni najit generujici Pisotovy jednotku minimalni
velikosti. Pro komplexni télesa uvazujeme komplexni Pisotova ¢isla, analogii Pisotovych ¢isel.
Pro komplexni Pisotova ¢isla pouze jeden par sdruZenych kofent muzZe lezet vné jednotkové
kruznice. N&§ algoritmus je mozno upravit na piipad komplexnich téles a jeho vystupem je, s
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Grant Agency of the Czech Technical University in Prague, grant No. SGS11/162/OHK4/3T/14.
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vyjimkou CM téles bez netrividlniho kofenu jednicky, generujici komplexni Pisotova jednotka
miniméln{ absolutni hodnoty. V piipadé, Zze CM téleso obsahuje komplexni jednotku, ale ne
netrivialn{ kotfen jednicky, potom stile mizeme najit generujici Pisotovu jednotku, ale jiz ne
miniméln{ absolutni hodnoty. Zbyvajici pfipad je, kdy CM téleso neobsahuje komplexni jed-
notku. V takovém pripadé samoziejmé nemiize byt téleso generovano jednotkou. Klasifikace,
kdy nastava tento pfipad, v8ak zatim neni znama.

Klicovd slova: ¢iselna télesa, pisotovy jednotky, cm télesa, jednotky

The results have been presented at the 29th Journées Arithmétiques conference in De-
brecen and are being prepared to be submitted.
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Abstract. We derive a local-time path-integral representation for a generic one-dimensional
time-independent quantum-mechanical system. In particular, we show how to rephrase the ma-
trix elements of the Bloch density matrix as a path integral over z-dependent local-time profiles.
The latter quantify the time that the sample paths x(¢) in the Feynman path integral spend in
the vicinity of an arbitrary point z. Generalization of the local-time representation that includes
arbitrary functionals of the local time is also provided. We argue that the results obtained rep-
resent a powerful alternative to the traditional Feynman—-Kac formula, particularly in the high
and low temperature regimes. To illustrate this point, we apply our local-time representation
to analyze the asymptotic behavior of the Bloch density matrix at low temperatures. Further
salient issues, such as a connections with the Sturm—-Liouville theory and the Rayleigh—Ritz
variational principle are also discussed.

The path integral (PI) has been used in quantum physics since the revolutionary work of
Feynman [1], although the basic observation goes back to Dirac [2|] who appreciated the role
of the Lagrangian in short-time evolution of the wave function, and even suggested the time-
slicing procedure for finite, i.e., non-infinitesimal, time lags. Since then the PI approach yielded
invaluable insights into the structure of quantum theory and provided a viable alternative to the
traditional operator-formalism-based canonical quantization. During the second half of the 20th
century, the PI became a standard tool in quantum field theory and statistical physics, often
providing the easiest route to derivation of perturbative expansions and serving as an excellent
framework for (both numerical and analytical) non-perturbative analysis [3].

Feynman PI has its counterpart in pure mathematics, namely, in the theory of continuous-
time stochastic processes. There the concept of integration over a space of continuous functions
(so-called fluctuating paths or sample paths) had been introduced by Wiener [4] already in 1920’s
in order to represent and quantify the Brownian motion. Interestingly enough, this so-called
Wiener integral (or integral with respect to Wiener measure) was formulated 2 years before the
discovery of the Schrodinger equation and 25 years before Feynman’s PI formulation of quantum
mechanics.

The local time for a Brownian particle has been of interest to physicists and mathematicians
since the seminal work of Paul Lévy in 1930’s [6]. In its essence, the local time characterizes
the time that a sample trajectory z(t) of a given stochastic process spends in the vicinity of an
arbitrary point X. This in turn defines a sample trajectory LX of a new stochastic process. A
rich theory has been developed for local-time processes that stem from diffusion processes (see,
e.g., Ref. [7] and citations therein). We should particularly highlight the Ray—Knight theorem
which states that the local time of the Wiener process can be expressed in terms of the squared
Bessel process. In contrast to mathematics, the concept of the local time is not uniquely settled
in physics literature. Various authors define essentially the same quantity under different names
(local time, occupation time, sojourn time, etc.), and with different applications in mind.
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The aim of this paper is to derive a local-time PI representation of the Bloch density matrix,
i.e., the matrix elements (x| e 7?# |z,) of the Gibbs operator. This can serve not only as a viable
alternative to the commonly used Feynman—Kac representation but also as a powerful tool for
extracting both large and small temperature behavior. Furthermore, by analytically continuing
the result back to the real time via the inverse Wick rotation, 8 — it/h, one obtains the local-
time PT representation of quantum-mechanical transition amplitudes, i.e., matrix elements of
the evolution operator e~®/"  Apart from the general theoretical outline, our primary focus
here will be on the low-temperature behavior which is technically more challenging than the
large-temperature regime. This is because the low-temperature regime is controlled by paths
with a large local time near the global minimum of the potential. In our formulation, we
uncover an interesting connection between a low-temperature PI expansion and the Rayleigh—
Ritz variational principle. On the contrary, the high-temperature regime of the Boltzmann
density function p(z,z, ) is dominated by paths that spend a sizable amount of time in the
vicinity of the point x. In fact, the large-temperature expansion was already treated in some
detail in our previous paper [8].

The action in our local-time PI is identified as the action of a radial harmonic oscillator, which
indeed coincide with the squared Bessel stochastic process. Relation to the Sturm-Liouville
theory is also highlighted, at arbitrary temperatures, and a local-time analog of the Feynman—
Matthews—Salam formula is presented and employed to compute the one-point distribution of
the local time. Last but not least, we also wish to promote the concept of the local time which
is not yet sufficiently well known among the path-integral practitioners.

Keywords: path integral, local times, Ray—Knight theorem, Rayleigh-Ritz variational principle

Full article is currently under journal review, and it is available at http://arxiv.org/
abs/1506.00888.
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