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Predmluva

Je to jiz deset let, co se na katedie matematiky FJFI poprvé konaly Doktorandské dny.
Letos se tento workshop konéa ve dnech 4. a 11. listopadu a bude opét vénovan prezentacim
doktorandt oboru Matematické inZzenyrstvi zajistovaného katedrami matematiky, fyziky
a softwarového inZenyrstvi na Fakulté jaderné a fyzikalné inzenyrské Ceského vysokého
uceni technického v Praze. Prispévky nasich studentt pokryvaji siroky zabér aplikované
matematiky.

Vérime, ze i letosni ro¢nik workshopu Doktorandské dny se bude tésit prizni nejen
doktorandi a jejich skolitelt, ale samoziejmé i odborné vefejnosti z fad akademickych
pracovnikit na CVUT i na spolupracujicich tistavech AV CR.

Tato konference se koné s tradi¢ni podporou Studentské grantové soutéze na CVUT
v Praze (grant SVK 36/16/F4).

Editori
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Abstract. The proof of the Riemann hypothesis is a long-standing problem in mathematics.
Whereas numerical techniques an analytic estimates are prevalent, geometrical approaches are
rare. Here we argue in favour of a new geometric route towards this conjecture. We state the
equivalence of three formulations of the Riemann hypothesis. The proof is based on lines of
constant phase of a complex function f(s), satisfying certain assumptions. Since the proof is
quite long, here we only summarize some ideas and method important in the proof. Full proof
is a part of the original paper listed below.

Keywords: Riemann (—function, Riemann hypothesis, Riemann £—function, Newton flow, lines
of constant phase, separatrix

Abstrakt. Dikaz Riemannovy hypotézy je v matematice dlouhodobym problémem. Pii zk-
ouméni tohoto problému pfevladaji analytické odhady, zatimco geometrické pristupy jsou spise
vyjimkou. Tento ¢lanek hovofi ve prospéch nového geometrického pristupu pfi studiu této hy-
potézy. Uvedeme tfi ekvivalentni formulace Riemannovy hypotézy. Dikaz je zaloZen na liniich
konstantni faze komplexni funkce f(s), ktera vyhovuje ur¢itym podminkam. Jelikoz je dikaz
pomérné dlouhy, uvedeme zde pouze myslenky a metody, které se u dikazu pouziji. Cely dikaz
je ¢ast originalniho ¢lanku uvedeném v zépati stranky.

Klicovd slova: Riemannova (—funkce, Riemannova hypotéza, Riemannova £ —funkce, Newtoniv
tok, linie konstatni faze, separatrix

Full paper: W.P. Schleich, 1. Bezdékova, M.B. Kim, P.C. Abbott, H. Maier, H. Mont-
gomery, J.W. Neuberger, Equivalent formulations of the Riemann hypothesis based on
lines of constant phase, to be submitted.

1 Introduction

Riemann hypothesis [1, 2, 3, 4| describing a conjecture about zeros of the Riemann zeta
function ¢ was first stated by Bernhard Riemann 1859 in his seminal article "On the
number of primes below a given number" [5].

*This work was supported by SGS13/217/OHK4/3T/14 and GACR. 13-339068S.



2 1. Bezdékova

The Riemann (—function is defined for ¢ > 1 by the expression

() =) n" (1)

where s = 0+147 and can be meromorphically continued to the entire complex plane. The
only singularity is the simple pole at s = 1. Euler discovered connection of the (—function
with prime numbers, the equation (1) can be written as

()= T a=p ©

Riemann also found a functional equation for ¢ which is most conveniently formulated
by introducing a function

s S
§(s) =7/ (s = )1 (5 +1) C(s), (3)
where I" denotes Gamma function. Equation (3) leads to the relation
§(s) =€(1 —s). (4)

Therefore £ is symmetric with respect to line where o = 1/2. Equation (2) implies that
¢ has no zeros for o > 1 and from the functional equation Eq.(4) also no zeros for o < 0.
Region
0<o<1
is called a critical strip. Moreover, £ has no poles.
The original statement of the Riemann hypothesis reads:

All non-trivial zeros of ( lie on the critical axis.

Where by critical axis we mean line with

1

o=—.

2
Function ¢ has also trivial zeros and it is known that they are located at negative even
integers, s = —2, —4, ... . In the case of function &, Eq.(3), trivial zeros disappear due to

poles of the v function. Therefore, ¢ function has only non-trivial zeros that are the same
as the non-trivial zeros of the function (. Since £ has no other zeros, we can reformulate
the hypothesis as:

All zeros of £ lie on the critical axis.

2 Method

We analyse the lines of constant phase of the function &, Eq.(3) from the point of view of
the Newton flow in the complex plane |6, 7]. Here we identify the crucial role of special
phase lines called separatrices. These lines divide the flow into the different domains,
which means into the different zeros.
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2.1 Newton flow

Is defined for complex functions g(s) as

s(t) = % __9) (5)

where t € [0,0), b > 0. The function g : C — C has to have continuous derivative on an
open subset G, sg € G, ¢'(s) # 0 for all s € G. The initial condition is g(s(0)) = g(so).
Further, the equation is equal to

with solution
g(s(t)) = g(so)e™. (6)

Note that solution in Eq.(6) does not change the phase of the complex function g during
the time evolution. Therefore, it corresponds to the lines of constant phase of the function
g.

This lines of constant phase have a source and a sink [7]. The source is pole of the
function or, if there is no pole, then the source is infinity. The sink of the function is zero
of the function. This is easy to see since

lim g(s(t)) = lim g(sp)e™" = 0.

t—o00

If the function has no zero, than the lines of constant phase terminate in infinity.

2.2 Assumptions

Let us assume that the function f(s) satisfy four assumptions:

(al) f satisfies functional equation f(s) = f(1 — s)

(a2) the zeros of f and the zeros of its first derivative f' are simple zeros

(a3) f is free of any pole

(a4) for large positive values of o, the phase © of f increases in a monotonic way as
T increases
It can be shown that the function £ from Eq.(3) satisfy assumptions (al)-(a4).

2.3 Two cases violating the Riemann hypothesis

Due to the assumption (a3), Newton flow of the ¢ function consist of phase lines ap-
proaching from infinity. There exist special phase lines that divide the complex plane
into several regions, where each of this regions is attracted by one zero. Therefore, we
call this phase lines separatrices.

As you can see in the lower part of the figure (1), typical behaviour is that a zero of
the function £ alternates with a zero of its first derivative £’. Two cases that would results
in zero of a function located off the critical axis are:
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(c1) there exist three subsequent vanishing derivatives of the function located at the
critical axis

(c2) vanishing derivative is not located at the critical azis
Both cases cause that the phase lines separated by separatrices cannot terminate at
zero located on the critical axis. In the first case, there is no such zero between two
separatrices. Nevertheless, the phase lines have o terminate in zero of the function and
this zero will be located off the axis. In the second case the separatrix does not cross the
critical axis at all and therefore has to automatically send the flow into a zero located off
the critical axis. The situation and detailed description is depicted in figure (1).

3 Results

This geometrical approach result in three equivalent formulations of the Riemann hy-
pothesis, defined for rather general class of functions f, which include function £, and
satisfy assumptions (al) — (a4). The equivalent statements read:

(R1) all zeros of f are located on the critical azis

(R2) all lines of constant phase of f corresponding to +m, £27, ... merge with the
critical azis in zeros of f

(R3) all points where [’ vanishes are located on the critical axis and the phases of f
at two consecutive zeros of f' differ by

4 Conclusion

We have stated three equivalent formulations of the Riemann hypothesis that are based
on the lines of constant phase. In this equivalent formulations, we have used properties
of the special phase lines called separatrices. This equivalent formulation lead to the
behaviour, where two extremal cases with three vanishing derivatives in a row and with
vanishing derivative off the axis cannot occur. This three equivalences also helps to better
understanding of the behaviour of the ¢ function.
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Figure 1: Consequences of the assumptions (af)-(a4) on the separatrices, denoted by
thicker dashed line, directing the flow of lines of constant phase of f = f(s) in the
complex plane and the distribution of zeros. Due to the functional equation, Eq. (4) of
f, the phase 0 is anti-symmetric with respect to the critical axis o = 1/2 depicted by
the dashed dot line. As a consequence, f is real on its and can only assume the phases
km where k is integer. Moreover, complex analysis enforces an anti-symmetry of 6 with
respect to the real axis which is a line of constant phase with § = 0. At s = 1/2, the first
derivative of f vanishes as indicated by the triangle. A simple zero on the critical axis
with imaginary part 7, denoted by a dot and no zeros off the axis requires phase lines
of a m-interval to approach from the right and from the left. If f enjoys more zeros their
domains of attraction need to be fenced of by separatrices shown by the thicker dashed
lines which start at infinity and merge with the critical axis at right angles where again
f" vanishes. Since f is free of poles infinity is indeed the only source of phase lines. For a
zero that is located off the critical axis the functional equation automatically enforces an
additional zero which is its mirror image. When three consecutive points on the critical
axis where f’ vanishes are caught between two zeros there must be two zeros off-axis and
the phase difference between two consecutive separatrices is 27 rather than 7. Similarly
when we have one zero on the critical axis and two off the axis then the phase difference
between two consecutive separatrices can be a fraction of 7. The phase km on the critical
axis indicated in the figure is dictated by the distribution of zeros.
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Abstract. The Chebyshev polynomials of the second kind are generalized with use of multi-
variate symmetric generalizations of trigonometric functions. For such orthogonal polynomials
of several variables are shown the recurrence relations by use of generalized trigonometric iden-
tities. For dimension three the exact form of recurrence relations is obtained and then used to
calculate first ten polynomials. Further the possibility of generalization which uses antisym-
metric multivariate sine function and generalization of the Chebyshev polynomials of the fourth
kind is discussed.

Keywords: Chebyshev Polynomials, Multivariate Trigonometric Functions, Orthogonal Polyno-
mials

Abstrakt. Chebyshovy polynomy druhého druhu jsou zobecnény za uziti zobecnénych sy-
metrickych trigonometrickych funkci vice proménnych. Pro tyto ortogonélni polynomy vice
proménnych jsou ukazany rekurentni relace uzitim zobecnénych trigonometrickych identit. Pro
dimenzi tTi je ziskdn presny tvar rekurentnich relaci a nésledné je spocitdno prvnich deset
polynomii. Déle moznost zobecnéni Chebyshovych polynomia druhého druhu za pouziti antisy-
metrické sinové funkce vice promémmych a zobecnéni Chebyshovych polynomu ¢tvrtého druhu
je diskutovana.

Klic¢ovd slova: Chebyshovy polynomy, Trigonometrické funkce vice proménnych, Ortogonalni
Polynomy

1 Introduction

Orthogonal polynomials [2] are used in many parts of mathematics and physics. Special
case of such polynomials are the Chebyshev polynomials [4], [9] which are defined using
trigonometric functions and are extensively used in mathematics. One can ask about
existence of generalization of such a polynomials to polynomials of several variables 3|
using the multivariate generalizations of trigonometric functions [6], [7], [8]. With the
use of generalized multivariate trigonometric functions one can obtain eight classes of
orthogonal polynomials of several variables.

*This work was supported by the Grant Agency of Czech Technical University in Prague, grant No.
SGS13 /217/OHK4/3T/14



8 A. Brus

Chebyshev Polynomials of the first and the third kind and their generalizations by an-
tisymmetric and symmetric multivariate cosine functions are studied in [5]. This general-
izations lead to four classes of orthogonal polynomials of several variables. The possibility
of such generalization leads to question of generalization of the Chebyshev polynomials
of the second and the fourth kind using the antisymmetric and symmetric multivariate
sine functions. In this paper we focus on symmetric multivariate generalization of the
Chebyshev polynomials of the second kind.

Such a generalization uses symmetric multivariate trigonometric functions instead of
classical trigonometric functions. This a functions follows lot of symmetries coming both
from the definition of symmetric multivariate sine function and properties of classical sine
function. These properties should be then applied to simplify the recurrence relations of
generalized Chebyshev polynomials.

2 Chebyshev polynomials

The classical Chebyshev Polynomials of one variable are well known and extensively used
class of orthogonal polynomials. There exist four kinds of the Chebyshev Polynomials
defined as

_cos ((n+ %) 6)

Pl(z) = T,(x) = cos (nb), PHI(2) = V,(2) = o (19) ,
Pl (2) = U, () = sin((n+1)80) PIV () = W, () = sin ((nj%) 9) (1)
n oo sin (6) ’ " oM sin (%9) ’

with variable = = cos (0), x € [—1, 1].

For our purposes we will focus mainly on the Chebyshev polynomials of the second
kind. From trigonometric definition one can see the orthogonality of these polynomials,
ie.,

dd =0, n#m, (2)

/7r sin(n+1)0sin(m+1)0
0 sin? @

which in variable z takes form

VI

/_ Up(2)Un(z) (1 —2%) % dz =0, n#m. (3)

1
Further we can obtain the first two polynomials by use of trigonometric formulas as:
Ui(z) =1, Us(x) = 2cos (0) = 2. (4)

From theory of orthogonal polynomials we know that there exist recurrence relations
connecting the three consecutive polynomials. Easiest way to obtain this formula is by
using the trigonometric identity:

sin ((n + 1)0) + sin ((n — 1)0) = 2 cos (6) sin (nd) (5)
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which leads to recurrence relations:
Un(z) = 22U, (x) — Up_a(x), n=23,.... (6)

Together with knowledge of the first two polynomials this gives procedure for generating
of polynomials. Such a relations can be obtained for all four kinds of the Chebyshev
Polynomials [4].

3 Multivariate trigonometric functions

The symmetric and antisymmetric multivariate generalizations of trigonometric functions
are defined and their properties detailed in [8]. The antisymmetric trigonometric functions

cosy, (z), siny (z) and symmetric trigonometric functions cosy (), sin{ (z) of variable z =
(x1,...,2,) € R" with parameter A = (A,...,\,) are defined as determinants and

permanents of matrices with entries cos(m;z;) resp. sin(m;z;), i.e.
cos, (z) = Z sgn (o) cos(mAy, 1) cos(TAy,Ta) - + - COS(TA,, Tn),

sin (z) = Z sgn(o) sin(mAy, x1) sin(mA,,xa) - - - sin(wA,, ),

for the antisymmetric trigonometric functions and

cosy (z) = Z coS(T Ay, 1) COS(TAyyT2) - - - COS(TA,,, T ),

gESy (8)
sin} (z) = Z Sin(mAy, 1) SIn(TAg,T2) - - - sin(mA,, ),

O'GSn

for the symmetric trigonometric functions.

For our applications we will only consider functions cos;"(x) and sini"(z) with integer
parameter only, k € Z™ and a shift p = (%, %, cee %) and parameters k only lexicograph-
ically ordered due (anti)symmetries, i.e.,

by > ke > > k. (9)

Due to further properties we consider the functions only on closure of the fundamental
domain F(S2T) of the form

F(SM = {(ay,20, ..., 2p) €ER* | 1> 21 > 09> ... > 2, > 0} (10)
Because of additional properties discussed in [1] we can omit boundaries
o 1; =wx;1,1 € {1l,...,n— 1} for cos, (z) and sin, (z),
o v, =zip1,i €{1,...,n— 1} or z; =1 for cos;, () and sin;, (),

o z;=1,i€{l,...,n} for cos;, (2) and sin;;, ().
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4 Multivariate symmetric generalization of the Cheby-
shev polynomials of the second kind

Using the multivariate generalization of trigonometric functions one can obtain multi-
variate versions of the Chebyshev polynomials. The generalization of the Chebyshev
polynomials of the first and the third kind was done in [5]. For symmetric generaliza-
tion of the Chebyshev polynomials of the second kind let us introduce the n functions
X1, X9, ..., X,

X, = COSZr

ot
1,0,...,0)’ Xy = COS

110 X, = COSErl,l,...,l)’ (11)

We now consider the multivariate symmetric generalization of the Chebyshev polynomials
of the second kind as:

sing, (@)

(@)

where p; = (1,1,...,1). One can prove that these relations are valid for all points of
interior of fundamental domain F(S%f), z € F(S%/7)e.

We use ordering of polynomials from [5], we say that a polynomial P,g”* is greater
than polynomial P/ k # k' if for all 4, k; > K} and smaller if for all i, k; < k/.

P (X, Xy, ..., X)) = (12)

sin

4.1 Recurrence relations

IT1+
!

To obtain recurrence relations for polynomials P we consider generalized trigono-

metric identity

: 1 .
sin) (z) cos) (z) = o Z Z SmELkﬁaﬂa(l),...,kn+anlg(n))<x)‘ (13)

o€Sy a;=%1
i=1,..,n

Using the special case where [ = p; = (1,1,...,1), i.e,

. n! .
sin! () cosy (v) = o Z 51na1+al’m7kn+an)(:ﬁ), (14)
=+1

i=1,...,n

we obtain recurrence relation:

2n n n
. + _ = . + _ . + _ . + _ _ . +
Sy = oy Sty —tp— 1, Xn E :Slnk—% E :Smk—2zi—2lj s TS o) 2ty —20,
’ i i,j=1
i<j

(15)
where [; is vector with 1 only on i-th coordinate.
Using this relation and properties of function sin;” each polynomial can be expressed
as linear combination of lower polynomials and product of lower polynomial with X,.
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4.2 Three-dimensional polynomials

Relations (15) together with properties of generalized sine functions imply the following

recurrence relations for P(Iklll}:; k)" The first four polynomials can be obtained using

trigonometric identities in form:

1 2 4
I+ _ I+ I+ _ I+ _
7)(0,0,0) =1, 7)(1,0,0) - §X17 7)(1,1,0) - §X2’ 73(1,1,1) - §X3' (16)

Following polynomials are then obtained using recurrence relations:
0. I+ _ I+ 1+ 1+
ki > 2 ke =k =0: Pr00) = Piri-100%1 = Pk 2000 = 2Pri-1.1,0)
_ I+ _ pll+ 1+
k]_ — 1 > kQ > kg - 0 . P(kl,k‘z,o) — ,P(k1717k2,0)X1 - P(k172,k2,0)

I+ I+ I+
_P(krl,kQH,o) P(krl,krl,o) P(qu,kg,l)

. I1,+ o I+ 1T+
kl — 1 >, k2 — kg > 0 . P(kl,kg,kQ) — P(k‘l*l,kQ kZ)X - P(k‘172,k2,k‘2)

11+ I+
- 273(’6171,]624’1 k’2 273 kl 1,ko,ko— 1)

_ II+ I+ II+ II+
ki —=1> ke > ks >0 Poii i = Pl Stkaks) X1 = Py “2kaks) — Pl —1kat1ks)

I1,+ I1,+ I1,+
P(k1—177€2—1,k3) P(k1—17k27k3+1) ,P(k’1—17k27k’3—1)

, II+ II+ II+

ki —1=ky>ks=0: P(kl,kl 1,0) P(kl 1ki—1 o P(kl—l,k1—2,0)
L+
- §’P(k171,k171,1)
1

. II+ _ II+ II+

ki—1l=ky>ks>0:  Pulh 1k = 3P0 -10-1k)%1 ~ Plti—10-20)
1
II+ pIlL+

- ip(klfl,klfl,k:ri»l) - 5 (klfl,klfl,kgfl)

1
) II+ o II+ I1,+
ki —1=ky=ks>0:  Puli 1p-1)= gP(kl—l,kl—Lkl—l)Xl = Pl Stk —1 41 —2)
) H,+ II+ II+
II+ II+ II+
_P111 X1+P000 +57D110
II+
+ P (2,1,1)
) II+ _ I+ II+
k’l = k’g > 2, k’3 =0: P(k17k170) = 27)(’(:1 Lki—1 0) — 2P (k1—1,k1— 20)X
11+ II+ II+
- 73(1<;1 1,k1—1,1) X1+ P(kl 2,k1—2,0) + 3P (k1—1,k1—1,0)

I11,+ 11,4+ 11+
+2Pk‘1 1,k1—2,1) +2Pk1 1,k1—3,0) +Pk1 1,k1—1,2)
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. II+ _ II+ II+
ki =hy>ks+2>2: Pyl e = 2P0 0k ks X2 = 2P0 gy o s X1
II+ II+
- 73(1c1—1,1<;1—1 k:3+1)X - P(k1—17k1—1,k3—1)X1
II+ II+
+ P(kl 2,k1—2, k:g) + 2P kl 1,k1— 2,k3+1)
II+ I+
+ 2P (k1—1,k;—2,k3—1) + 4P (k1—1,k1—1,k3)
II+ II+
+ 2P kl 1,k1—3, k3 + P kl 1 kl—l,k3+2)
II+
+P (k1—1,k1—1,k3—2)
2
. Ir+ II+ II+ II+
I1,+ II,+ 11+
_P(2,20X1 +P111 +5P221
II+
_ _ . II+ o II+ II+
kl - kQ - k3 + 2 > 3 . P(k1,k1,/€1—2) - 2P(k1—1,k1—1,/€1 2) 27) k1—1 k1—2,k1—2)X1
2 II+ II+
- gp(kl—l,kl—l,kl—l)Xl - P(kl—l,kl—l,kl—S)Xl

IT+ I+
+Pk1 —2,k1—2,k1 —2) + 5P (k1—1,k1—1,k1—2)

IT+ I+
+ 4P (k1—1,k1—2,k1—3) +P (k1—1,k1—1,k1—4)

2
kl = ]{?2 = kg +1=2: P(I;;_l) - _P(Illf_l X2 - P(l 1 O)Xl

17+ 11+
+P100 +P111

. 11,+ 11+ 11,+
kl = k2 = k3 + 1 > 2 ° P(kl,kl,kl 1 P(kl—l,kl—l,kl—l)Xz - P(kl—l,kl—l,kl—Q)Xl

11+ 11+
+ P(kl—l,kl—Q,kl—Q) + P(kl—l,kl—l,kl—l)

11+
+ P(kl—l,kl—l,k1—3)

4
) T+ II+ II+ II+
by =ky = ks =2 Plazsy = 5Pl Xs — 6Py X2 + 3Py X

11+ I+ I+
+ 2P(1,1,1)X1 - 73(0,0,0) - 6P(1,1,0)

4
) I+ _ 2500+ 11+ 11+
ki =ky=ks=3: 73(333) = 573(222))(3 — 673(221))(2 +373211
II II II,
+ 2P (2 2+2 X1+ 3P (2 2+0 P(l,l—t—l)

I+ I+
- 9P(2,2,1) - 6P(2,1,0)
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11,+ _ 4 11,+
P(k‘1,k1,k‘1) - SP(kl—l,k‘l—

I1,+
+ 3P(k‘1—1,k1—2,k‘1—2
+3P

k1:k2:k3>32

I1,+
(k‘l—l,k1—1,k‘1—3
I1,+
- 9P(k1—1,k1—1,k1—2

11+
X3 - 67D(k1—1,k1—1,k1—2)X2

1,k1—1)
1+
VX1 2P k1 X
I+

X~ P

11+
) 6P(k1 —1,k1—2,k1—3)

(k1—2,k1—2,k1—2)

I1,+
- 37D(k1—1,k1—1,k1 —4)’

which are obtained by the generalized trigonometric identity (15).
This gives the full set of recurrence relations which one can use to obtain exact form
of polynomial with specific k. For k < (2,2, 2) the polynomials are:

1 4
II,+ . 2
Paoo) = §X1 — ng -1,
1 1 )
I+
73(2,1,0) - §X1X2 — §X1 — §X3’
4 2
J
P(Q,l,l) - §X1X3 — §X27 (17)
11,4+ 2 2 4 2 4 4 8
7)(2,270) = §X1 - §X2 — §X1X2 —+ §)(1)(3 + §X2 +1,
I+
oy = T3 XXz £ g XXy + 2 X+ 2,
16 8
Plasay = Xi — 4X5 + n 3+ S X1X —4X5 — 1.
From the knowledge of first ten polynomials one can see that the polynomial 73(115122 k)

is of order k; which can be proven generally.

5 Conclusion

We have shown the possibility of generalization of the Chebyshev polynomials of the
second kind by use of symmetric multivariate sine function. Continuous orthogonality
of these polynomial should follow the continuous orthogonality of generalized Chebyshev
polynomials of the first and the third kind done in [5]. The antisymmetric generalization
of the Chebyshev polynomials of the second kind and generalization of the Chebyshev
polynomials of the fourth kind should follow similar procedure and is question of future
work.

One should also be able to obtain cubature formulas for these new polynomials of
several variables with use of generalized discrete multivariate trigonometric transforms.
The cubature formulas for multivariate Chebyshev polynomials of the first and the third
kind were already done in 5] with use of symmetric and antisymmetric discrete multivari-
ate cosine transforms (SDMCT and ADMCT). The cubature formulas for multivariate
Chebyshev polynomials of the second and the third kind is yet to be done.
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Abstract. Microscopic studies recently published by our group [1][2][3][4][5] describe in detail
many factors affecting motion of individuals though a bottleneck. The implementation of het-
erogeneous behavior into the most popular cellular automata model [6]|7] closed this chapter
and we focused to more complex structures.

The process of merging pedestrian streams emerging from simple rooms belongs to the most
important parts of evacuation process. While the dynamic of motion inside a room is given
mainly by individual preferences, the joining to the crowd and passing a bottleneck operates
as a synchronization unit. Then, the stream of egressing pedestrian may be characterized by
collective quantities until the individual motion due to the geometry or actual situation prevails
the advantages of the cooperative process.

This phenomenon affects measurable quantities in several situations. The first insight was
provided within the leave the room experiment (E4) [8][9], where the two meters long narrow
corridor followed the exit with similar width. As implies from the mass conservation law,
measurements of low brought the same results along all corridor, but the time headways revealed
lower variance with increasing distance from the exit.

The effect of synchronization on tree structure was tested under the egress experiment (E5)
the spring 2016. Pedestrians’ camming within one of four asynchronous streams arrived to one of
two parallel bottlenecks that led to central room with one main exit. The observations confirmed
expected effect, the decrease of variance was observed on each level of the tree structure [10].

This experiment is interested even from the general point of view. Similar experiment was
organized even by our colleagues from Krakow and both geometries were implemented in to our
variant of cellular automata model and into polish Social distance model. Detailed comparison
of all result sets is summarized in [11], in general we can say that our model fits well both
experimental data, even without non-standard calibration. Only the time step was calibrated
to fit the door with.

The challenge of estimations on complex structure is the real time recalibration, i.e. the
usage of measured performance in one segment for short time prediction of performance in
consecutive node. Assuming the knowledge of time distance between the nodes and the constant
capacity of bottlenecks, the estimator based on queuing theory was constructed. As shown the

*GACR 15-15049S & SGS15/214/OHK4/3T /14
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results evaluated for mentioned design E5, this simple model is more correct than expected [12].
The main drawdown is the constant capacity — as shown before [2], the capacity of bottleneck
is increasing with the size of the crowd.

The concept of synchronization was tested even on the dataset collected within the large
evacuation experiment of City Elephant train unit [13], where we contributed by data analysis
under the developed cooperation with the Faculty of Civil Engineering CTU. The significantly
higher exit door width enabled comfortable passing of two persons simultaneously, therefore the
study focused on the merging the streams from top and bottom floor. With respect to the exit
area geometry, the evacuation process was very asymmetric, the top floor passengers left the
train the last bottom floor participants. This feature implies ineffective load of the main exit
and therefore to higher evacuation time [10].

Even with many conclusions summarized in mentioned publications, this research is not
finished. Upcoming work covers the application of advanced statistics and development of more
sophisticated queuing theory model.

Keywords: pedestrian dynamics, egress experiments, synchronization

Abstrakt. Mikroskopické studie dynamiky davu, které jsme publikovali v poslednich letech
[1]12][3][4]|5] do detailu popisuji faktory, které ovliviuji pohyb rtznych jednotlivei jednim
zizenym mistem. Implementaci heterogenniho chovani do nejéastéji vyuzivaného celularniho

Mezi typické prvky evakuaéniho procesu patii bezesporu proces slu¢ovani nékolika proudii
chodci, ktefi vychazeni z jednotlivych mistnosti. Zatimco dynamika je v téchto mistnostech
dané pfevazné individuilnimi parametry, zapojeni se do davu a priichod ziizenym mistem pisobi
jako synchroniza¢ni prvek. Vystupni proud chodct je pak charakterizovatelny kolektivnimi
veli¢inami az do doby, nez u jednotlivcli z divodi geometrie ¢i aktualnich podminek prevazi
soutézivé chovan nad potencialni vyhodou individualniho postupu.

Tento jev ovliviiuje méFitelné veli¢iny v riznych situacich, prvotni pozorovani jsme provedli v
ramci experimentu opusténi mistnosti (E4) [8][9] kde za tzkym prichodem nésledoval dvoumet-
rovy koridor obdobné sitky. Jak vyplyva i zdkona zachovani hmoty, méfeni toku na riznych
mistech koridoru pfinéselo stejné vysledky, ale méfené c¢asové odstupy vykazovaly nizsi rozptyl
s rostouci vzdalenosti od vychodu.

V ramci experimentu E5 realizovaném na jare 2016 byl efekt synchronizace vyhodnocovan
na stromové struktufe. Chodci pfichéazeli ve ¢tyfech nesynchronizovanych proudech ke dvéma
pruchodim, které vedly do centralni mistnosti s jednim vychodem. Pozorovani potvrdilo oceka-
vany efekt, pokles rozptylu ¢asovych odstupt nenastal pouze pii porovnani neuspordadanych
vstupu ¢tyTt proudi s vystupy prvni trovné, rozptyl odstupt mérenych na hlavnim vystupu byl
jesté nizsi [10].

Tento experiment je zajimavy i z pohledu procesu evakuace obecné. Pro srovnani byl prove-
den obdobny experiment polskymi spolupracovniky a obé feSené geometrie byly implementovany
do naSeho jiz dfive predstaveného CA modelu a polského modelu Social distance. Podrobné
srovnani vSech ¢tyt sad vysledku je shrnuté v ¢élanku [11], obecné lze Fici, Ze nas model bez
specidlni kalibrace dobfe odpovid4 experimentilnim dattim. Jedinym zasahem byla tprava
¢asového kroku v zavislosti na rtizné $ifce dvefi.

Vyzvou pii odhadovani na komplexni struktufe je moznost vyuziti pozorovani predchozich
uzlech pro predikci stavii na uzlech nasledujicich. Za predpokladu zndmé ¢asové vzdalenosti mezi
jednotlivymi uzly a konstantni kapacité prichodt dané pouze jejich sitkou je mozné zkonstruovat
deterministicky model zaloZeny na teorii front. Jak ukazuji vysledky vyhodnocené pro vysSe
popsany design E5, tento jednoduchy model je prekvapivé aspésny [12]. Hlavnim nedostatkem
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je pravé konstantni kapacita — jak jsme ukéazali diive [2], s velikosti davu dochézi k néristu
toku.

Koncept synchronizace pfi slu¢ovani toku byl testovan i na datech z rozsahlého experimentu
evakuace vlakové jednotky City Elefant [13], na jehoZ vyhodnoceni jsme se podileli v ramci
navézan4 spoluprace s FS CVUT. Vyrazné vyssi §itka vystupnich dvefi umoziovala pohodlny
pruchod dvou osob soucasné, proto byla studie zaméfena vice na dynamiku slu¢ovani skupin
z horniho a dolnfho patra. Vzhledem ke geometrii prostoru kolem vystupu probihala evakuace
velmi asymetricky, v nékterych scénérich se prvni zastupci horni skupiny dostali ven aZz poté,
co vlak opustili posledni spodni chodci. Tato varianta vede k neefektivnimu vyuzivani vychodu
a tedy vy$8imu evakua¢nimu ¢asu [10].

Pfes mnoho zavért shrnutych v uvedenych publikacich jesté neni vyzkum tohoto tématu
ukoncen, dalsi prace zahrnuje aplikaci pokrocilejsich statistik a vyvoj pokrocilejstho modelu
zaloZeného na teorii front.

Klicovd slova: pohyb chodci, evakuacni experimenty, synchronizace

References

[1] M. Bukacek, P. Hrabédk and M. Krbélek, Experimental Analysis of Two-Dimensional
Pedestrian Flow in front of the Bottleneck, In: "Traffic and Granular Flow "13" (2014),
93-101.

[2] M. Bukacek, P. Hrabak and M. Krbalek, Ezperimental Study of Phase Transition in
Pedestrian Flow, In: "PED 2014 Proc.’, Transportation Research Procedia 2 (2014),
105-113.

[3] P. Hrabéak, M. Bukacek and M. Krbalek, Cellular Model of Room Evacuation Based on
Occupancy and Movement Prediction, Comparison with Experimental Study, JCA 8
(2013), 383-395.

[4] M. Bukacek, P. Hrabak and M. Krbélek, Cellular Model of Pedestrian Dynamics with
Adaptive Time Span, In: 'PPAM 2013 Proc.”, LNCS 8385 (2014), 669-678.

[5] M. Bukacek and P. Hrabak, Boundary Induced Phase Transition in Cellular Automata
Models of Pedestrian Flow, JCA 11/4 (2016), 327-338.

[6] M. Bukacek and P. Hrabak, Conflict Solution According to Aggressiveness of Agents
in Floor-Field-Based Model, In: "PPAM 2015 Proc.”, LNCS 9574 (2016), 507-516.

[7] P.  Hrabdk and M. Bukacek, Influence  of  Agents  Heterogene-
ity in  Cellular  Model of FEvacuation, JCS, accepted. Available at:
http://dx.doi.org/10.1016/j.jocs.2016.08.002

[8] P. Hrabak, M. Bukacek and M. Krbalek, Individual Microscopic Results Of Bot-
tleneck FEzperiments, In: ’Traffic and Granular Flow ’15’, accepted. Available at:
https://arxiv.org/abs/1603.02019

[9] M. Bukacek, P. Hrabak and M. Krbalek, Microscopic Travel Time Analysis of Bot-
tleneck Experiments, Transportmetrica A, under revisions.



18 M. Bukacek

[10] M. Bukacek, H. Najmanova and P. Hrabak, The Effects of Synchronization of Pedes-

trian Flow through Multiple Bottlenecks — Train Egress Study, In: "PED 2016 Proc.’,
accepted.

[11] P. Hrabék, J. Porzicky, M. Bukacek at all, Advanced CA Crowd Models of Multiple
Consecutive Bottlenecks, In: "ACRI 2016 Proc.”; LNCS 9863 (2016), 396-404.

[12] J. Porzicky, P. Hrabak and M. Bukacek at all, Data driven method of pedestrian flow

estimation for evacuation scenario using queuing model, In: "EG-ICE 2016 Proc.’,
accepted.

[13] H. Najmanova, P. Hejtméanek and M. Bukacek. Po¢rni bezpecnost osobnich kole-
jovych vozidel: Analyza evakuace osob z dvoupodlazni jednotky CityElefant, In:
"Pozéarni ochrana 2016’ (2016), 294-301.



On the Investigation of Julia Sets
Using Rotational Spectrum®

Martin Dlask

1st year of PGS, email: martindlask@centrum.cz
Department of Software Engineering
Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

advisor: Jaromir Kukal, Department of Software Engineering
Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

Abstract. The correlation dimension is one of many types of fractal dimension. It is usually
estimated from finite number of points from fractal set using correlation sum and regression
in log-log plot. However, this traditional approach requires a large number of data and often
leads to a biased estimate. Our novel approach employs the spectrum of point set which is
averaged via rotation of power pattern. Resulting spectral characteristic was proven to have
suitable properties in infinite-dimensional space. The theoretical results can be directly applied
to uniformly distributed samples from given point set. The efficiency of proposed method was
tested using Monte Carlo simulation on the sets with known correlation dimension. Additionally,
the correlation dimension of Julia sets is experimentally calculated.

Keywords: point set, correlation dimension, power spectrum, rotation, Monte Carlo

Abstrakt. Korela¢ni dimenze predstavuje jeden z mnoha typu fraktalni dimenzi. Nejcastéji
se odhaduje z kone¢ného poctu datovych bodua z fraktalni mnoziny pomoci korela¢ni sumy a
regrese v log-log grafu. Tento tradi¢ni pristup vyzaduje velké mnoZstvi dat a Casto vede k vy-
chylenym odhadtim dimenze. Novy prezentovany piistup vyuzivid vykonového spektra bodové
mnoziny které je primeéroviano pies vSechny mozné rotace. Prokazalo se, Ze vysledné spek-
tralni charakteristika méa vhodné vlastnosti v pifipadé rotace v nekone¢né-rozmérném prostoru.
Efektivnost metody byla testoviana metodou Monte Carlo na mnozinach se znamou korela¢ni
dimenzi. Déale byla metodika pouzita pro experimentalni odhad korela¢ni dimenze Juliovych
mnozin.

Klicovd slova: bodova mnozia, korelaéni dimenze, vykonové spektrum, rotace, Monte Carlo

1 Introduction

Correlation dimension Ds is a popular tool for fractal dimension estimation and belongs to
the family of entropy-based fractal dimensions such as capacity dimension Dy, information
dimension D; and their generalization Renyi dimension D, for o > 0.

Traditional approach of correlation dimension estimation is based on Grassberger
and Procaccia algorithm and is widely used in biomedicine for EEG signal analysis [13,
12| or in cardiology [7]. Recently, new approaches of correlation dimension estimation
were presented using weighting function [9] or methods suitable for high-dimensional

*This work has been supported by the grant SGS14,/208/0OHK4/3T/14.
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signals [10]. The linear regression model, on which the majority of methods are based,
provides often biased estimate of fractal dimension, and therefore there were some efforts
of improving this procedure in [6].

In this work, we present a novel approach of correlation dimension estimation that
is based on rotation of the power spectrum of point set. The proposed method is stable
even for small amount of points and the resulting characteristic has smooth development.

2 Correlation Dimension

The correlation dimension, introduced by Grassberger and Procaccia [5, 4] employs in its
definition measuring the distance between all pairs of points in the investigated set. For
arbitrary set F C R", the correlation sum is defined for » > 0 as the limit case

Ofr) = Jim s ;j;luuwi ) <) 1)

where ||.|| denotes Euclidean norm that is rotation invariant, I is the indicator function and
xq,...,xy are vectors from F. Due to the fact, that the correlation dimension expresses
the relative amount of points whose distance is less than r, the correlation sum can be
rewritten as
Crr)=_ E_ I(x-y[<r)= prob (Jlz—y|<r), (2)
z,y~U(F) z,y~U(F)
for @,y that are uniformly distributed on F. Therefore C(r) is cumulative distribution

function of random variable r = ||z — y||. The correlation dimension Ds of set F is based
on correlation sum and is defined as

Dy = lim M, (3)
r—0+ Inr

if the limit exists.

3 Continuous Spectrum of Point Set

The Fourier transform of n-dimensional set F C R"™ is defined using operator of expected
value [3] as

F(w) = xw{]}:‘?ﬂ exp(—iw - x) (4)

for angular frequency w € R™ and for & uniformly distributed on F. The power spectrum
of set F equals P(w) = |F(w)|® = F(w) - F*(w), where F* is complex conjugate of F.
Moreover, it can be expressed as

W) =_ & tneetiw - ajepliv-y)= & ep(-iw-(z-y), [©)
where & and y are iid from F. The power spectrum is frequently used for fractal set
investigation [14, 15, 1]. When the research is physically motivated, it is usual to denote
the angular frequency as w = 27/ for wavelength A of x-ray or light beam.
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4 Rotational Spectrum

The goal of novel method is to obtain one-dimensional function as a derivate of the power
spectrum that is useful in fractal analysis. The procedure is inspired by Debye [2] and
his x-ray diffraction method that is often referred as Debye-Scherrer method. We denote
SO(n) as the group of all rotations in R™ around origin. Because any rotation R € SO(n)
is linear transform, the following equation holds

R(z) —-R(y) =Rz —y) = lz —y| - &, (6)

where £ is direction vector satisfying ||&]| = 1 and & € S, for n-dimensional sphere
Sn-1 = {x € R": ||| = 1}. Using factorization of angular frequency w = Q - 4 for
Q € Ry and normalization vector 1 € S,,_1, we can define rotational spectrum as

S = E E E  exp(—iQyR(z —vy)), (7)

ReSO(n) YESn-1  z,y~U(F)
which can be expressed explicitly.

Theorem 1. Rotational spectrum can be expressed as

S@) = B_H(@e-y) ®)
where o
272 - I'(Z
H,.(q) = T(Q)J";(Q)' (9)

Proof. Due to the fact that every rotation is linear transform, we can rewrite the rota-
tional spectrum as

S(Q) = E E  exp(—-iQ||xz — -£). 10
@)= B e op(=ilz—ylv-£) (10)
The angle v between vectors @ and £ satisfies cosv = 1 - £&. Without loss of generality,
we can set & = (1,0,0,...,0) and rewrite the rotational spectrum as
S = E_ H,(Qlz-yl) (11)
T, yeF

where function H,, : R — C is defined as

H,(q) = wesE,l exp(—igcosv) (12)
Y1=cosv

For n = 1 we obtain a degenerated rotation together with v € {0, 7}, therefore the kernel
function H; equals

exp(—1iq) + exp(iq
) = P+ expl)

In case n > 2 we can express the kernel function using integral formula

= C0sq. (13)

Li(g) J; exp(—igcosv)sin"? v dv

H, = - T .
(4) I (q) Jy sin" v dv

(14)
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Poisson integral [8] formula for Bessel function J,(¢) of first kind in the form

_ ) . -
Jp(q) = W/o exp(—ig cosv)sin® v dv (15)

allows to rewrite the integral in nominator as

Il (p+3) V7

Il(Q) - (g)p ) (16)
2
whereas the integral in denominator is a limit case of Poisson formula
Jp(@)T (p+ 3 I'(p+1

o0 97 T+

For p = “T_Q we obtain the final form of kernel function expressed by Bessel function J,(¢)
as

27" . T (2
Ha(q) = —(Q)Jn n2(q). (18)
q 2
Applying H,,(q) for n = 1 we obtain H;(q) = cos q as a particular case which extends the
formula (18) range to n € R. O

The rotation can be performed in any space which dimension n is not less than the
dimension m of original space of 7. When the dimension of rotation is greater than m,
any vector € F is completed with zeros for the remaining n — m coordinates to have
sufficient length. The most valuable result can be obtained in the case of rotation in
infinite-dimensional space.

Theorem 2. The scaled limit case of kernel function H,, is the Gaussian function i.e.

Tim H, (y/n) = exp (—g) . (19)

Proof. For the investigation of behavior of kernel function when n — oo we use Taylor
expansion of H,(q) centered at gy = 0

i I :k K (‘qZ?)k’ (20)

k=0

using substitution ¢ = t4/n it can be transformed into

For every k € N it holds that
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therefore the limit case of kernel function equals

n—oo 2

lim H,,(tv/n) = exp (-ﬁ) (23)

For simplicity, we use this notation in the following sections

Hoo(g) = exp (—q;) : (24)

5 Relationship to Correlation Dimension

In this section we discuss the relationship between the rotational spectrum for limit
kernel H,, and the correlation dimension. The correlation sum is cumulative distribution
function of the distances between the points in the fractal set, therefore the rotational
spectrum can be written as Stieltjes integral

3(Q2) = /O T H (Qr)dC(r) = /0 T exp (— 9227"2) dc(r) (25)

After the application of integration by parts one obtains

S(Q) = /O T Q2rexp (—er2> C(r)Qdr (26)

and substituting & = Qr we get the integral formula for rotational spectrum

s = [ e (g) exp (—%) a @27)

Theorem 3. Let F C R" be arbitrary set with rotational spectrum

S = E_Ha(@lle - y) (28)

@,y~U(F)
and correlation dimension Dy (3) exists. Than it holds that

lim In S(Q2)

Q=00 In§

= —D,. (29)

As a general remark, we could consider other kernel function instead of H,,. For any
non-increasing function ® : RY — [0;1] satisfying ®(0) = 1 and ®(c0) = 0 whose first
derivative ®’(¢) exists for any £ > 0, we consider the rotational spectrum in more general
form as

s@=_E_ e@e-yl). (30)

The W function is defined as

(o) = / " e (6)de (31)
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and the existence of limit (29) is guaranteed only if both ¥(Dy+¢) and W(Dy—e¢) are finite
for arbitrary € € (0;€p)s. Another examples of kernel functions could be the generalized
exponential kernel

21(6) = exp (—%) (32)

for 8 > 0 or inverse polynomial kernel

By€) = % (33)

where P(§) represents polynomial of order M > Dy + 1.

6 Method of Estimation

The spectrum S(€2) is studied only for Hy, kernel. The simulation of rotational spectrum
is based on generating point pairs using Monte Carlo approach. The points are indepen-
dently and uniformly sampled from analysed set F. For N € N fixed and x;,y, ~ U(F),
the rotational spectrum is estimated as

N
~ 1
5(9) = v 3 Hae (2~ 1) (34)
j=1
including variance estimate
_ 1 & N2
varS() = +— ; (Hao (s — y,ll) = S() (35)

To take advantage of linear dependence between logarithm of rotational spectrum and
the logarithm of distance, it is reasonable to consider model

InS(2) =A—Dy-In Q+e. (36)

The estimation of parameter D, is based on the maximum likelihood method using L,
regression with minimization criterion

N
CRIT = Z |y — f(zx, a)]” (37)
k=1

for p > 1 and general model formulated as y = f(x,a). In our case, the minimization
criteria satisfy

N
CRIT, =Y ‘m S() — A+ Dol (38)

k=1
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7 Application to simulated data

The main feature of proposed methodology is its smoother dependence of spectrum on 2.
We test this property on parametrized Cantor set with well-known Hausdorff dimension.
Moreover it is possible to compare the correlation dimension estimate from rotational
spectrum approach and traditional correlation sum. At first, the linear regression with
least squares minimization criterion was used to fit the model. However, the results were
biased for larger number of data points as can be seen from table 1, where sd is the
standard deviation of the estimate. To avoid the bias, we decided to use L, regression for
rotational spectrum fitting using maximum likelihood method. Numerical experiments
have proven that any order p > 4 is appropriate to fit the model. Therefore we consider
L4 regression for the estimation of correlation dimension. Table 2 presents the results
for different number of point pairs M. The estimates of D, based on L, regression are
unbiased both for correlation sum and rotational spectrum. However, the variance of
spectrum based estimates rapidly decreases with M.

Table 1: Cantor dust analysis using linear least squares fitting.
correlation sum rotational spectrum

M Dy sd p-value Dy sd p-value
103 | 1.2254 0.0648 0.2868 1.2501 0.0323 0.3579
10* | 1.2392  0.0202 0.1310 1.2689 0.0183 0.3502
10° | 1.2513  0.0039 0.0034 1.2592  0.0030 0.1915
10° | 1.2599 0.0005 4.44-107° | 1.2601 0.0003 1.54-10~"

Table 2: Cantor dust analysis using L.
correlation sum rotational spectrum
M D,y sd p-value D,y sd p-value
10° | 1.2941 0.1178 0.3922 | 1.2378 0.1010  0.4059
10* | 1.2937 0.0803 0.3459 | 1.3019 0.0470 0.1971
10° | 1.2341 0.0574 0.3143 | 1.2618 0.0100 0.4976
10° | 1.2654 0.0474 0.4702 | 1.2609 0.0076  0.4498

It is also possible to estimate the rotational spectrum for finite rotation using kernel
functions H,, for n € N. The comparison of kernels that can be used for rotation of power
spectrum is displayed in figure 1 for Hy, H3,H4 and H,,. The traditional Sierpinski carpet
was used for this simulation.

8 Julia set correlation dimension

Julia set [11] is two dimensional set dependent on parameter ¢ € R. For each complex
number z it is possible to define sequence {f,(c, z)};ri% in the following way

fo(c,2z) = z, (39)
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Figure 1: Rotational spectra of Sierpinski carpet.
fn-‘rl (Cu Z) = fEL(Ca Z) tc (40)
for n € Ny. Respective Julia set 7. is the set of points satisfying
Jc:{feRQ:xlzRez,xQZImz,zea’Hc}, (41)
where 0H., is the boundary of
He = {z € C: lim [f,(c,2)] < oo} . (42)
n—o0

There is no explicit formula for the Hausdorff dimension of Julia set dimy 7., however,
for certain parameters ¢ is the dimension theoretically or numerically calculated with
high accuracy. The correlation dimension was estimated for selected parameters ¢ and
the results are shown in Tab. 3. Parameters (,;, and $2,.. are the lower and upper
boundary for the regression, respectively.

Based on numerical results, the simulation proved that the estimation of correlation
dimension of Julia set doesn’t agree with the theoretical Hausdorff dimension for any
dimension greater than one. Additionally, there is no interval in which the regression
line would have slope with theoretical dimension. This experiment was performed for
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Table 3: Correlation dimension of Julia set.
c dimy J. l/)\g sd log1o Qmin | 10810 Pmax
1/4 1.0812 | 0.9949 | 0.0282 0.5 1.5
-1 1.2683 | 1.0416 | 0.0504 0.0 1.0
i/4 1.0232 | 1.0031 | 0.0341 0.5 1.5
-5 0.4848 | 0.4652 | 0.0542 0.0 2.0
—20 0.3185 | 0.3364 | 0.0741 3.0 7.0
—3/2+2i/3 | 0.9038 | 0.8931 | 0.0755 3.0 4.0

M = 10°, however further investigations for M = 10° and M = 107 led only to the
decrease of standard deviation and the estimate remained with unit value. This result
does not necessarily have to be in conflict with theory, because there is no proof that the
Julia set satisfies the open set condition. It this condition is not met, than the theoretical
correlation dimension can be lower than Hausdorff dimension. Based on these results one
can hypothesize that the correlation dimension of Julia set fulfils

Dy = min{1, dimy J.}. (43)

9 Conclusion

Asymptotic behaviour of rotational spectrum was investigated under the assumption of
D, existence. Rotation in infinitely-dimensional space is recommended for the correlation
dimension estimation which is based on Monte Carlo simulation. As stated previously,
there is a significant difference between traditional correlation integral behaviour and
rotational spectrum that can be seen on the basis of log-log plot. The effect of spectrum
stabilization for n — oo is also useful for D, estimation from relative small uniform
samples. However, the proposed method has one disadvantage in experimental choice
of frequency range for regression as in the case of traditional approach. In the end, the
Julia set was investigated and based on numerical results, new hypothesis for correlation
dimension was presented, stating that the correlation dimension cannot exceed unit value.
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Abstract. The last years were marked by considerable progress in finding the Bethe vectors
for the higher rank (super)algebras. The Bethe vectors for the superalgebras gl(2|1) and gl(1|2)
were found in [6] and used to calculate the form factors of the monodromy matrix elements
[4]. This gives an opportunity to calculate the correlation functions for models with such
the supersymmetry, like the t-J model known from the condensed matter physics. The next
necessary step is to find the correlation functions for local operators. In models for which is
known the solution of the quantum inverse scattering problem [5], such the correlation functions
are reduced to the calculation of the scalar products of Bethe vectors. Unfortunately the solution
is known only for a very specific class of models. However for models which do not possess this
property, it is possible to obtain the correlation functions of some local operators with the help
of the composite model [3|. Our article [1] investigates the composite models with gl(2|1)- and
gl(1|2)-supersymmetry. The main idea is that the interval [0, L], on which the original model
is defined, is divided into two subintervals [0, z] and |z, L]. Consequently the graded space H
of the complete model is divided into two graded subspaces H() and H? corresponding to
[0, 2] and |z, L]. Similarly the monodromy matrix T'(u) is divided into the partial monodromy
matrices T(u) = T (u)T? (u). Nontrivial fact is that the Bethe vectors B € H of the full
model can be represented as bilinear combinations of the partial Bethe vectors B € (1) and
B3 € #(2). We explicitly describe such the representation for the Bethe vectors B € H as well
as for their dual vectors C € H* in [1]. Such the representation allows to compute the form

factors of the partial monodromy matrix elements Ti(f) (u), £ = 1,2, in the basis of the Bethe
vectors of the full model, which is the object of our next publication [2|. Based on this the form
factors and correlation functions of local operators can be investigated.

Keywords: quantum integrable systems; composite model; supersymmetry

Abstrakt. Posledni roky byly poznamenany zna¢nym pokrokem pfi hledani Betheho vek-
torti pro (super)algebry vyssich fada. Betheho vektory pro superalgebry gl(2|1) a gl(1]2) byly
nalezeny v [6] a pouZity pro vypoc¢ty form-faktort matice monodromie [4]. To umoziiuje vypocet
korela¢nich funkei v modelech s takovouto supersymetrii, jako t-J model znamy z teorie pevnych
latek. Dal$im nezbytnym krokem je nalezeni korela¢nich funkci lokalnich operatori. Pro mode-
ly, v kterych je znamo feSeni problému kvantového inverzniho rozptylu [5], se takovéto korelaéni

*This work has been supported by the grant SGS15/215/0OHK4/3T/14.
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funkce zjednodusuji na skalarni sou¢iny Betheho vektort. BohuZel modely tohoto druhu se fadi
do velice uzké t¥idy. Pro ostatni modely je nicméné mozné ziskat korela¢ni funkce nékterych
lokalnich operatorti za pomoci slozeného modelu [3]. V naSem ¢lanku [1] studujeme slozeny
model se supersymetrii gl(2|1) a gl(1|2). Hlavni myslenka spoc¢iva v rozdéleni ptivodniho inter-
valu [0, L], na kterém je model definovan, do podintervala [0,z] a |z, L]. Gradovany stavovy
prostor H celého modelu je rozdglen do dvou gradovanych podprostori () a H?) odpovida-
jicich [0, z] a |z, L]. Matice monodromie 7'(u) se podobné rozpadne do dvou ¢asteénych matic
monodromie T'(u) = T™ (u)T®) (u). Betheho vektory B € H celého modelu jsou reprezentovany
jako bilinearni kombinace Gasteénych Betheho vektora B(Y) € H(M) a B®?) e #(2), coz neni
vibec trividlni skutecnost. V [1] explicitné popisujeme takovouto reprezentaci Betheho vektori
B € H i jejich duélnich vektori C € H*. Tato reprezentace umoziiuje vypocet form-faktori pro
prvky Casteéné matice monodromie Ti(f) (u), £ = 1,2, v bazi Betheho vektorii celého modelu,
coz je predmétem nasi nasledujici publikace [2]. Diky tomu mohou byt studovany form-faktory
a korelacni funkce lokélnich operatori.

Klicovd slova: kvantové integrabilni systémy; slozeny model; supersymetrie
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Abstract. This paper presents the basic support of the Intel Xeon Phi co-processor in the
Template Numerical Library. This library is developed at the Department of mathematic at the
FNSPE. Firstly, two approaches how to copy an object to the co-processor are shortly presented.
Then, the heat equation problem is introduced. Finally, computation times of the heat equation
problem for a single core of processor and for the co-processor are measured and compared.

Keywords: Intel Xeon Phi, MIC, Offload, TNL

Abstrakt. V této praci prezentujeme uspésné zakladni kroky v pridani podpory koprocesoru
Intel Xeon Phi do numerické knihovny Tempate Numerical Library, ktera je vyvijena na katedfe
matematiky FJFI. Kratce zde popisujeme dva zptsoby kopirovani objektu na tento koprocesor.
Jejich rychlost v porovnanim s rychlosti na jednom jadie procesoru je zméfena na tloze vedeni
tepla, ktera je zde také predstavena.

Klicovd slova: Intel Xeon Phi, MIC, Offload, TNL

1 Uvod

Intel Xeon Phi je moderni koprocesor vyvinuty firmou Intel. Jeho architektura je nazvana
Many Integrated Core (MIC), tak se ¢asto zkracené oznacuje i tento koprocesor. Hard-
warové je tento koprocesor rozsifujici karta do PCle 16x slotu a obsahuje 60 vypocetnich
jader s ¢tyinasobnym hyperthreadingem, disponuje tedy 240 vypocetnimi vldkny. Déle
obsahuje 8 GB rychlé operacni paméti RAM pfipojené vicekandlovym fadi¢em umoznu-
jicim pfenosové rychlosti az 320 GB/s [1]. Softwarové tato karta funguje jako samostatny
pocita¢ s minimalistickym operacnim systémem GNU /Linux, ktery je k hostitelskému
pocitaci pfipojeny pres virtualni sitové rozhrani.

Cilem nasi prace je pridat podporu tohoto koprocesoru do Template Numerical Lib-
rary (TNL), numerické knihovny vyvijené na katedie matematiky na FJFI. Tato knihovna
v soucasné dobé podporuje procesory (CPU) a grafické karty firmy nVidia s technolo-
gii CUDA (GPU). Pomoci Sablon jsou implementovany zékladni i pokrocilé objekty pro
rizny hardware, coz umoznuje pouhou zménou Sablonového parametru zmeénit hardware,
na kterém tuloha bude pocitana, bez dalSich zasaht do kddu.

Experimentalné jsme implementovali zdkladni datové struktury pro MIC a dale expli-
citni Eulertiv fesi¢ obycejnych diferencialnich rovnic ve dvou dimenzich. Soucasti knihovny
TNL je testovaci tloha Tesici rovnici vedeni tepla. Na této tiloze jsme ovérili, ze je po-
tfeba jen minimum zmén v kédu vyuzivajicim tuto knihovnu, a porovnali jsme vykon
této jednoduché tlohy napsané pomoci knihovny TNL na CPU a MIC.
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2 Testovaci tloha

Testovaci tloha, ktera je soucasti knihovny TNL jakozto pfiklad, je rovnice vedeni tepla.
Zde ji budeme definovat ve dvou dimenzich. Necht 2 = (0, X;n4z) X (0, Xpnaz) j€ Ctvercova
dvourozmeérnd oblast a J je ¢asovy interval od casu 0 do koncového casu ty. Problém
vedeni tepla mtizeme definovat jako rovnici (1) s Dirichletovymi okrajovymi podminkami
(2) — (5). Pocatecni podminka je tvaru (6).

%_Au:o v QxJ. (1)
U|z—p = 0 na (0, Yna) X J, (2)
uly=o =0 na (0, Xpnae) X J, (3)

Ulp—x,,,, =0 na (0,Ye) X J, (4)

uly=y,, =0 na (0, Xpaz) X J (5)
Uli=0 = Uini v oL (6)

Na prostorovém intervalu Q definujme ¢tvercovou sit N x N uzld s prostorovym
krokem h = X,,4./N. Déle definujeme mnozinu vnitinich uzli sité w jako

w={v,li=1,...,N—1, j=1,...,N—1}.

Prostorové soutfadnice bodu v; ; jsou [ih, jh]. Oznac¢me 7 asovy krok a k ¢asovou hladinu.
Cas k-té ¢asové hladiny je ¢, = k7. Definujme mnozinu vsech ¢asovych hladin jako

r={ir k=0, %] 41},
T

Daéle zavedeme sifovou funkei @ : @ x I — R aproximujici funkci u a oznadime

uﬁj = ﬂ(vi,j, tk)

Za téchto podminek ma Eulertv fesi¢ rovnic (1)—(5) tvar

k+1 _ Kk k k
ij = Wi

1

UO’J: na (07...,N)><] (8)
ufy =0 na (0,...,N)xI, (9)
uy,; =0 na (0,...,N)x I (10)
uiy =0 na (0,...,N)x I (11)

Pocatecni podminku nacita knihovna TNL ze souboru. Pro generovani souboru poca-
tecnich podminek poskytuje knihovna generatory nékolika zakladnich funkci. Pro nasle-
dujici experimenty jsme zvolili po¢ateéni podminku tvaru u;,; = sin(x) cos(y).
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3 Implementace

Prestoze koprocesor Intel Xeon Phi softwarové tvoii samostatny pocitac, firma Intel vy-
vinula rozsifeni jazyka C/C++, které umoziuje spoustét oznacené ¢asti kédu na tomto
koprocesoru, i kdyz zbytek bézi na hlavnim procesoru. Tyto ¢asti se nazyvaji offload [2].
Pro vytvareni offloadi existuji dvé syntaxe, jedna je vyvinuta ryze firmou Intel, druha
je soucasti pozdéji vydaného standardu OpenMP 4.0. V ramci portovani knihovny TNL
na MIC jsme vyuzili syntaxi firmy Intel. Narazili jsme vSak na problém s kopirovanim
objekti.

Tato syntaxe umoznuje kopirovat na koprocesor pouze bytewise copyable proménné,
coz jsou proménné zakladnich typti, pole téchto proménnych a struktury slozené z téchto
proménnych. Pfipadné dynamicky alokované pole téchto proménnych. Rozhodné nelze
kopirovat struktury ¢i objekty obsahujici ukazatele nebo objekty které maji konstruktor
¢i destruktor.

Knihovna TNL potiebuje kopirovat objekty, které urcuji typ sité ¢i sitovych entit,
na koprocesor. Nutno dodat, ze knihovné TNL sta¢i mélka (bitova) kopie objektu. Pro
tento problém jsme navrhli postupné dvé feseni. Prvni feSeni pretypuje ukazatel na li-
bovolny objekt, ktery je potieba zkopirovat do pameéti koprocesoru, na ukazatel na pole
proménnych velkych jeden byte (uint8_t). Jako délka pole se nasledné uvede velikost kopi-
rovaného objektu. Druha metoda vytvori pole stejné velikosti jako je kopirovany objekt.
Na CPU tento objekt zkopiruje do paméti, kde je toto nové pole, a néasledné toto pole
prekopiruje na koprocesor. Na koprocesoru pak vytvori ukazatel na danou ti¥idu a naplni
huje rychlejsich vysledkii. Zavérem tohoto odstavce dodejme, Ze toto kopirovani objektt
funguje pouze v pripadé, Ze je objekt stejné velky na procesoru i koprocesoru. Protoze se
architektura procesoru a koprocesoru neni shodna, nemusi to byt zaruceno. Zaroven vsak
jsou si tyto architektury tak podobné, Ze v nasich testech jsme na problematicky pripad
nenarazili.

4 Vykonnostni test

Po Gispésné implementaci jsme provedli vykonnostni test. Jako testovaci sité jsme zvolili
sité rozméru 64 x 64, 128 x 128, 256 x 256, 512 x 512, 1024 x 1024, 2048 x 2048, 4096 x 4096
a 8192 x 8192. Casovy krok 7 byl zvolen 0,00005 s a finalni fyzikalni ¢as 0,04 s. Provedli
jsme tii méreni, prvni je sériovy béh na jednom jadie procesoru, druhé a tieti je paralelni
kéd na koprocesoru Intel Xeon Phi ve dvou diive popsanych implementacich. Métfeni
probihala na nasledujicim hardwaru: Intel Xeon E5-2630 v3 @ 2.4 GHz, ktery pii béhu
na jednom jadre zvysi frekvenci na 3,2 GHz a na Intel Xeon Phi 5110P s 60 jadry na
1 GHz a 8 GB RAM. Vjysledky méreni jsou uvedeny v tabulce 1 a grafu 1.

Z tabulky 2 vidime, ze dosahujeme u vétsich tloh zhruba Sestindsobného urychleni
proti jednomu jadru procesoru. Toto urychleni se vSak s rostouci tlohou jiz nezlepsuje.
To miize byt zptisobeno velkym mnozstvim kopirovani malych objekti, nebo samotnou
vlastnosti dané ulohy. Zajimavym zavérem tohoto meéteni je zvysSeni vykonu pii pouziti
nové implementace kopirovani objekti na koprocesor. Pti kopirovani poli, ktera jsou dy-
namicky alokovana, tedy jsou predavana do offloadu ukazatelem, provadi systém nékolik
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Doba béhu [s]
CPU  MIC MIC old
64 x 64 09 42 184
L 128x 128 37 41 49.1
£ 256 x 256 144 65 48,6
té 512 x 512 26,1 13,8 56,1
21024 %1024 | 2239 4272 87.8
E 2048 x 2048 895,6  147,9 193.,6
4096 x 4096 | 3637,1 611,1 654,7
8192 x 8192 | 14693,8 2567,9 2604,6

Tabulka 1: Doba béhu testovaci aplikace na jednom jadfe procesoru (CPU), na Intel
Xeon Phi v nové implementaci (MIC) a staré implementaci (MIC old) pro rizné velké
sité. Doba béhu je v sekundach.

Urychleni
MIC MIC old
64 x 64 | 021 0,02
o 128x128 | 0,89 0,07
S 256 x 256 | 2,23 0,30
£ 512x512 | 4,05 1,00
£ 1024 x 1024 | 5,31 2,55
T 2048 x 2048 | 6,06 4,63
4096 x 4096 | 5,95 5,56
8192 x 8192 | 5,72 5,64

Tabulka 2: Urychleni béhu programu pouzitim koprocesoru Intel Xeon Phi viic¢i jednomu
jadru procesoru pro obé implementace.
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t[s]
10000,0

1000,0

CPU
--MIC old
-MC

100,0

10,0

Obrazek 1: Doba béhu (vyjadfeno v sekundach) testovaci aplikace na jednom jadfe pro-
cesoru (CPU), na Intel Xeon Phi v nové implementaci (MIC) a staré implementaci (MIC
old) pro rizné velké sité.

operaci navic, jejichz vyznam se nam zatim nepodarilo dohledat.

5 Zavér

Po tspésném portovani nékterych ¢asti knihovny TNL na novy koprocesor jsme porovnali
vykon této knihovny na procesoru a tomto koprocesoru. Bohuzel ve vysledcich nenabizime
porovnani s GPU a s vyuzitim vicejadrového procesoru. Verze TNL, ze které implemen-
tace pro MIC vychazi, zptisobovala pfi paralelizaci na procesoru pad prekladace a vykon
explicitniho fesice na GPU byl velmi Spatny. Souc¢asné verze TNL obchézi chybu prekla-
dace OpenMP a pfinasi zmény v architekture knihovny, které maji pozitivni dopad na
rychlost explicitnich fesi¢i na koprocesorech. Tyto zmény vsak jesté nebyly zahrnuty do
vétve projektu podporujiciho MIC. Déale nenabizime porovnani s jednoduchou implemen-
taci téchto Tesicu v jazyce C, ktera by poskytla cenné informace o této knihovné. Toto
celkové porovnani bude pfedmétem dalsiho vyzkumu.
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Abstract. An example of how state transfer in two dimensions can be achieved is presented.
The method relies on factorization of recurrence relations and the related orthogonal polyno-
mials. These arise naturally from the form that the system Hamiltonian takes.

Keywords: perfect state transfer, quantum communication, quantum information

Abstrakt. Prispévek ukazuje piiklad pfenosu stavu ve dvou rozmérech. Vypocet je zalozen na
faktorizaci rekuretnich relaci a souvisejicich ortogonalnich polynomi. Oboji je vysledkem tvaru
Hamiltonianu systému, ktery popisujeme.

Klicovd slova: pfenos kvantového stavu, kvantovi komunikace, kvantova informace

1 Introduction

Perfect state transfer is a topic actively researched in the recent years [1]. Its purpose
is faithful placement of a quantum state into a given position in the network consisting
of qubits. The qubits in quantum network can be arranged into different topologies and
have a wide variety of interactions.

What we show in this short article is an example of how state transfer can be achieved
on a 2D square lattice of qubits, where qubits interact only with their closest neighbors.
Our case is a generalization of some previously known concepts [1].

We rely on method presented in [2| and some simple ideas as we will show in the
following sections. First we will summarize the method and then use it on the 2D lattice.

2 State Transfer on a Linear Qubit Chain

Hamiltonian of a linear qubit chain with nearest-neighbor interactions can be written in
the form of [2]

=z
L

H = []i+1 (Uf‘fﬁrl + Uzyaiyﬂ) + Bi (0] + 1)] ) (1)

N | —
I
=)

where o7, 0! 07 are Pauli matrices acting on ith qubit in the chain. N 4 1 qubits in
the chain are numbered 0... N. I;,; denotes interaction strengths and finally B; are the

magnetic fields acting on each qubit. The Hamiltonian is defined on the Hilbert space
A = (CH®WN+D In most cases the choice B; = B is sufficient.

37
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Since the Hamiltonian preserves the number of excitations in the system, it is enough
to focus on the single excitation subspace spanned by the basis vectors 2]

iy=(0,...,1,...,0),i=0,...,N. (2)

The matrix representation of the Hamiltonian in this basis is then

By I, 0
I, By I,
H=| 0 L By I3 . (3)
In B
Applying this matrix on basis vectors gives
Hi)= Ly i+ 1)+ B; i)+ L; [i — 1), (4)
Ip=Ins = 0. (5)

Because the matrix of H is Hermitian, there exist N + 1 vectors such that
Hls)=xs]s), s=0,1,..., N. (6)

The eigenvalues z; are all real and nondegerate. The transition between the two bases
can be written as

N
[s) =" Vi(s) I3), (7)
i=0
and the inverse is also true [2]
iy =" _Vi(s)s), (8)
From (4) it can be seen that the expansion coefficients must satisfy
Lis1Viri(s) + BiVi(s) + LiViei(s) = zVi(s). (9)
In order for state transfer to happen between sites ¢, k after time T', we require
(ile™ T k)= e, (10)

for some . This is the standard condition.
In [2] is described a procedure of choosing coupling strengths and magnetic field
strengths for achieving exactly this. This equation can be expanded to

D Vils) (sle™ ™Y Vi) [u) = €, (11)
which can be further simplified using the orthonormality of the basis eigen-vectors to

D Vi(s)Vi(s)e e = €', (12)

To summarize, from the equation (4) the couplings and magnetic field strengths can be
chosen so that the equation (12) holds [2].
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3 State Transfer on a Square Qubit Lattice

Here we would like to show how to employ the 1D formalism to construct a 2D network
that transfers state between the bottom left (0,0) qubit and the top right (N, M) on a
2D square lattice of qubits of rectangular shape ((IV + 1) x (M + 1) qubits).

In complete analogue to the 1D situation, let us index the sites with a tuple of integers
(2,7) = (0,...,N;0,...,M). Then the Hamiltonian can be written as

| VLM
H = 3 Z [Liv1 (050800, + U%U?H,j) (13)
1,7=0
i (07,070 + 0l 08 141)
Byj (o5 +1)],

where [;; are the horizontal couplings and J;; are the vertical couplings between neigh-
boring sites.
This matrix is also Hermitian and therefore again its eigenvectors can be found, let

us denote them
H s, t)=xg|s,t), (14)

and again perform transition between these two bases
|S7t> = Zm,j(‘S?t) |Z7J>7 (15)
i,J
|Zuj> = Zm,j(‘g?t) |87t>' (16)
s,t

Now in complete analogue to (9), these expansion coefficients must satisfy

raWij(s:t) = Liv1jWit1;(s,t) + JijriWija(s,t) (17)
+BijI/Vi,j (S, t) + [ijWifl’j(S, t) -+ JijWi,jfl<37 t)
Let us assume that both these couplings were chosen so that I;; are independent of j

and similarly J;; are independent of 7. Furthermore that both the couplings and magnetic
field strengths B; and C; have been chosen from equations very similar to (9), namely

Iiv1 jVisa(s) + BiVi(s) + 1;;Viei(s) = x:Vi(s), (18)
JijriWipi(t) + C;W5(t) + JyWioa(t) = yW;(2). (19)

Where V;(s) and W;(t) were calculated so that the two equations analogous to (12) hold
D Vils)Vils)e T = (20)

S Wit Wit)e T = e, (21)

for some ¢, n. Which can be done with exactly the same procedure as before.
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If we choose
Wii(s,t) = Vi(s)Wj(t),
Bi,j = Bz + Cj,
Tg + Y,

8
&
Il

then the equation (17) holds as well.
But more importantly, using the equations (20) and (21), and orthonormality of the
basis vectors |s, t), we can show:

<i7j|6_iTH |k7 l> = Z VVij(S7 t) <$7 t|€_iTH Z Wk,l(uv U) |u7 U>

st u,v
= Y Wils, )W (s, t)e T tv)

s,t
= Y Vi)W () Vi) Wi(t)e T
s,t

= D Vils)Vils)e T Y W) Wit TV

J/

—~ -
ety ein

—  eiletn)

Therefore state transfer between the sites (7, j) and (j, k) takes place.

4 Conclusions

We have shown that if we choose horizontal and vertical couplings independently of each
other just like we would choose them in the 1D case, state transfer will take place between
the corners o the network.

This property was previously only known for one specific protocol [1]. Our case works
for any known 1D protocols even if the horizontal protocol is different form the vertical
one.

What remains to be seen is if the factorization is necessary for 2D state transfer or
if there is some other fundamental way of transferring quantum state on a 2D quantum
network.
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Abstract. Cluster analysis is a traditional tool for multi-varietal data processing. Using K-
means method we can split pattern set into given number of clusters. They can be used for
final classification to known output classes. The paper is focused on various approaches which
can be used for optimal union of hidden classes. Resulting tasks are binary programming or
convex optimization ones. Presented techniques are demonstrated on crisis prediction based on
clustering of macroeconomical indicators and cluster unions.

Keywords: classification, cluster analysis, binary programming, convex programming, cluster
union, crisis prediction

Abstrakt. Shlukova analyza predstavuje tradi¢ni nastroj pro zpracovani vicerozmérnych dat.
Pouzitim algoritmu k-means lze rozdélit mnozinu vzort do daného poctu shlukt. Shluky mohou
byt pouzity pro finalni klasifikaci znamych tiid. Prispévek se zaméfuje na rizné piistupy pro
optimalni sjednoceni skrytych tiid. Resenf predstavuje binarni programovani nebo se jedna o
konvexni tlohy. Predstavené techniky jsou prezentovany na tloze predpovidani krize, ktera je
zaloZena na shlukovani makroekonomickych ukazatelt a sjednocovani shluki.

Klicovd slova: Klasifikace, shlukovi analyza, bindrni programovani, konvexni programovani,
sjednoceni shlukt, predpovéd krize

1 Introduction

Novel methodology is based on cluster analysis, commonly used in case of data mining and
statistical data analysis. [11, 12] Akaike information criterion (AIC) and and Bayesian
information criterion (BIC) [8, 2] can be used to select optimum number of clusters.
The interrelation between two systems of classes is represented by contingency table [10]
which is used frequently in statistics and displays the frequency of events. |7, 4] Biased
estimate of adequate probabilities can be improved by using Bayesian approach [14] for

*This work has been supported by the research grants SGS14/208/OHK4/3T/14 and
SGS14,/209/0HK4/3T /14
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bias reduction. Individual tasks can be solved by binary programming [15] or convex
programming techniques [5].

The aim of research is to design a new method for optimum unions of hidden classes and
apply such method to real macroeconomic data.

2 Classification Primer

Let & = {dy,....,dn}, ¢, C S fori=1,..,N, s C ./ for j =1,..., H be pattern set,
disjoint system of non-empty classes, and disjoint system of hidden non-empty groups
where m, N, H be numbers of patterns, classes and hidden groups. The relation between
the classes and the hidden groups is declared via contingency table F € N)*# where
fij = card{k : dj, € €; ()} is result of pattern counting as join frequency which can
be relativized as

Jij

S @

qij =

wheret=1,...N,j=1,... H.
An example of data partition for N = 3, H = 5 is illustrated in Tab.1.

Table 1: Contingency Table as F

S A A Ay I

¢ 3 98 7 11 O
G T 4 31 10 1
G 1 5 27 9 0

The paper is focused on the optimum unions of hidden classes for the best classification
performance using various approaches.

3 Deterministic Case

Strict classifier is defined here as mapping
c: Ly — Ly

from the set %y of hidden class indicies to the set %y of final class indicies where
%4, ={1,...,n}. This mapping can be expressed via matrix X € {0, 1}*# where z, ; = 1
iff d, € 7 = dj, € €; with uniqueness conditions Zfil x;; = 1for j =1,...,H. There
are many quantitative measures of classification efficiency. First, the accuracy [13| of
classification can be expressed as

LA
acc = - Z Z fii%ij (2)

i=1 j=1

and will be subject of maximization.
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Using concept of class sensitivity 1] as relative frequency of true classification, we can
calculate it as

H
5€; = Zqz‘,j%',j (3)
=1

fori=1,....,N.
Average sensitivity can be defined as
| XN
ase = ZZI se;. (4)

The lower estimate of class sensitivity is declared as critical sensitivity 9]
se* =min{se; ;1 =1,...,N} (5)

Now, we can formulate several linear programming tasks related to optimum classifier
design using planning matriz X € {0, 1}¥*# where z; ; = 1 indicates J; as a part of E;.

3.1 Accuracy Maximization

Let s* € [0, se*] be minimum acceptable class sensitivity. We maximize

1 H
acc = M Z fi,jaji,ja (6)

i=1 j=1

subject to

N
Y wyy=1forj=1,..H
=1

H

Z%,jﬂ?i,j >g*fori=1,...,N,

j=1

T 5 < {O, 1}

which is binary programming task. [15] Having no prior knowledge of se* we can start
with s* = 0.
In the case of frequency matrix presented in Tab. 1, s* = 0 and accuracy maximization,
the class %7 is formed by .74 and 573, class %, is formed by 74, 74 and 74, and %3 is

empty. The value of acc reached 0.6916 but ase = 0.5506 and se* = 0 which is the main
disadvantage of accuracy maximization without prior knowledge of s*.

3.2 Mean Sensitivity Maximization

Using minimum acceptable sensitivity s* again, we maximize

1 N H
ase = N Z Z i,j i 5 (7)

i=1 j=1
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subject to

N
me =1forj=1,.. H,
i=1

H
Zq’i,jx@j > s* for i= ]_, . N,

j=1
z;; € {0, 1}

as another binary programming task.

In the case of frequency matrix presented in Tab. 1, s* = 0 and mean sensitivity max-
imization, the class %7 is formed by 74, class % is formed by 4 and 7%, class %3 is
formed by 75 and 7. The value of ase reached 0.6105 together with acc = 0.6105 and
se* = 0.1509. Therefore previous two approaches offered relative low values of se* which
is their main disadvantage.

3.3 Maximization of se*

In the case of class equity, we can use minimax approach and maximize se*. Adequate
non-linear optimization task is

se* = min{se; : i=1,..., N} = max (8)

N
in’j =1 fOI'j = 1,...,N,
i=1
ZEi,j € {O, 1}
This task can be converted to linear one
se* = max 9)
subject to

N
Zwi’j =1 fOI'j = 1,...,H7
i=1

H
Zqz‘,sz’,j —se*>0fori=1,...,N,
7j=1

3;.7’7] e {07 1}7

se* € [0,1].

In the case of frequency matrix presented in Tab. 1 and maximization of se* class €] is
formed by 4, class %5 is formed by 7, 74, and 77, class €3 is formed by .74. The
value of se* reached 0.3396 together with acc = 0.6105 and ase = 0.6020. This approach
is preferred in experimental part and can be also used for s* determination in acc and
ase maximization tasks.
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4 Bayesian Approach
Relative join frequencies ¢; ; can be interpreted as biased estimate of
Dij = pI‘Ob(d S %’d S %L) (10)

Using natural Bayesian approach [14] we supposed uniform prior probabilities and there-
fore calculate posterior probabilities as

JBAY
BAY J
P = S (1)
J S i]’Sk{%Y
where

This approach is preferred in experimental part as improvement of previous methods.

5 Mixed Strategy

In particular cases, we can randomized the union of hidden groups Z;. In this case the
planning matrix X € [0, 1}¥*# consists of probabilities

z; j = prob(d € €;|d € J6)) (13)

that ¢ forms ¢;. Using exponent o > 1 we can design optimization task

N

Q= Z(l — se;)" = min (14)

i=1

subject to
N
Z(’Eid' =1 forj = 1,...,N,
i=1

se; > s fori=1,..., N,
O S Ii,j S 1

which is convex programming [5] one. This approach is included for completeness and
improves ase maximization for a = 1. It can be converted to linear programming ones
for « =1 and @ — 00, and also to quadratic programming one for oo = 2.

6 Case Study: Crisis Prediction

The new method is demonstrated on real data about EU crisis prediction based on
macroeconomical indicators. The indicators were evaluated from Furopean Commission
statistical data[3]. Main nine indicators were selected based on our previous research [6]
and are included in Tab. 2. Annual data of 28 EU countries from 1993 to 2017 period
was proceeded by logarithmic transform and resulting pattern consist of 9 logarithmic
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differences of corresponding indicators. Each state was represented by 24 patterns and
extreme values of the differences are collected in Tab. 3. The main idea for crisis predic-
tion was to perform cluster analysis into hidden classes according to pattern properties
for each state, first. We defined two output classes presenting the economic indicators
before crisis (1993-2008) and after crisis (2010-2017). Optimum union of hidden classes
into these two classes was main subject of following numerical experiments.

Table 2: List of Descriptors

i Variable Explanation

1 TP Total population

2 UR Unemployment rate

3  GDP  Gross domestic product at current market prices

4 PFC Private final consumption expenditure at current prices
D GFC Gross fixed capital formation at current prices

6 DD Domestic demand including stocks at current prices

7 E Exports of goods and services at current prices

8 I Imports of goods and services at current prices

9

GNS  Gross national saving

For each state we analyse the results of se* maximization for various number of hidden
classes for H = 2, ..., 20 which corresponds to twenty three patterns per state. The number
of hidden classes was selected to maximize the critical sensitivity. As an alternative,
we used AIC minimization which also determined optimal number of hidden classes but
without knowledge of output. The BIC was not optimal for our propose because generated
too low number of classes with small critical sensitivity. The AIC generated similar
results as in the case of se* maximization as demonstrated in Tab. 4. The pair H,y; and
seg, represents the result of se* maximization with knowledge of output for each state.
Minimizing AIC we obtain the pair Haic and sejy - without previous knowledge of crisis
status. These to approaches slightly differs in number of hidden classes but obtain very
similar values of critical sensitivity. Therefore, the crisis prediction can be based on the
cluster analysis with AIC minimization without loosing prediction quality.

7 Conclusions

Novel method of optimal cluster union was designed and tested. The main advantage
of this approach is in maximization of critical sensitivity or its control at least. It was
shown that this method in combination with cluster analysis can be helpful in case of
crisis prediction. Optimal number of clusters was found for each state. We identified
three groups of states as side effect of our study.

The first group is represented by states which indicators can easily serve for crisis predic-
tion. These are represented by the states with se* = 1, namely Spain, Cyprus, Latvia,
Portugal, Bulgaria, Czech Republic, Hungary and Romania. The second group is repre-
sented by states in which can be more difficult to predict the upcoming crisis. In this case
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Table 3: Maximal Values of Absolute Logarithmic Differences

State TP UR GDP PFC GCF DD E I GNS

Belgium 0.00869 0.20854 0.07289 0.02172 0.07893 0.03373 0.13982 0.16728 0.18158
Germany 0.00913 0.18805 0.06353 0.03727 0.08158 0.02683 0.14045 0.15143 0.11197
Estonia 0.02148 0.89794 0.34200 0.07250 0.31805 0.08263 0.21123 0.23667 0.23448
Ireland 0.02999 0.62861 0.20250 0.06591 0.17480 0.04896 0.11461 0.11983 0.24273
Greece 0.00828 0.34320 0.09539 0.03934 0.19416 0.02679 0.20830 0.22314 0.59250
Spain 0.01953 0.46000 0.08392 0.01942 0.18369 0.03781 0.13634 0.24476 0.06328
France 0.00750 0.20679 0.05324 0.01815 0.07020 0.01228 0.12833 0.14253 0.14175
Italy 0.00771 0.24201 0.14034 0.01829 0.06863 0.02592 0.18232 0.18160 0.09579
Cyprus 0.02633 0.40968 0.10805 0.09861 0.22839 0.07445 0.09359 0.15101 0.34260
Latvia 0.02123 0.82098 0.50905 0.17530 0.35091 0.14066 0.45519 0.25068 0.87294
Lithuania 0.02253 0.86681 0.45046 0.07411 0.37330 0.09289 0.39897 0.38724 0.29069
Luxembourg 0.02474 0.37949 0.13948 0.07262 0.13778 0.08004 0.12675 0.15509 0.17939
Malta 0.01072 0.14058 0.13630 0.05389 0.23159 0.06185 0.16801 0.17165 0.37205
Netherlands 0.00757 0.26028 0.07916 0.03598 0.07809 0.01561 0.13036 0.13084 0.10970
Austria 0.00967 0.25672 0.07098 0.03019 0.04960 0.02368 0.16962 0.15653 0.14660
Portugal 0.00707 0.20661 0.08123 0.02292 0.15234 0.03711 0.13767 0.18232 0.19307
Slovenia 0.00984 0.29335 0.23349 0.06612 0.19730 0.03993 0.14850 0.20493 0.19259
Slovakia 0.00591 0.26176 0.21145 0.06321 0.22688 0.12197 0.16796 0.18160 0.24914
Finland 0.00488 0.24784 0.16361 0.05873 0.06782 0.02425 0.21706 0.18814 0.18924
Bulgaria 0.02831 0.41522 0.32243 0.19842 0.76461 0.11754 0.32568 0.40767 2.83741
Czech Republic  0.01031 0.42050 0.15415 0.03737 0.13782 0.03815 0.19777 0.15858 0.14781
Denmark 0.00610 0.56798 0.07405 0.03341 0.14477 0.03038 0.14153 0.17680 0.18831
Croatia 0.02888 0.24039 0.34817 0.04841 0.24512 0.05836 0.17959 0.19691 0.34877
Hungary 0.00523 0.28117 0.17981 0.07504 0.11123 0.06198 0.43393 0.23402 0.28104
Poland 0.00950 0.37013 0.17792 0.03649 0.14505 0.03987 0.14818 0.14680 0.29663
Romania 0.03321 0.44183 0.26711 0.07002 0.38996 0.06283 0.20107 0.21092 0.30956
Sweden 0.02112 0.29171 0.17546 0.05454 0.08589 0.02428 0.11253 0.11692 0.18172
United Kingdom 0.00897 0.30538 0.21514 0.01603 0.11155 0.01298 0.07884 0.08140 0.26905
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Table 4: Optimum Number of Hidden Classes for Crisis Prediction

State Hopt  seg,  Haie  S€aic
Belgium 20 0.8750 20  0.8750
Germany 14 08750 14  0.8750
Estonia 16  0.8750 20  0.8750
Ireland 19 09333 16  0.8666
Greece 15 09333 17  0.9333
Spain 15 1.0000 20  1.0000
France 20  0.8750 18  0.8666
Italy 1209333 20 0.9333
Cyprus 13 1.0000 20  1.0000
Latvia 20 1.0000 20  1.0000
Lithuania 19 08750 19  0.8750
Luxembourg 15 09333 19 0.9333
Malta 16 09333 20 0.9333
Netherlands 19 09333 20 0.9333
Austria 20 09333 20 0.9333
Portugal 19 1.0000 19  1.0000
Slovenia 20 09333 19  0.8666
Slovakia 20 09333 17 0.8750
Finland 19 08750 19  0.8750
Bulgaria 20 1.0000 20  1.0000
Czech Republic 20 1.0000 20  1.0000
Denmark 9 08666 19  0.8666
Croatia 17 09333 19  0.9333
Hungary 15 1.0000 19  1.0000
Poland 10 09333 19  0.9333
Romania 19 1.0000 20  1.0000
Sweden 16 09333 13  0.8666
United Kingdom 19  0.8750 20  0.8666
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the value of se* is lower than 0.875 as for Belgium, Germany, Estonia, France, Lithuania,
Finland, Denmark, and United Kingdom. The third group is a compromise between the
first and the second group.

The states of first group seems to be very sensitive to crisis origins and macroeconomical
symptoms meanwhile the states forming the second group are not too sensitive. Our
hypothesis is that they have their own stabilisation mechanism against economical crisis
which could explain the lower predictability of macroeconomical behaviour.

Selection of the hidden class number was primary based on se* maximization as left
maximum position. The second possible way was to employ the information criteria AIC
and BIC. The values of BIC was not recommended because of small number of clusters
with very low values of critical sensitivity. In most cases AIC suggests the optimal number
of hidden classes with the highest values of critical sensitivity. Using AIC to select the
optimal number of hidden classes, the error of critical sensitivity was up to 0.0667.
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Abstract. In this paper we describe the model of glide dislocation interaction with obstacles
based on the planar curve dynamics. The dislocations are represented as smooth curves evolving
in a slip plane according to the mean curvature motion law, and are mathematically described
by the parametric approach. We enhance the parametric model by employing so called tan-
gential redistribution of curve points to increase the stability during numerical computation.
We developed additional algorithms for topological changes (i.e. merging and splitting of dis-
location curves) enabling a detailed modelling of dislocation interaction with obstacles. The
evolving dislocations are approximated as a moving piece-wise linear curves. The obstacles are
represented as idealized circular areas of a repulsive stress. Our model is numerically solved
by means of semi-implicit flowing finite volume method. We present results of qualitative and
quantitative computational studies where we demonstrate the topological changes and discuss
the effect of tangential redistribution of curve points on computational results.

Keywords: dislocation, precipitate, parametric approach, tangential redistribution, topological
changes

Abstrakt. V tomto ¢lanku se zabyvame popisem interakci dislokaci s pfekazkami s vyuzitim
dynamiky planarnich kiivek. Dislokace jsou parametricky popsany jako hladké kiivky pohy-
bujici se v prislusné skluzové roviné, pficemz pohyb dislokaci je Fizen jejich stfedni kiivosti.
Parametricky model je z divodu stability modifikovan o tangencialni redistribuci diskretiza-
¢nich bodu. V élanku jsou prezentovany algoritmy pro topologické zmény (tzn. spojovani a
rozpojovani kiivek), které umoziuji vytvorit detailni model interakce dislokace s piekazkou.
P1i numerickych vypocétech se jednotlivé dislokace aproximuji jako po Castech linedrni kiivky
a prekazky jsou reprezentovany idealizovanou pfedstavou kruhovych oblasti odpuzujicich dis-
loka¢ni kiivku. Pro vlastni vypocty je pak pouzito semiimplicitni schéma zaloZzené na metodé
plovoucich kone¢nych objemii. V ¢élanku jsou predstaveny kvalitativni a kvantitativni vysledky
provedenych vypocetnich studii, které demonstruji vliv algoritmu topologickych zmén a tangen-
cialni redistribuce.

Klicovd slova: dislokace, precipitat, parametricky pfistup, tangencialni redistribuce, topologické
zmény
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Abstract. Since the main experimentally testable prediction of grand unified theories is the
instability of the proton, precise determination of the proton lifetime for each particular model
is desirable. Unfortunately, the corresponding computation usually involves theoretical un-
certainties coming e.g. from ignorance of the mass spectrum or from the Planck-suppressed
higher-dimensional operators [1]. We show that in general this may result in errors in the pro-
ton lifetime estimates stretching up to several orders of magnitude. On the other hand, we
present a model based on SO(10) gauge group [2| which is subsequently broken by a scalar ad-
joint representation, where the leading Planck-suppressed operator is absent, hence the two-loop
precision may be achieved.

The effort to evaluate all possible errors in proton lifetime estimates is continued in [3]
where we focus on the uncertainties coming from the ignorance of the flavour structure of the
given theory. Possible suppression of the decay widths is analogous to Cabbibo suppression
in Standard Model and was evaluated analytically e.g. in the review [4]. In contrast to this
work, we perform also a numerical analysis for different models and different assumptions on
the Yukawa sector revealing that the flavour structure of the theory may influence the proton
decay rates even more than expected by the analytical approach. Moreover, the effect of Planck-
suppressed effective operators on the flavour structure is studied.

Keywords: Grand Unified Theories, proton decay, Planck-suppressed operators

Abstrakt. Hlavni a nékdy jedinou experimentélné ovéfitelnou predovédi teorii velké unifikace
je moznost rozpadu protonu, presny vypocet doby Zivota protonu je proto zadoucim vystupem
pro kazdy konkrétni model. Tento vypocet v8ak narazi na fadu teoretickych nejistot napiik-
lad kvili neznalosti hmot tézkych castic anebo kvili operdtortim vy$si dimenze potlacenym
Planckovou energii [1]. Ukazujeme, Ze v obecném piipadé mohou vysledné chyby v uréeni
doby zivota protonu dosahovat nékolika F4di. Naproti tomu predstavujeme model zaloZeny na
kalibra¢ni grupé SO(10) 2], pozdé&ji narusené adjungovanou reprezentaci, kde ve vedoucim radu
Planckovsky potla¢ené operatory nejsou pritomny a lze tedy dosdhnout pti vypoctu doby Zivota
protonu dvousmyckové presnosti.

Ve snaze vy¢€islit mozné chyby v odhadech doby Zivota protonu pokrac¢ujeme ¢lakem [3], kde
se zameérujeme na nejistoty plynouci z neznalosti flavourové struktury daného modelu. Mozné
potlaceni rozpadové §ifky je analogické s tzv. Cabbibovskym potla¢enim ve standardnim modelu
a analyticky bylo vyéisleno napf. v ¢lanku [4]. Narozdil od této prace provadime i numericky

*The work of H.K. has been supported by the Grant Agency of the Czech Technical University in
Prague, grant No. SGS13/217/0OHK4/3T /15
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vypocet pro rizné modely a za riznych pfedpokladi o Yukawovském sektoru a zjistujeme,
ze flavourova struktura dané teorie muze ovlivnit rozpadové Sitky jesté vice, nez naznacoval
analyticky vypocet. Dale studujeme vliv Planckovsky potlacenych operdtort na flavourovou
strukturu modelu.

Klicovd slova: teorie velké unifikace, rozpad protonu, opréatory potlacené Planckovou energii

Full paper: H. Kolesova. Higher order proton lifetime estimates in grand unified theo-
ries. In 'Proceedings, 50th Rencontres de Moriond Electroweak interactions and unified
theories’, 511-514, (2015).

References

[1] X. Calmet, S. D. Hsu, and D. Reeb. Grand unification and enhanced quantum gravi-
tational effects. Phys.Rev.Lett. 101 (2008), 171802.

[2] H. Kolesova and M. Malinsky. Proton lifetime in the minimal SO(10) GUT and its
implications for the LHC. Phys.Rev. D90 (2014), 115001.

[3] H. Kolesova and M. Malinsky. Flavour structure of grand unified theories and related
errors in proton lifetime estimates. To appear in Physics Letters B (2016).

[4] P. Nath and P. Pérez. Proton stability in grand unified theories, in strings and in
branes. Physics Reports 441 (2007), 191-317.



Invariants of Vector Fields from
Gaussian—Hermite Moments*

Jitka Kostkova

2nd year of PGS, email: kostkjit@fjfi.cvut.cz
Department of Mathematics
Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

advisor: Jan Flusser, Department of Image Processing
Institute of Information Theory and Automation, CAS

Abstract. Invariants of vector fields with respect to total rotation constructed from Gaussian-
Hermite moments are introduced. Their numerical stability is shown to be better than that
of the invariants published so far. The application in template matching of vector field is
demonstrated.

Keywords: Rotation invariants, Gaussian—Hermite moments, Template matching.

Abstrakt. V tomto ¢lanku uvedeme invarianty vektorového pole vici totalni rotaci zkon-
struované pomoci Gaussovych—Hermiteovych momentt. UkaZeme, Ze jejich numericka stabilita
je vyS8i nez u doposud publikovanych invarianta. Aplikace je demonstrovana na vyhledavani
vzori ve vektorovych polich.

Klicovd slova: Rotaéni invarianty, Gaussovy—Hermiteovy momenty, hledani vzort.

1 Introduction

In the last decade, an increasing attention has been paid to vector field (VF) images and
to the tools for their analysis. The images of vector fields arise in mechanical engineering,
fluid dynamics, computer vision, meteorology, etc. They visualize particle velocity, wind
velocity, optical/motion flow, image gradient, and other phenomena. They may show
e.g. flowing water in a pipe, an air flow around an aircraft wing or around a coachwork,
or a wind velocity map. They may be obtained as a result of computer processing of
standard digital images or video, numerical solution of Navier-Stokes equation, or from
real physical measurements (see Fig. 1).

A 2D vector field f(x) can be mathematically described as a pair of scalar fields
(images) f(x) = (f1(x), fo(x)). At each point x = (z,y), the value of f(x) shows the
orientation and the magnitude of certain vector. A common task in vector field analysis is
a detection of various patterns such as sinks, vortexes, and saddle points. For engineers
and designers, it is very important to identify these singularities in the flow, because
they increase the friction, decrease the speed of the medium and consequently increase
the power and cost which is necessary to transport the medium through the pipe or the
object through the air or water. The detection of singularities is typically accomplished
by template matching. Sample templates of these patterns are stored in the template

*This work has been supported by grants No. GA15-16928S and SGS15/214/OHK4/3T/14.
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il SN

by
S

Figure 1: Optical flow field in a video. The field is depicted by arrows, which show the
direction and velocity of the movement between adjacent frames.

database and searched in the given field. The search algorithm must be primarily rotation
invariant, because the particular orientation of the template is unknown, irrelevant.

Many template-matching techniques have been developed for scalar images. The key
point to avoid a brute-force search is to find a rotation-invariant template descriptors.
The matching is then performed by a search of all possible template locations (which
may be sped-up by a pyramidal representation of the image) and the matching position is
determined as that one which minimizes certain "distance" (usually derived from ¢5-norm)
in the space of descriptors. The first method of this kind was proposed by Goshtasby [§],
who used rotation moment invariants as the descriptors.

The invariant descriptors originally designed for scalar images cannot be directly ap-
plied to vector fields because the behavior of a vector field under rotation is different.
Rotation of scalar image f by angle a is described as f/'(x) = f(R_,X), where

R, — ( cos & —sina )
sin «v CoSs &
is a rotation matrix. This inner rotation affects the spatial coordinates only.

However, when rotating a vector field, the vectors rotate inversely to the in-plane
rotation such that their relative orientation to the image content stays constant. The
underlying model, which is called total rotation, is f’(x) = R.f(R_,x) . Let us illustrate
the total rotation in Fig. 2 for o = 22.5°. Each arrow is rotated around the image center

to the new position and its direction is also rotated by the same angle. If a vector field is
scaled by factor s, the underlying transformation is called total scaling £’(x) = sf(x/s).
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Figure 2: The original vector field (a) and its total rotation (b).

In order to implement rotation-invariant template matching, we need at first to find
descriptors which are invariant to total rotation of a vector field. This problem was
addressed for the first time by Schlemmer et al. [12] who adapted original scalar moment
invariants proposed by Mostafa and Psaltis [1] and Flusser |5, 6], and designed invariants
composed of complex moments of the field. Schlemmer et al. used these invariants to
detect specific patterns in a turbulent swirling jet low. The Schlemmer’s method has
found several applications. Liu and Ribeiro [10] used it, along with a local approximation
of the vector field by a polynomial, to detect singularities on meteorological satellite
images where the respective field was a wind velocity map. Basically the same kind of
rotation invariants was used by Liu and Yap [9] for indexing and recognition of fingerprint
images. Bujack et al. |3, 2] derived essentially the same system of invariants by means of
the field normalization approach. These authors demonstrated the use of the invariants
in template matching, where the template vortexes were searched in the image showing
the Karman vortex street simulation.

In all of the above-mentioned papers, the invariants are based on standard geometric
moments. It is well known from many studies of scalar images, that the geometric (and
consequently the complex) moments have rather poor numerical properties, in particular
they cannot be calculated in a stable way up to high orders |7]. This is caused by non-
orthogonality of their basis functions xPy?. In scalar image analysis, this finding led to
the design of invariants from orthogonal moments and from other orthogonal projections.
However, nothing like that has been published for vector fields so far. In this paper, we
introduce vector field invariants w.r.t. total rotation from orthogonal Gaussian-Hermite
moments. We demonstrate they have better numerical properties than the Schlemmer’s
invariants and they can be advantageously used in the vector field template matching
tasks.
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2 Gaussian-Hermite polynomials and moments

Hermite polynomial of the n-th degree is defined as

22 d" 2

H,(x)=(-1)"e" —e™* . 1
() = (e e (1
Their three-term recurrence relation, which is used for their fast and stable evaluation, is
Ho(x) = 1,
Hi(z) = 2, (2)

H,(x) = 2zH, 1(z)—2(n—1)H, o(x) .

Hermite polynomials are orthogonal on (—o00, co) with the weight w(z) = e If
they are not modulated, they have a high dynamic range and poor localization, which
makes them difficult to use directly for image description. Therefore, we modulate Her-
mite polynomials with a Gaussian function and scale them to yield Gaussian-Hermite
(GH) polynomials

z2
Ho(2,0) = Hy(s/o)e ™5 . (3)
In most cases, we work with orthonormal GH polynomials H,
. 1
H,(z,0) = ——=H,(z,0) . (4)
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Figure 3: The graphs of the Gaussian-Hermite polynomials up to degree 6 with o = 1.

As can be seen in Figure 3, the GH polynomials have the range of values inside (—1,1).
Although they are formally defined on (—oco, 00), they are effectively localized into a small
neighborhood of the origin controlled by o.
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2D Gaussian-Hermite moments of function f(z,y) are defined as

= [ [ Hyle.o) ffu.0)5 (. )ddy. (5)

—00 —O0

The GH moments were introduced into the image analysis area by Shen [13, 14| and
were proved to be very robust w.r.t. additive noise comparing to other common moments,
which is a remarkable advantage . They were employed in several successful applications,
such as in detection of moving objects in a video [15], in licence plate recognition [11],
in image registration as landmark descriptors [19], in fingerprint recognition [9], in face
recognition [4],and as directional feature extractors [17].

3 Gaussian-Hermite rotation invariants of scalar im-
ages

Yang et al. [16, 18| proved that the 2D Hermite polynomials H,,(z,y) = H,(z)H,(y)
change under an in-plane rotation by angle o in the same way as do the monomials xPy9.
This property propagates from polynomials to moments, which leads to the assertion
of the Yang’s theorem: If there exist a rotation invariant of geometric moments I(m,q,,
Mipogss - - - Mpyqy ), the same function of the corresponding Hermite moments I(7p,4, 5 Mpogs»
- Tpyqy) 18 also a rotation invariant.

The Gaussian weighting and scaling do not violate this theorem provided that the

scale parameter o is the same for x and y and that the weighting coefficient is modified

(a2 +y)

Hy(x/o)Hy(y/o)f(z,y)dzdy . (6)

o = o/ T jn—l—q'ZPqu//e

Under these assumptions the Yang’s theorem holds well and the functional (7,4, Mpoges
-y Tlpyqy) 18 & rotation invariant of the Gaussian-Hermite moments.

4 Gaussian-Hermite rotation invariants of vector fields

In this section, we use the Yang’s theorem for constructing rotation invariants of vector
fields. We can treat the VF as a field of complex numbers f(z,y) = fi(x,y) + ifa(z,y)

which allows us to use standard definition of moments. It holds, for any moment M,,,

f) _ ! ; f
Mzgq) - Mzgql) + ZMzgtf) ’

Any moment M, is changed under outer rotation (i.e. the rotation of the vector values)
as M), = e "*M,,. Hence, the Yang’s theorem is valid also for total rotation of vector
fields. Its practical applicability depends on our ability to find a set (preferably complete)
of rotation invariants of vector fields composed of geometric moments.
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It is, however, well known in the theory of geometric moments of scalar images that
the moment functions'

ZZ( )( ) D) P gk (7)

k=0 5=0

change under the inner rotation by angle a as ¢, = e*i(p*q)“cpq. Under a total rotation

cg(,? is changed as cj(of;) = e‘io‘e_i(p_q)a-c](o? = e_i(”_q“)“-c}g?. Thanks to the Yang’s theorem,

replacing c,,’s by corresponding functions of GH moments

=53 (0) () s 8

k=0 j=0
must preserve the behavior under a total rotation. Hence, dg;) = e iPmat o, dg]).

By a multiplication of proper powers we can cancel the rotation parameter and obtain
an invariant. It is desirable to work with an independent subset (basis) of rotation
invariants. The simplest possible basis can be obtained as

O(p, q) = dpgdf 7 (9)

q0P0

where py — go = 2. To get a complete system, we set by definition ®(qo, po) = |dgopo |-

5 Experiments

The goal of the experimental section is to compare GH invariants of VFs (9) to the
Schlemmer’s invariants [12] composed of geometric/complex moments. In the first exper-
iment, we demonstrate high numerical stability and low precision loss even for high-order
GH invariants. The second experiment illustrates their application in template matching.

5.1 Numerical precision

In this experiment, we evaluated numerical properties of both GH and Schlemmer’s in-
variants up to the order p + ¢ = 160. It can be expected that high-order Schlemmer’s
invariants lose precision because they calculate with very high and very low numbers.
Since the GH moments can be calculated by recurrent relation (2), the overflow and
underflow effects should be less significant or even not present at all.

The evaluation is done by measurement of a relative error of each invariant. We took
a sample VF, rotated it by 7/4 (total rotation), and calculated the relative error as

|2(p,q) — ' (p,q)|
g

where ®'(p, q) stands for the invariant of the rotated field. Theoretically it should hold
e = 0 for any p and ¢; the non-zero values are caused solely by the field resampling and by

e = 100

IFunction Cpq is in moment theory called the complex moment.
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Figure 4: Relative errors of the Schlemmer’s invariants (a). White area corresponds to
NaN values of the invariants. And relative errors of the Gaussian-Hermite invariants (b).
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Figure 5: The ratio of the relative errors (10).

numerical errors. We used rotation by 7/4, since the errors are greater than for any other
angle and allow to observe the differences between the both types of invariants clearly.

The relative errors of the Schlemmer’s invariants are visualized in Fig. 4(a). It is worth
noting that the invariants are well defined only in a strip along the diagonal p = ¢. Outside
the gray area, the Matlab code yielded NaN values when calculated the invariants. This
illustrates the limited possibility of working with the Schlemmer’s invariants if p —q > 20
and p,q > 80 (the particular numbers depend on the given vector field).
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The relative errors of the GH invariants are visualized in the same way in Fig. 4(b).
The main difference is that all investigated invariants are valid (there have been no
NaN’s). To compare the relative errors in the valid region, we calculated the ratio

_ &(Schlemmer)
r= -G (10)

and visualized it in Fig. 5. To keep the same range on both sides of colorbar, the values
of r > 1 were displayed as 2 — 1/r). We can observe that in vast majority of indexes
(p, q) (precisely in 85 %) the value of r is greater than 1, i.e. the error of the Schlemmer’s
invariants is higher than that of the GH invariants. The mean value of r(p, q) is 7.3 and
the median equals 4.3, which clearly illustrates better stability of the GH invariants.

5.2 Template matching

In this experiment we demonstrate the use of the GH invariants in template matching.As
a vector field, we used the gradient of the picture of hair (see Fig. 6).

We selected randomly 9 circular templates of the gradient field, rotated them by
5 degrees and matched them against the original field. The matching was carried out
by searching for the minimum /s-distance in the space of the GH invariants of orders
p+ q < 4 between the template and all field patches of the same size. Eight templates
were found in their exact location, one was matched with a localization error 1 pixel (see
Fig. 6). We repeated this experiment with template rotations 23, 41, 59, and 77 degrees,
respectively. The results were always exactly the same as depicted in Fig. 6.

6 Conclusion

In this paper we extended the theory of Gaussian-Hermite moment in- variants with
respect to total rotation of vector fields. We demonstrated the high numerical stability
and low precision loss even for high-order GH invariants unlike Schlemmer’s invariants
and the application of the GH invariants in template matching. We can conclude that
the performance of the GH invariants in template matching is very good, regardless of
the actual template content and of the template rotation.
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Abstract. The demand for proper sport match prediction tools is constantly increasing together
with the amount of money put into sports betting. A log-linear tennis result prediction model
based on player rankings, past performance, current form and bookmaker’s odds is developed
in this paper and tested on ATP and WTA Grand Slam matches in the 2011-2016 seasons.
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Abstrakt. Celosvétove vzristajici mnozstvi prostfedk vlozenych do sportovnich sazek stupiiuje
poptavku po kvalitnich néstrojich k predikci sportovnich vysledki. V tomto ¢lanku je odvozen
log-linearni model predikce vysledku tenisovych utkani zaloZzeny na postaveni hract v zebricku,
jejich historickych vysledcich, sou¢asné formé a kurzech bookmakertu. Vysledky jsou testovany
na zépasech série turnaji Grand Slam muzi i Zen v letech 2011-2016.

Klicovd slova: predikce tenisovych vysledki, loglinearni regrese, Grand Slam

1 Introduction

The demand for reliable sport outcomes prediction methods has been constantly raising
over the past several years. Such a rise can be explained be many causes. Not surprisingly,
prediction models are of highest importance for sports betting companies as well as
bettors, who want to obtain (or maintain) a competitive advantage over their rivals.
But they are of use for team managers, coaches or players themselves as they can help
to point out weaknesses or strong elements of the game. Last but not least there are
useful for legal authorities across institutions as they can help to reveal illegal betting,
result manipulation, bribery and corruption in general. The European Sports Security
Association regularly reports on suspicious betting activities. The latest report (Q2-2016)
contained 41 cases of suspicious betting activity, 34 (83 %) of which occurred in tennis
only|1].

In this paper the tennis match results of the major “Grand Slam” tournaments are
predicted using logistic regression models with player ranking and points, their past
performance on the same tournament, their current form a and also bookmaker’s winning
odds as independent variables. Several approaches are introduced and their performance
is compared on different sets of data from both men and women professional tennis.

The remainder of this paper is organized as follows. Section 2 gives brief overview of
some other work regarding tennis and sports results prediction. Section 3 describes the
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data that was used in this paper, section 4 gives the description of how the models were
derived. Their performance on different sets of data is described in section 5, which also
concludes this paper.

2 Related work

There are several different approaches in modeling and simulating tennis games. The
most common ones use Markov chains as the baseline of the model, creating Markov-like
chains usually from one particular part of the game - set by set, game by game, point by
point or even rally by rally [2, 7, 11, 13]. Other approaches use some sort of regression
(logistic, probit) [5, 3, 4, 6, 8] or econometric methods [12]. Comparison of some of the
existing methods can be found in Kovalchik [10].

The methods can be also divided into those focusing on the match result itself |5, §]
and those focusing on the partial results during a match - in play probabilities|9, 7].

3 Data description

Tennis competitions are organized by three major organizations. The International Tennis
Federation (ITF), the Association of Tennis Professionals (ATP) and the Women Tennis
Association (WTA). ATP covers the most prestigious men tournaments, WTA does the
same for women tennis. ATP tournaments are divided into 4 main levels! according to
their importance and the number of ranking points the winner gets. The lowest level
is ATP 250, where the winner gets 250 points, then comes ATP 500 with 500 points
for the winner, Masters 1000 with the winner gaining 1000 points and finally the most
prestigious Grand Slam tournaments (Australian Open, French Open, Wimbledon and
US Open), where the winner increases his point account by 2000 points. WTA has three
levels of tournaments. The lowest level, International, awards 280 points to the winner.
Premier tournament winner gets up to 1000 points and Grand Slam winner gains 2000
points. ITF organizes lower level tournaments for both men and women and also cover
international competitions such as the Davis Cup, Fed Cup or the Olympic games.

There is a very complex tennis database available at www.tennis-data.co.uk. It con-
tains data about all ATP and WTA matches since 2000 and 2007 respectively. Among
others, there is the information about what tournament the game was part of, who did
participate, what the participants’ ranking was at the time of the game as well as their
current ranking points, the result of the game and the winning odds of each player from
up to five different bookmakers. It also has the information whether the match was fin-
ished regularly or whether on of the players retired. In this paper only the matches were
considered that were finished regularly, had complete information about tournament,
player rankings and ranking points, result and had the winning odds from at least one
bookmaker available. I also omitted the older results and only worked with the matches
from the 2010 season and newer.

!The Olympic games, The Masters Cup and the Davis Cup also count for ATP level tournaments.
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year \ | ATP 250 | ATP 500 | Masters | Grand Total
tourna- 1000 Slam
ment
2010 64.37 % | 65.78 % | 63.87 % | 74.95 % || 66.48 %
2011 66.90 % | 68.62 % | 63.15 % | 74.95 % || 67.89 %
2012 62.75 % | 69.74 % | 69.39 % | 74.85 % || 67.45 %
2013 62.34 % | 64.97 % | 66.54 % | 75.26 % || 66.14 %
2014 65.55 % | 66.12 % | 69.76 % | 74.22 % || 68.26 %
2015 65.05 % | 66.09 % | 71.69 % | 76.24 % || 68.85 %
2016 64.55 % | 65.20 % | 68.00 % | 76.19 % || 68.06 %
Total 64.41 % | 67.01 % | 67.65 % | 75.16 % || 67.63 %

Table 1: Success rates for predicting ATP match results: Higher ranked player wins.

year \ | ATP 250 | ATP 500 | Masters | Grand Total
tourna- 1000 Slam
ment
2010 66.63 % | 71.66 % | 71.32 % | 79.50 % || 70.82 %
2011 72.07 % | 73.14 % | 67.59 % | 79.30 % || 72.65 %
2012 68.17 % | 7291 % | 73.28 % | 78.97 % || 72.06 %
2013 67.79 % | 70.59 % | 67.47 % | 78.39 % || 70.18 %
2014 70.12 % | 67.48 % | 71.22 % | T7.13 % || 71.34 %
2015 68.21 % | 69.78 % | 75.00 % | 78.92 % || 72.05 %
2016 68.50 % | 67.84 % | 72.04 % | 80.74 % || 71.95 %
Total 68.81 % | 70.66 % | 70.86 % | 78.76 % || 71.49 %

Table 2: Success rates for predicting ATP match results: Bookmaker’s favorite wins.

4 Experiments

Three different approaches were used in order to predict tennis match results. The
first two basic approaches should serve as a benchmark, they simply predict the higher
ranked player or the bookmaker’s favorite? to win the match. The results of the two
approaches for each year® and each tournament type are shown in tables 1, 2, 3 and 4.
Several assumptios can be made according to these results. They show that Grand Slam
tournaments are better predictable using both methods, that women tennis is harder to
predict in general and finally that the bookmaker’s odds is a better result predictor than
the official player ranking.

The third approach follows the results of [5], where a logistic regression model is
derived to predict the results of Grand Slam tournaments. The model uses a combination
of player ranks and previous year results of the players on the same tournament. The
model shows remarkable results, but it is impossible to verify these results, because some
details of the model derivation are omitted. It is not explained whether the positive or

2The average odds from all available bookmakers was used in order to determine the favorite.
3The 2016 season still does not have all the lower level tournaments finished.
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year \ | International | Premier | Grand Total
tourna- Slam

ment

2010 66.37 % 64.78 % | 73.17 % || 67.24 %
2011 65.49 % 64.72 % | 70.22 % | 66.21 %
2012 64.26 % 66.44 % | 69.15 % || 66.11 %
2013 65.48 % 66.74 % | 70.18 % || 66.95 %
2014 63.24 % 65.65 % | 69.01 % || 65.32 %
2015 62.25 % 64.44 % | 68.33 % | 64.39 %
2016 63.41 % 62.52 % | 70.22 % || 64.75 %
Total 64.56 % 65.14 % | 70.27 % | 66.02 %

Table 3: Success rates for predicting WTA match results

: Higher ranked player wins.

year \ | International | Premier | Grand Total
tourna- Slam
ment
2010 70.02 % 71.15 % | 73.58 % || 71.18 %
2011 69.72 % 70.32 % | 74.65 % || 70.98 %
2012 67.02 % 71.20 % | 73.39 % || 69.89 %
2013 69.54 % 69.20 % | 74.75 % || 70.54 %
2014 64.62 % 70.56 % | 74.04 % || 68.75 %
2015 66.07 % 65.61 % | 73.55 % || 67.45 %
2016 66.17 % 66.44 % | 70.42 % || 67.31 %
Total 67.98 % 69.67 % | 73.35 % || 69.66 %

Table 4: Success rates for predicting WTA match results

: Bookmaker’s favorite wins.
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Figure 1: Ranking points distribution of top 100 ATP and WTA players. Source:
www.atpworldtour.com and www.wtatennis.com, as available on Sep 29th 2016.

negative value of player rank difference is considered or if the round reached by a player
on the same tournament last year is a categorical or a numerical variable.

In this paper, the following regressors were considered. The official ranks of both
players together with their ranking points. Picture 1 shows that the points difference
between player #1 and player #5 is significantly bigger than that between players #50
and #55, suggesting that the difference between their strengths could differ as well and
that ranking points could contain additional information. The next regressors were the
players’ performances on the same tournament last year. This regressor serves as a
surrogate variable for the tournament surface, as all the tournaments are played on a
different surface, which can play a crucial role for the performance of certain players.
This approach was also suggested in [5]. It takes a maximal value of 7 when the player
reached the finals last year and minimal value of 0 when the player did not participate last
year. Finally, two regressors were considered reflecting the current form of both players.
The form of the j — th player was calculated as follows

N
form; =Y R;(i) V(i
i=1

where R(7) stands for the result of the i —th match preceding the current match (in which
player j participated), taking the values of —1 and 1, V(i) is the value of a tournament
(where the ¢ — th match took place) according to its points prize pool (the values are
shown in table 5 ) and N is a memory parameter. In this paper, N was set to 6, that
is the value form reaches its maximal value of 12 for the Grand Slam finals. In this
case, the 6 consecutive Grand Slam wins are considered for each finalist, suggesting that
they are both in a top form. This is in accordance with the common sense for such an
important tennis match.

This regressors were considered for the first basic log-linear (logit) model. Average
bookmaker’s winning odds were added for the second model. The third model only con-
sidered the four ranking and points related regressors and the last model only considered
the four regressors representing the current and last year performance. All the models
were derived using the glm (Generalize linear model) function in the R software, which

4For Premier tournaments the value corresponding with the average points awarded was considered.
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’ Tournament \ Value ‘

Grand Slam 2

Masters 1000 1
ATP 500 0.5
ATP 250 0.25
Premier 0.673

International | 0.28

Table 5: Tournament values.

| Year\ prediction (in %) | Basic | Odds | Rank only | Performance only |

2011 74.53 | 77.64 74.74 74.95
2012 75.26 | 78.35 74.64 75.05
2013 74.01 | 77.96 75.47 73.80
2014 74.01 | 76.92 74.22 73.60
2015 75.62 | 78.51 75.41 76.44
2016 76.81 | 79.30 75.57 78.05

Table 6: Prediction power of derived model, ATP Grand Slams, learning from previous
year.

uses maximal likelihood to estimate model parameters, and are of the form

1n(1p ) = a+ B,
where p is the probability that a higher ranked player wins the match, & is the vector of
independent variables,« is intercept value and [ are model coeflicients. The results are
discussed further in Section 5.

5 Results and future work

All the derived models were tested on all Grand Slam matches since 2010. The Grand
Slam matches were chosen because they are the most prestigious ones and are also the
only tournament type held every year under same conditions (actually for much longer
period of time than since 2010). The model was first trained on training data and then
tested on new, previously unseen testing data. This was done on a yearly basis, that is
for every year (starting 2011) the data from that year was used as a testing set. Two
cases of learning were considered. First, only data from one previous year were used as
learning set, then data from all previous years were used. The results can be seen in
tables 6, 7, 8 and 9.

Several interesting observations can be concluded from these results. The comparison
of respective tables shows that adding training data from further in the past does not
improve the performance of the models. This makes sense from the tennis point of view
as well as from data mining point of view. Tennis is a game that is constantly developing
(new materials, techniques, ...) and thus older games might not be as similar to the
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’ Year\ prediction (in %) ‘ Basic ‘ Odds ‘ Rank only ‘ Performance only ‘

2011 74.53 | 77.64 74.74 74.95
2012 74.23 | 78.35 75.05 74.01
2013 73.18 | 77.96 74.84 75.88
2014 73.80 | 76.72 73.80 73.39
2015 75.86 | 79.34 76.24 75.82
2016 75.57 | 79.92 74.74 76.60

Table 7: Prediction power of derived model, ATP Grand Slams, learning from all previous

years.

| Year\ prediction (in %) | Basic | Odds | Rank only | Performance only |

2011 70.62 | 72.03 70.62 70.22
2012 69.15 | 72.58 70.97 68.55
2013 69.38 | 74.16 67.79 70.78
2014 70.82 | 72.43 70.02 69.21
2015 67.13 | 71.94 67.33 67.94
2016 69.22 | 70.02 72.23 68.21

Table 8: Prediction power of derived model, WTA Grand Slams, learning from previous

year.

| Year\ prediction (in %) | Basic | Odds | Rank only | Performance only |

2011 70.62 | 72.03 70.62 70.22
2012 69.96 | 72.38 70.16 68.96
2013 69.58 | 73.96 71.45 70.38
2014 71.63 | 73.64 70.02 69.22
2015 68.94 | 73.15 69.14 68.34
2016 70.22 | 70.42 71.28 69.42

Table 9: Prediction power of derived model, WTA Grand Slams, learning from all previous

years.
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new ones as one could think. Mathematically speaking, there are over 500 Grand Slam
matches every year which is enough to build a model. The additional matches from
previous years can bring some new information, but would bring in some noise as well;
the results show that the new information does not exceed the noise contained in the
older data.

The performance levels of the basic model are similar to the discriminatory power of
the rank itself. This suggests that the players ranks carry the core information. This is
further accentuated by the results of the model with only ranking related parameters,
which results are again very similar to those of rank only. However, the model based
on only the performance parameters delivers similar, sometimes even better results than
then one with rank information available. The only model that shows better results is
the one that uses bookmaker’s odds as its additional regressors. Here the results are
similar to those when predicting the bookmaker’s favorite as the match winner. This
suggests that most if not all possible information about a tennis game is exploited by
the bookmaker’s odds and that logistic regression models cannot add much more to this
information. It also suggests that tennis matches are only predictable up to a certain
level. This is in accordance with the reality, that is the fact that one tennis match is an
encounter between two people, two individuals, and as such their future behavior is only
hardly predictable.

Dziedzic presented different results [5]. The best presented performance of 90.01 % is
presented for the 2014 Women US Open. However, this performance was achieved using
only 74 matches, but there were 127 matches on that tournament. The same holds for
the other cases presented in [5] as well, for example only 876 matches from 2009-2013
WTA Grand Slams were used for training, instead of all 2540 that took place during
that period. The paper suggests that all the data comes from www.tennis-data.co.uk
(which contains data about all matches), but does explain how the subsets of matches
were selected. The presented performance is thus unverifiable.

The results and methods presented in this paper suggest that it is not an easy task to
find a predicting method more powerful than bookmaker’s odds. There are still many op-
tions that are yet to be investigated but so far, the gamblers dream - to beat bookmaker’s
odds - still remains untrue.
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Abstract. Self-organised spatial pattern formation is one of the main focus of Mathematical
Biology and the Turing reacion-diffusion model is widely studied for the case of constant coeffici-
ents. The spatial dependence yields to significant complications, which will be task of this paper.
Here, we will follow the analysis performed for model with spatial dependence in the coefficient
at the linear term of the activator kinetics and using series of simulations for Schnackenberg
kinetics we will analyse relation between the earlier obtained conditions and the behaviour of
the non-linear system. The results indicate where mentioned situations do not match. This will
be helpful to find more precise conditions, if the emergence of patterns occurs or not.

Keywords: Schnackenberg kinetics, reaction-diffusion model, non-homogenous Turing’s model,
pattern formation.

Abstrakt. Samovolny vznik prostorovych vzoru je jednim z hlavnich zajmt Matematické bi-
ologie a Turingtv reakcéné-difuzni model je v pripadé konstantnich koeficienti velmi studova-
nym problémem. Zavislost koeficientli na prostoru pfinasi znatelné ztizeni problému, coz bude
predmétem této prace. Konkrétné, navazeme na analyzu takového modelu v ptripadé zavislosti v
koeficientu u linearniho ¢lenu kinetiky aktivatoru a pomoci série simulaci pro Schnackenbergovy
kinetiky prozkoumame vztah nalezenjch podminek s chovanim nelinearniho systému. Vysledky
ukazuji na pfipady, kdy si uvedené pripady neodpovidaji, coz napoméaha k presnéjsimu nalezeni
podminek, za kterych v daném systému dochézi ¢i nedochézi ke vzniku prostorovych struktur.

Kli¢ovd slova: Schnackenbergovy kinetiky, reakéné-difuzni systém, nehomogenni Turingtiv mo-
del, pattern formation.

1 Uvod

vvvvvv

Vznik prostorovych struktur je jednim z nejdtlezitéjsich jevii v mnoha nerovnovaznych
systémech, pocinaje vyvojovou biologii pres rist krystalit v tuhnoucich slitinach, konce
plasmou nebo polovodici. Zakladnim mechanismem k naruseni symetrie je nestabilita
zpusobend difuzi (diffusion driven instability; Turingova nestabilita [4]) reakéné-difuznich
systémii (RD-systém). Turing ukézal, Ze malé perturbace homogenniho systému autokata-

*Tato préace byla podpofena grantem SGS15/215/0OHK4/3T/14.
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lyticky a inhibi¢né difundujicich druh mohou zpisobit nestabilitu, ktera vede ke vzniku
prostorovych struktur.

Vysledné vzory Turingova modelu jsou prostorové periodické a velmi symetrické, coz
nedostacuje k popsani skuteénych vzortu v prirodé. Nékteré prostorové odlisnosti bychom
sice mohli odtivodiiovat nutnym zjednodusenim modelu oproti skutecnosti, napriklad u
skvrn jaguara, jindy jsou ale rozdily vzorku v prostoru dilezité. Prikladem je rozlozeni
my$ich nebo koci¢ich vouski [5], st¥idajici se tenké a tlusté pruhy u koralové rybicky
Lionfish [8] nebo rust prsti na koncetinach [6]. Z Gvodnich numerickych simulaci (napfi-
klad [8]) vyplyva, Ze jednim ze zpisobt dosazeni takovych vysledki je pfidani prostorové
zavislosti do parametri tlohy; a analyzou takového modelu se budeme zabyvat.

Analyza stability feseni systému s nekonstatnimi koeficienty je analyticky velmi ob-
tizna, uz jen proto, ze samotny stacionarni stav je Casto prostorové nekonstantni. I pres
to se jiz v literatufe setkdme s castecnymi vysledky; analyza tzv. spikes pro Gierer-
Meinhardttv model [7] nebo analyza stability v pfipadech specidlniho tvaru prostorové
zavilosti koeficientti: v absolutnim ¢lenu kinetiky uvazujici e-fady kolem homogenniho
stacionarniho stavu [10] a [11] nebo ten samy piipad zavislosti ve tvaru skokové funkce
[9]. My se budeme zabyvat analyzou modelu v jedné prostorové dimenzi (interval [0, L])
s prostorovou zavislosti koeficientu u linearniho ¢lenu kinetiky aktivatoru

Ou = d10zpu + f1(u,v) + h(z)u

0 0,L 1
atv - anx:vU + f2(u7 U) ¥ ( ’OO) . ( ’ ) ( )
s Neumannovymi okrajovymi podminkami
ou ou v ov
Z200) = =—=(L) = —(0)= —(L) = 2
L0) = SH(L) =0, SL(0)= 5 (1) =0. )

Abychom se mohli soustfedit na disledky samotné prostorové zavislosti, budeme uva-
zovat co nejjednodussi formu zavislosti — funkci konstatni témér vsude. To je motivovano
predstavou spojeni dvou systémi (tkani/prostiedi) s mirné odlisnymi parametry. Pro do-
statecné velké oblasti vzhledem ke zméné téchto parametri by se dalo ¢ekat, ze vzorky na
obou koncich oblasti se nebudou vyrazné lisit od vzorti samostatnych systémti. Zajimavy
pripad nastane, pokud mald zména v koeficientech zpiisobi diky nelinearnim kinetikam
velmi rozdilné vzory.

Vhodnymi funkcemi h(z) tedy mize byt skokova funkce

0 2 €0,§),
h<x>_{s x €& L]

nebo obdobné hladké funkce

s T —
() = ho) o), hs() = 5 (14 e 25,
kde ns(x) znaéi regularizator. V numerickych simulacich jsou tyto funkce pro dostatecné
malé parametry 0 v pocitacCi reprezentovany stejné, vlastnosti celych systémii s témito
funkcemi by tedy mély byt velmi podobné. Pro analyticky pfistup je nejvhodnéjsi prvné
jmenovana, tu budeme také nadéle pouzivat.
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V nasledujici kapitole nejdiive vypiseme zakladni fakta o klasickém Turingové mo-
delu, na kterd se budeme v textu odkazovat. Dale shrneme postup a vysledky analyzy
modelu s prostorovou zavislosti v koeficientu u linearniho ¢lenu kinetiky aktivatoru pre-
zentované minuly rok ([1] a [2]; ucelenéji v pfipravované publikaci [3]). To nam poslouzi
jako motivace a odtivodnéni pro tieti kapitolu, ve které prezentujeme vysledky simulaci
systému se Schnackenbergovymi kinetikami

fl(u,v):a—u+u221, fQ(U,U):b—U2U (3)

a dle nich porovname platnost podminek vzniku vzorkt z Kapitoly 2. Prace pak kond¢i s
kapitolou se shrnutim a zavére¢nou diskusi.

2 Analyza modelu se skokovou funkci

Uvazme tedy na chvili klasicky Turingtiv model, coz je systém (1) s h(x) = 0. Necht tento
systém mé homogenni stacionarni stav a ozna¢me A Jacobiho matici ze zobrazeni (f1, f2)
v tomto bodé. Pak Turingovy podminky pro vznik vzorku jsou tvaru

tr A < O, det A > O, a11dy + agedy > 0, (Cllldg + a22d1)2 > 4dyds det A. (4)

Déle jiz uvazme systém (1) se skokovou funkei h(x). Nejdiive se pro lepsi predstavu
podivejme na nékolik vysledkt simulaci pro konkrétni kinetiky a parametry, viz Obrazek
1. Zde, vedle toho, ze dostavame vzory velmi zajimavé pro aplikace v biologii (Obr.
1C, tedy vzorek s odlisnymi frekvencemi na koncich intervalu), ¢imz se tady zabyvat
nebudeme, vidime, Ze aZ na znatelné vychyleni v misté skoku funkce h(z) se vzorek bud
rychle zatlumuje, nebo tvori periodické struktury podobné jako v klasickém ptipadé. Tyto
grafy nas vedou k zavedeni nasledujiciho oznaceni; situaci s rychle se zatlumujicim fesenim
oznacCme, ze vzorek nevznika, ostatni feseni pak nazvéme vzorem. Dtivod tohoto odliSeni
vynika, pokud si predstavime métitko malého skoku vici velké velikosti oblasti. Dale
ozna¢me Turingovym prostorem mnozinu parametri tlohy (1), které vedou ke vzniku
VZoru.

Nejdriive jsme zkoumali linearni systém, tedy tlohu

0= &tu = dlamu + b10 + (h((l)) + bn)u -+ blgv v (()7 L) (5)

0= aﬂ) = dzamc'l} + bQO + 1921u + bQQ’U
s Neumannovymi okrajovymi podminkami. Takovy systém ma stacionarni reSeni, které
1ze analyticky spoc¢itat pomoci metody pouzité v [9]: Stacionarni systém se nejdiive rozdéli
na dva podsystémy, ,levy“ nad intervalem [0, £], ,,pravy“ nad intervalem [, L] a doplni se
o navazujici okrajové podminky v bodé £. Systémy se pak transformuji na systémy dvou
nezavislych eliptickych rovnic, které nejsou tézké v pripadé jedné prostorové dimenzi
spocitat. Vice nez samotny tvar reseni je zajimavé, Ze vysledek je dvojiho tvaru, jejichz
volba zavisi na podminkach

(d2b11 + dIbQQ)2 - 4d1d2(b11b22 - b12b21) > 07

6
<d2<b11 + S) + d1b22>2 — 4d1d2((b11 + S)b22 — b12b21> >0 ( )
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Obrazek 1: Vyobrazeni grafu koncentrace aktivatoru u blizkému stacionarnimu stavu
ulohy (1) se Schnackenbergovymi kinetikami (3) na intervalu [0,100] s Neumannovymi
okrajovymi podminkami a parametry: d; = 1, dy = 100, s = 0.5, { = L/2,a = 0.1 a A)
b=0.01,B) b=0.25 C) b= 1, D) b = 2. Cislovani obrazki je v celém textu stejné — po
radcich, zleva doprava.

Je jednoduché nahlédnout, Ze tyto podminky maji stejny tvar jako podminka pro Turin-
govu nestabilitu (4).

P1i vySetifovani asymptotického chovani feseni nelinearnich reakéné-difuznich systémi
se pouziva znalost chovani ptislusného linearizovaného systému, tedy linearniho systému
co nejblize aproximujicitho chovani piivodniho nelinearniho. To provedeme i zde; znovu
systém rozdélime na levy a pravy podsystém (oznaceni vysvétleno vyse) s pfidanymi nava-
zujicimi podminkami, ¢imz dostaneme dva systémy s konstantnimi koeficienty, u kterych
lehce vySetfime stabilitu pfislusnych stacionarnich stavii (sloZeninu téchto stacionarnich
stavll ozna¢me zkratkou PSS). Ty pak vedou k podminkéam analogickym k (6):

(dobly + dib3y)* — Adda(b, 09y — boby) > 0, j € {L, R}, (7)

kde bil jsou prvky Jacobiho matice vektoru funkei (fi, f2) vzhledem k jednotlivym podsys-
témim (systémy zvlast nad intervalem [0, ] a nad intervalem [, L]) spo¢tenych v bodech
prislusného homogenniho starionarniho stavu daného podsystému. Jelikoz je pravdivost
téchto podminek lehce zjistitelnd z parametri systému, slouzi jako rychlé rozpoznani
chovani systému. Poznamenejme, ze jelikoz pouzivame informaci z linearniho systému
u nelinearniho, nemutzeme cekat uplnou shodu podminek se skutecnou existenci ¢i nee-
xistenci vzorl — toto pravidlo plati u kazdé takové analyzy, tedy i klasickych podminek
Turingovy nestability. Vice se k tomu vratime v zavéru.
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3 Vysledky

Ukolem této ¢asti je prozkoumat na piikladech, jak jsou podminky (7) zminéné v minulé
kapitole pouzitelné pro odliSeni parametri modelt, u kterych vznika nebo nevznika vzor,
pripadné ktery ze tii typd uvedenych na Obrazku 1. Opét vezmeme Schnackenbergovy
kinetiky a budeme zkoumat prislusny Turingtiv prostor. Pro piehlednost vysledki volme
dva parametry, a to a a b; zbylé parametry fixujme. Volme velikost intervalu L = 500, skok
v poloving intervalu £ = 250. Posledni parametr velikosti skoku s volme maly (vzhledem k
ostatnim koeficienttim) libovolné vhodné tak, aby se mnoziny parametri pfislusné kombi-
nacim splnéni podminek (7) daly viditelné odlisit. Tlustra¢né se podivejme na Turingovy
prostory klasického systému se Schnackenbergovymi kinetikami f; = a + (s — 1)u + u?v,
fo = b — u*v) a pro parametry s = 0, s = 0.25 a s = 0.5, viz Obrézek 2. Vyse uve-
dené kritérium spliuje napiiklad volba s = 0.25, jak je vidét pozdéji i na Obrazku 3. Za
pocatecni podminku volime PSS, tedy funkci velmi blizkou stacionarnimu feseni.

1 ot 4 ok q
0.0 0.1 0.2 0.3 0.4 0.5 0.6 07 0o 0.1 0.2 [E] 0.4 05 0.6 07 B0 0.1 0.2 0.3 0.4 0.5 06 0.7

Obréazek 2: Vyobrazeni Turingova prostoru pro Schnackenbergiv model (f; = a + (s —
u + u?v, fo = b — u?v) na intervalu [0,100] s parametry d; = 1, dy = 100 a A) s = 0,
B) s =0.25, C) s = 0.5. Na ose z je parametr a, na ose y parametr b. Svétla barva znaci
ty parametry, pro které dochazi k Turingové nestabilité, tmava opak.

Pomoci softwaru Wolfram Mathematica jsme provedli simulace pro parametry a =
0.05¢ pro 7 = 1,2,...,12 a b = 0.25) pro 5 = 1,2,...,14. Zajimalo nas, pro které
kombinace parametri a a b vyjde ktery typ vzoru zobrazenych na Obrazku 1. A na
Obrazku 3 mtzeme vidét vysledek.

Vysledky simulace se s predikci shoduji po velké ¢asti zkoumaného Turingova prostoru,
az prekvapivé pfesné i na hranicich jednotlivych podoblasti. Na Obrazku 4 mtizeme vidét,
Ze na téchto hranicich tvar prislusnych ustalenych feseni v sebe postupné prechazi.

Vyjimku tvori oblast parametri (a,b) € [0,0.2] x [0,1]. Z grafu koncentrace v na
Obrazku bA B vidime, Ze jsme sice vzor ziskali, je ale patrné, Ze je uz mimo nasi predikci,
nebot je jiz velmi vzdélen od oblasti kolem PSS, kde plati stabilita linearni tlohy a tedy
podminky (7). Divodem je, Ze v této oblasti parametri roste diky nelinearitdm velikost
skoku v PSS pro koncentraci v nadevsechny meze. Skutec¢né, tento skok je roven

b(s —2)s
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Obrazek 3: Zobrazeni vysledkil simulaci systému se Schnackenbergovymi kinetikami se
skokem v bodé ¢ (f; = a + (h(z) — 1)u + v?v, fo = b — u?v) pro parametry L = 500,
¢ = LJ/2 as =025 Na pozadi je zakreslen prunik Turingovych prostorti z Obrazku 2
pro s = 0 a s = 0.25; tedy predikce chovani systému dle podminek (7) — svétla barva
znad¢i predikovany vznik vzoru (Obr. 1C), tmava barva zadny vzor (Obr. 1A), barvy
na skale mezi nimi — svétlejsi vzor s nehomogenitou vpravo (Obr. 1B), tmavsi vzor s
nehomogenitou vlevo (Obr. 1D). Znackami jsou pak ve vrcholech mfiZe oznaceny vysledky
simulaci: o pro zadny vzor (Obr. 1A), e pro vzor na obou stranach (Obr. 1C) a X pro
vzor jen na levé strané (Obr. 1D). Na ose x je parametr a, na ose y parametr b.

jeho graf muzeme vidét na Obrazku 5C, ze kterého vidime, ze podoblast Turingova pro-
storu, kde predikce nesedéla, odpovida oblasti, pro kterou je skok pfilis velky. Tento
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Obrazek 4: Vyobrazeni grafu koncentrace aktivatoru u blizkému stacionarnimu stavu
ulohy (1) se Schnackenbergovymi kinetikami (3) na intervalu [0,500] s Neumannovymi
okrajovymi podminkami a parametry: d; = 1, dy = 100, £ = L/2, s = 0.25, b = 1.75 a
A)a=0.5,B)a=055 C)a=0.6.

vysledek se zda byt v souladu s pocatecni ivahou, ze by mél byt skok maly vzhledem k
velikosti oblasti, aby efekt skoku byl stale zanedbatelny vici efektu samotného systému.

100 200 300 400 500 oz 100 200 300 400 500 ot 0z 03 o

Obrazek 5: Ilustrace mista neshody vysledki simulaci s predikci. Na prvnich dvou ob-
razcich je graf koncentrace inhibitoru v se Schnackenbergovymi kinetikami (3) na inter-
valu [0,500] s Neumannovymi okrajovymi podminkami a parametry: d; = 1, ds = 100,
£§=1L/2,5s=0.25 a=0.1ab=0.25, respektive b = 0.5. Na tfetim obrézku je zobrazeni
funkce skoku PSS u inhibitoru v v zavistlosti na parametrech a a b.

4 Zavér

V této praci jsme navazali na predeslou praci, ktera se zabyvala hledanim podminek
rozhodujici o vzniku ¢i nevzniku prostorové nekonstatnich vzorkt obecného RD systému
s prostorovou zavislosti v koeficientu u linearniho ¢lenu kinetiky ve formeé skokové funkce
h(z). Cilem bylo vyzkousSet platnost téchto podminek na pfikladu tplného nelinearniho
systému a ilustrovat tak souvislost mezi predikci ziskané z linearniho systému s chovanim
nelinearniho systému. Provedli jsme tedy sérii simulaci pro Schnackenbergovy kinetiky a
vysledky jsme vidéli v pfedchozi kapitole.

Nalezena mira shody se da povazovat za tspésnou, potvrzujici nasi domnénku; ale
zaroven poukazuje na omezenost platnosti této analyzy. Podobné jako u ostatnich kva-
litativnich analyzach zaloZenych na ziskani informace z vedouci ¢asti systému a zane-
dbévajici méné dulezité ¢asti (naptiklad linearizace) je tfeba nezapominat, ze jsou tyto
predikce platné jen velmi blizko vychozim stavim, a tedy nékdy zavadéjici. Ukazuje to
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ale, ze dana analyza je spravna cesta a ze tyto podminky davaji za urc¢itych dodatecnych
predpokladi (které obdobné jako u linearizace nemusi byt explicitné napsatelné) kyzené
vysledky.
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Abstract. Quantum entanglement is an important resource for quantum computation. There-
fore, entanglement purification is essential for quantum computation and communication. Pu-
rification protocol which uses measurement-based selection may induce nonlinear dynamics with
exponential sensitivity of the state evolution to initial conditions. We aim to study the action
of one particular protocol on a pair of qubits. This should lead to understanding of how the
protocol purifies the entanglement. In contrast to previous work which studied only pure states,
we also work with mixed states which are relevant for practical purposes. In this paper, we focus
on evolution of mixed one-qubit states as it plays an important role in the two-qubit evolution.
All new findings give us deeper insight into the complex dynamics of iterated maps.

After a brief introduction to the topic we describe the regime of asymptotic behaviour of
one-qubit evolution. We discuss this new type of dynamics as it is different than previously
described chaos. Then we examine the role of this chaos in the two-qubit dynamics. In the end,
we conclude all new findings on the two-qubit entanglement purification.

Keywords: qubit, quantum entanglement, chaos

Abstrakt. Kvantové provazéani je dilezitym zdrojem pro kvantové pocitani a komunikaci, proto
je dilezita jeho purifikace. Purifikac¢ni protokoly vyuzivaji selekci stavi na zékladé vysledku
meéfeni, a mohou tak vyvolavat nelinedrni vyvoj systému s exponencialni citlivosti k po¢ateénimu
stavu. Cilem naSeho vyzkumu je studium jednoho takového protokolu ptisobictho na dvojici
qubitia. Tim se zjisti vhodnost protokolu k purifikaci provazani. Na rozdil od predchozich ¢lankda,
které se vénovaly pouze Cistym stavim, zde se berou v potaz i stavy smiSené, coz je relevantni
pro praktické pouziti protokolu. Zejména je studovana akce protokolu na jednoqubitové smiSené
stavy, jejichz vyvoj je vyznamnou soucésti vyvoje stavi dvouqubitovych.

Po struéném tvodu do problematiky je detailné popsan rezim asympotické evoluce jedno-
qubitovych smiSenych stavi. Tato nova dynamika je jina, nez difive popsany chaos. Posléze je
rozvedena tuloha této dynamiky ve vyvoji dvouqubitovych systémii. VSechny nové poznatky o
evoluci provazani dvou qubitd jsou shrnuty v zavéru.

Klicovd slova: qubit, kvantové provazani, chaos
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1 Introduction

Quantum information, computation, and communication are promising branches of mod-
ern physics. New algorithms using the very quantum properties of our world can offer
advantages to classical algorithms. One of the most important resources that is essentially
missing in classical physics is the counterintuitive phenomenon of quantum entanglement.

The entanglement was first noticed as a paradox in the quantum physics by Albert
Einstein in the famous EPR paper [3]. Entanglement is a mathematical consequence of
axiomatic definition of quantum-world description: Consider a system composed of two
subsystems. It is than described as a tensor product of corresponding Hilbert spaces.
When choosing bases of the systems, we can find states that cannot be written as a
product of some states of the subsystems. I.e. the state of the system cannot be viewed
as a composition of substates but it is an indivisible entity.

As an example, consider two photons in superposition %(Hﬂ +]J4)). This means that
both photons have the same polarisation but we do not know which one. When measuring
one of the photons, the information about the other’s polarisation is also obtained without
any restriction on its position. So we seemingly may acquire the information about its
state at instant, i.e. with the speed higher than the speed of light. However, this EPR
paradox must be viewed in the following way. These two photons form a single entangled
system. In the quantum information theory, entanglement is viewed as an amount of
information that is shared between the particles. In our example, when measuring one
photon, we obtain complete information about the other. For this reason, this example
state is one of the maximally entangled states (so called Bell states) which are crucial for
applications like quantum teleportation.

Quantum computation offers interesting effective algorithms which makes this branch
very promising. However, one of the most important difficulties for successful quantum
communication is still being struggled with. It is the environment that in principle cannot
be rid of and causes state decoherence. Together with the state, its entanglement also
decays. One way to fight this decoherence is the use of purification protocols - processes
that can repair the state at the cost of sacrificing of some of its copies.

In this article we consider one particular protocol proposed by Bechmann-Pasquinucci
et.al. and improved by Alber et.al. |2, 1]. It uses measurement-based state selection to
modify density operators in a very simple nonlinear manner. The nonlinearity of the
protocol induces exponential sensitivity to the input state. We aim to study action of
the protocol on a pair of qubit intending to prove its purification capabilities. However,
even such a simple system is too complicated to study the chaotic behaviour. The biggest
complication is the lack of mathematical apparatus for multidimensional functions.

Previous papers focused on pure one-qubit states or some special subsets of pure two-
qubit states. We aim to investigate the protocol action generally on mixed two-qubit
states. At least two qubits are of course needed to study the evolution of entanglement.
As we mentioned, this system is already too complicated to understand and describe
arbitrary state evolution at this moment. Therefore, we use some observations, e.g.
about the behaviour of product states and study in detail evolution of a mixed single-
qubit state. This knowledge should help us to obtain insight into global dynamics for
arbitrary initial states.
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2 Theoretical background

2.1 Protocol iteration

The protocol [1] is physically realised in four steps: 1) the input states (all are the same)
are divided into control and target qubits 2) XOR gate is then applied to the pair of
control and target qubits 3) the control qubits are measured and when 1 is measured (in
computational basis), the pair is discarded 4) the remaining qubit is modified using a
twirling operator.

The protocol is based on the application of XOR gate and the measurement based
selection which together form a nonlinear operator. The cost of this nonlinear operation
is paid with loosing considerable amount of qubits which are projected to |1).

Mathematically, the action of the protocol has a simple form (in computational basis)
as one protocol iteration squares density matrix elements and renormalises them. We
denote this nonlinear operation with S. This works with the one-qubit states as well as
the two-qubit states. The matrix dimensions will not be distinguished when using S; the
action of S can also be written as an elementwise product of the matrix with itself.

This protocol can be enriched with a twirling operator, we use the Hadamard gate
(H = HT = H~! for one-qubit or H ® H for two-qubit protocol). For a single qubit
states, the result after one iteration of protocol is

p—p =HS(pH, (1)
2 2
P11 P12 1 1 1)
S(p)=pep= . H=— . 2
P)=p0p (pél péz) ﬁ(l -1 @

2.2 Chaos description

Briefly, chaos is sensitivity to initial conditions. So, the system may evolve in a very
different way even for the slightest disturbation of the original state. A mathematical
theory, where chaos is well described concerns functions of a single complex variable,|6].
For such function f and initial state z € Domy C C, f is sensitive in z when:

(3> 0)(¥5 > 0)(Fy € C) |z —yl < 5 A If"(z) — F ()| = 2. (3)

Numbers z satisfying previous condition form so called Julia set of f. The rest of
points from the domain of the function forms so called Fatou set. In Fatou set, there are
attractive states where other states asymptotically converge to. Because the theory is
very extensive, we refer to [6] where the reader can find much more details.

Since we will generalise previous results in this paper, let us briefly summarise findings
from [4]: we can parameterise pure one-qubit states with ﬁ(m) +2|1)), z € C. This

state evolves into W“m + f(2)|1)) with evolution function

_1—z2

14220

f(2)

(4)

This f(z) is a rational polynomial function of degree 2. Therefore, its Julia set is
nonempty and we can look for attractor cycles by checking the critical points f’(z) = 0.
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This leads to a superattractive length two cycle 0 <+ 1. All considered states z € C
are divided into three sets - the Julia set with states that evolve chaotically, and two
subsets of the Fatou set which converge to the superattractive cycle with different parity
(converging to 0 in even or odd number of iterations).

Physical consequences for z from the Julia set (which in this case has empty interior)
is that the corresponding states evolve (seemingly) randomly, chaotically. Therefore,
the result cannot be predicted and is useless for quantum computation. On the other
hand, the states corresponding to the points from Fatou set (almost all states) are purified
towards the cycle |0) <> \%(!0} +|1)). If one of this state would be needed for computation
purposes, the protocol works as we wish.

The same evolution function drives the behaviour in a subset of pure two-qubit states
parametrised {ﬁﬂOO) + z|11))|z € C}. The superattractive cycle here contains the

Bell state \%(!O@ + |11)) which is the reason to use the protocol to purify entanglement.

In the further text we consider evolution in more variables, namely in 3 real numbers
characterising a mixed one-qubit state. There is almost no theoretical background for
such multidimensional functions. Therefore, we try to simplify the situation finding some
special subsets which allow at least numerical examination.

Formally, the evolution we study goes beyond the theory in [6]. We should not use
terms like Julia set or attractive cycles. However, the dynamics seems to exhibit similar
features so we stick to these terms in rather informal way for the purposes of this paper.
We also should not speak of chaos since it is proven to be contained only on the Bloch
sphere. At the moment, we cannot present analytical proof for the sensitivity in some
states inside the ball, although it seems to be true based on numerical analysis.

3 Mixed one-qubit state evolution

While paper [4] studies the action of the protocol [1| and its modifications on pure single-
qubit states and [5] studies the protocol acting on some of pure two-qubit states, we now
present the study of the protocol action on a mixed single-qubit state. For the general
applicability of the protocol, it is vital to understand its action on all states, not only the
pure ones. Therefore, in this paper, we go beyond borders of formerly used theories.

All considered qubits form a ball - in Pauli matrix representation:

1 <1+a b+ic

P=5 0 e 1_@) cabceR:aA>+V+2<1. (5)

We would like to stress that these matrices are characterised by three real parameters.
What is now essentially different is the presence of an additional dimension compared
to the pure states ﬁ(m) + z|1)) - they depend on a complex parameter, i.e. two real
numbers only. The pure states form the border of the sphere with a? + b* 4+ ¢? = 1. The
interior of the sphere contains mixed states, we also consider important to find whether
and how the purity of the state changes during the evolution, for this purpose we can
measure the purity with

2 b2 2
Pue(p) = Te(p?) = L (6)
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After one protocol application, the new density operator is parameterised by

, = , 2a , —2bc
ad=-— =—, d=——.
1+a2’ 1+a?’ 1+a?

(7)

The dynamics is thus given by a vector function of three real variables. Later, we will
give reason for why we have not succeeded in an attempt to write it as a (real-)parameter-
dependent function of a complex variable, e.g. f,(b+ic). Such a form would allow us to
perform analyses like in previous paragraph along a scale of the parameter.

Let us make notion on the symmetries that arise from the evolution formulas: density
operators determined by (a,b,¢), (a, —b, —c), (—a, —b, —c) always happen to end in the
same state after two iterations. This means that the asymptotic evolution is symmetrical
with respect to the centre of the ball and also with respect to the plane a = 0.

To examine and visualize the evolution, we decided to slice the ball of the mixed states
and numerically estimate the evolution. We remind that the numerical approach is the
only one we have at hand. Instead of slicing the ball in planes a = const. etc. we decided
to stratify the ball into spheres for two reasons: the spheres are formed by states with
the same purity; the dynamics should collapse into formerly studied dynamics of 4 for
the border (Bloch) sphere.

So, the first parameter determining a state is its purity, which is the same for a sphere
of states. This sphere is than projected via stereographic projection onto a plane with
coordinates x,y. Thanks to the symmetries, it does not matter which pole we take for
the projection, the resulting pictures are symmetric with respect to the centre and also
with respect to the axes x,y. The parameterisations are connected:

14+ a®+b%+ 2 b c
b x: ) y: *
2 1+a 1+a

Pur = (8)
To acquire the asymptotical evolution numerically, we construct a dense equidistant
grid in a plane, which is then folded onto a sphere of a chosen purity using inverse map

1— 2?2 — g2 2 2
0= V2Pur— I b=/ 2Pur— I o= /2P — 1

1422 + 9% 1422 +y% +a2 +y?

(9)
These numbers are then evolved using sufficient number of iterations 7 (usually 40).
After calculating the evolution on the grid of states (pixels of the pictures below),
a colour is assigned to each initial state according to its asymptotical limit. From the
computed behaviour we find reason for why we could not compose variables a,b, ¢ or
Pur, z,y into a single complex number like for the pure states; the evolution tears and
mixes the ball interior in a very complicated (chaotic) manner leaving no obvious invariant
hyperplanes of complex dimension 1, the only possible exception being the Bloch sphere.
Let us mention now two special sets - the ball axes b = ¢ =0, a = ¢ = 0. They are
invariant on two iterations of the protocol; after one iteration, the axes are mapped into
each other. Inside these sets, the evolution (for two protocol iterations) is determined by
a single function of a real variable:

20
1404

2a
1+ a?

a— fola) = ( )2 ,resp. b — fy(b) = (10)
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Checking these functions one can see that it is sufficient to examine only the evolution
on positive semiaxes, a,b > 0 = ¢. There is a point on each axis which is a fixed state.
These two fixed states together form a repulsive length two cycle, numerically they are

; (1)

Pa =51 0.543689 1 0 1 —0.295598

1 1 0.543689 1 /1+0.295598 0
5 A = Pb

States closer to the centre of the ball converge to the centre, states further from the centre
than the fixed points converge to the pure state a = 1,6 =c =0, resp. b=1,a =c = 0.
These two states together form an attractive cycle of the protocol. It is exactly the cycle
z = 0 4> z = 1 mentioned in paragraph 2.2.

Back to all mixed states, asymptotic dynamics is naturally different compared to
analysis in [4] not only because we study more-dimensional object. From numerical
results, new attractor is found - the centre of the ball which is the completely mixed
state. In total, there is one attractive (pure) cycle and one attractive fixed (mixed) state

10 1/1 1 1/1 0

Because of the length two cycle, we perform even number of iterations in our numerical
calculations. In such case, they say that from all the states, ca. 48.66% converge to py,
23.64% to ps which means 72.3% of all states converge to the pure cycle. (In case of odd
number of iterations, the areas of convergence to pi, p2 swap.) Ca. 27.42% of states was
estimated to converge to the mixed attractor ps. The rest corresponds to the states that
behave chaotically or converge too slowly to be successfully assigned to any attractor.
Based on the theory in [6], we consider very probable that the 'Julia set’ has empty
interior and fractal dimension € (2, 3).

From the picture below, one can see that chaotic features are present even inside
the ball. However, the fractal patterns decay with the decreasing purity and for low-
purity states we obtain simple shapes (see the case of initial purity 0.65). The border of
the white/grey/black regions which we suppose to form the ’Julia set’ seems to satisfy
some simple polynomial function. This is possible for the Julia set, remember function
f(z) = 2* with the unity circle forming the Julia set.

However, in our case we cannot guarantee that the points from the ’Julia set’ satisfy
the condition 3, which is the core of the Julia set definition. We remind that all presented
findings are based on numerical analysis. Although we support them with very careful and
detailed observations, we cannot exclude the existence of some degenerate cases violating
the definition of attractiveness/repulsiveness of the states.

4 Mixed two-qubit states evolution

To purify entanglement one of course has to have at least two qubits. One of the reasons
to investigate the protocol action on a single qubit is hidden in following observation. In
words, separable states form an invariant set.

(H @ H)S(p1 © p2)(H @ H) = (HS(p1)H) ® (HS(p2) H) (13)
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Initial purity: 0.65 Initial purity: 0.80

Initial purity: 0.90 ‘ Initial purity: 0.95

Figure: Convergence on the spheres of equal initial purity - cuts represent areas of x,y €
(0,2) x (0,2). For even number of iterations, white colour represents convergence to py,
black to py. Grey colour stands for the states converging to the mixed attractor ps.

It can also be written as
(H @ H)[(p1 @ p2) © (p1 ® p2))(H® H) = [H(p1 © p1)H] ® [H(p2 © p2)H].  (14)

This results into very simple dynamics factorisation - the subsystems are independent.
The dynamics of the product states is a cartesian product of the one-qubit dynamics.

Thanks to this, we find all attractive cycles in the product states at instant, no other
separable attractor can exist. The attractive cycles are formed by:

pi @ Pj s 27] S {]-7 273} (15)
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The attractiveness of these states is of course meant in following way:
(Vi,j € {1,2,3})(3U; jneighbourhoods of p; ;)(Vo;; € U; ;)(0;®0; asympt pi®p;). (16)

We cannot argue that these states also attract other states from the nonseparable states.
Consider now the cycle ps®p, <> p3®pp. This cycle is attractive in the first subsystem
but repulsive in the other subsystem, which is the behaviour known for saddle points in
the differential equations theory. Furthermore, e.g. cycle p, ® p, <> po ® p, is repulsive in
both subsystems. We believe this effect when a state is attractive for some perturbation
while repulsive for another perturbation is present in the evolution of general density
matrices. Even more complicated behaviour might happen. That is exactly what makes
the investigation of general state evolution so difficult - it is unclear, what more types
of chaos may emerge. We mention that from the aspect of the theory of chaos, both
examples are chaotic states and would belong to ’Julia set’. However, we believe it is
important that the nature of the chaos is different depending on the direction in multiple
dimensions allowing behaviour of Fatou set points as well as the chaotic features.
Surprisingly, the product states are not the only invariant set. At last, we present
the most important set of states we have found. It is invariant on two iterations of the
protocol and contains mixed, entangled states - it is the generalisation of the set of pure

states {ﬁ(l,0,0,z)} from [5].

1 0 0 pz 14a 0 0 b—1c
1 0 00 O :1 0 00 0 (17)
I+)z210 00 O 2 0O 00 0
pz 0 0 =z b+ic 0 0 1—a

The latter parameterisation is again based on use of Pauli matrices. We use it because
after even number of protocol iterations, these parameters evolve identically with the
evolution of a,b,c in mixed one-qubit states (after the same number of iterations, of
course). Therefore, the evolution in this set of states is already examined with the results
discussed in the previous paragraph. Only now, the attractors a =1, b =c=0;a =
c=0,b=1;a=0>b=c =0 represent another states: the pure states - the Bell state
\%(|00) + |11)) and separable |00), the third attractive state is mixed with Pur = 1/2
and unfortunately contains no entanglement.

We conclude that when even number of iterations is performed, ca. 23.64% of states
17 converge to the Bell state. Moreover, the area of convergence seems to form quite a big
neighbourhood of the Bell state. This makes the protocol very useful for the purification.
Although we lack the analysis of the attractiveness in a general neighbourhood of the
Bell state, each new dimension is an important step to understand the multidimensional
chaos.

The attractiveness of the Bell state cycle still cannot be guaranteed concerning gen-
eral evolution. It still can be some degenerate case like the attractiveness in the sense
mentioned with the cycle ps ® p,p. However, this result extending the attractiveness
to another dimension is still very important because of the complicated nature of the
multidimensional nonlinear dynamics.
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5 Tribonacci constant in entanglement purification

Golden ratio is a famous number known for its overextensive appearance in Nature. It is
the only real root of polynomial 22— —1 and it also is a limit of two consecutive members
of the famous Fibonacci sequence. We can construct so called tribonacci sequence [7]:

T0:T1:O,T2:]_; VnEN:Tn+2:Tn+1+Tn+Tn_1 (18)

The limit of two consecutive numbers exists and is called tribonacci constant= 7; it can
be shown that this number is the only real root of 23 — 22 — 2 — 1. This number can
be found in our protocol: Pure two-qubit states ﬁ(l, 0,0, z) were found to be subject
to evolution function 4, [5]. Looking for fixed states, i.e. such z that f(z) = z, we get
equation 23 + 2% + 2z — 1 = 0. Putting % instead of z into the polynomial and multiplying
it with 23, we get exactly the polynomial for tribonacci constant. Therefore, the states
with z equal to 77! or the reciprocal value of the conjugated roots are the fixed states.

Nevertheless, this is not the only role of the 7. We mentioned a repulsive length-two
cycle of mixed one-qubit states 11, we now see it is

1/ 7t (_)1 1477t 0 [T« 0 - (19)
Pe=o st 1 2\ 0 1-74)"\0 1-7) "™

Newly appearing real numbers 7,, 7« have been found numerically; they have following
properties: Solving 23 — 322 — 2z — 1 = 0 we obtain a root 7, and the other two roots
have the real part of their reciprocal values equal to —7,. They also appear in the fixed
pure two-qubit states, e.g. (1,771, 77!, 7,71). Computing N we can check 7, = 72 which
has its hidden reason in the evolution formulas. We finish our numerical observations
with the fact that the minimal polynomials for the 7!, 772 are similar to the minimal
polynomials of 7,72. They are 23 + 22 + 2 — 1, 23 + 2% + 32 — 1 respectively.

Based on these observations and further numerical calculations we have found that
all one-qubit states with purity smaller than 7! converge to ps; while there is a state
with purity 77! that does not. Also, pure two-qubit states (1,0, 0, z) with |z| < 77! must
converge to z = 0 after even number of iterations not being so for |z| > 771,

All these very fortunate numerical findings are very surprising and we suggest deeper
studies of this circumstances. For example, we set few questions: What is the reason
for the mentioned polynomial 23 — 322 — 2 — 1 = 0?7 What is exact connection between
polynomials x3 + 2% + 3z — 1, 2® + 2%+ x — 1 (determining coefficients in fixed states) and
functions }jri, ﬁ:—;; (found to determine behaviour in pure two-qubit states)? Is there
an other useful relation between general pure two-qubit states, mixed one-qubit states

and some two-qubit mixed states?

6 Conclusion

After brief introduction, we have described the evolution in the set of mixed one-qubit
states. We have used numerical calculation to estimate the nature of chaotic behaviour
that is present inside the ball of the considered states. A new attractor has been found
- the completely mixed state. Chaotic features are present in the mixed state dynamics,
although the fractal patterns disappear with the lower purity.
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In the product states, the dynamics of the subsystems is separated and so the evolu-
tion is simply a cartesian product of the one-qubit dynamices. This set has no use for
purification as all attractors are separable, thus with no entanglement.

Thanks to the found relation between mixed one-qubit states and a particular set of
mixed two-qubit states, we have also described the evolution inside this set. The set
contains entangled states and so we get to the original aim of our protocol - does it purify
the entanglement? The formerly known cycle containing the Bell state has been shown
to attract much more states than before. Indeed, mixed two-qubit states can also be
purified to the Bell state. We conclude the protocol purifies the entanglement in much
more states than previously shown.

Although we have numerically shown that most states of form 17 converge to some
attractive cycles, we cannot give any analytical proof for the behaviour in the 'Julia
set’. Numerical estimates support the chaotic behaviour but we have to realise that the
finite precision of the computation inherently makes the chaos calculations imprecise. We
consider important to change our attitude to chaos in the 15-dimensional space of mixed
two-qubit states as some states/cycles may be attractive in some directions but repulsive
in others. Although such states are considered repulsive in total, we believe this type of
chaos should be treated differently.

An interesting observation has been made revealing that the tribonacci constant is
deeply connected to the special states being purified by the protocol. While some of
the reasons for the appearance of this number have been explained, we still feel that the
connection is much more involved.
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Abstract. Quantum walks have established their place in quantum information sciences and
many of their aspects have been studied. Here we present an alternative definition of a quantum
walk, which is more general and contains the standard definition. We modify both the Hilbert
space of the system and the time evolution.

An essential part of a the time evolution of a quantum walk is the shift operation S moving the
walker among vertices of a graph that the walk is defined on. In simple cases like line graphs
or square lattices, there is a natural shift operator. Nevertheless, there are always multiple
options and this becomes much more apparent for more complex graph. Our approach allows
for convenient classification of possible shift operations, which we consider very relevant when
in we want to use quantum walks for simulation of physical systems.

The formalism itself and its benefits are demonstrated by investigating quantum walks with
dynamical bond percolation on honeycomb graphs. The results show a crucial dependence of
the resulting asymptotic state of the quantum walk on the choice of the shift operation S.

Keywords: quantum walks, definition, arbitrary graphs, honeycomb lattice

Abstrakt. Kvantové prochizky maji své pevné misto v kvantové informatice a mnohé jejich
aspekty byly intenzivné zkoumany. Zde prezentujeme alternativni definici kvantové prochazky,
ktera je obecnéjsi a zahrnuje v sobé definici standardni. Nova definice upravuje jak Hilbertiv
prostor systému, tak jeho ¢asovy vyvoj.

Zasadni soucasti Casového vyvoje kvantové prochazky je "operator presunu" .S, které presunuje
chodce mezi vrcholy grafu, na kterém je kvantova prochazka definovana. V jednoduchych, jako
jsou piimkové grafy nebo ¢tvercové miizky, existuje prirozena volba operatoru S. Nicméné vzdy
Na§ pfistup umoziuje pohodlnou klasifikaci moznych operatori presunu, coZ povazujeme za
zésadni, pokud chceme pouZivat kvantové prochazky k simulacim fyzikalnich systémii.
Samotny formalismus a jeho vyhody jsou demonstroviny pfi zkouméni kvantovych prochazek s
dynamickou perkolaci hran na Sestitthelnikovych mfizkadch. Vysledky ukazuji zasadni zavislost
vysledného asymptotického stavu kvantové prochazky na volbé& operédtoru S.

Klicovd slova: kvantové prochéazky, definice, libovolné grafy, Sestitthelnikova mfizka
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1 Introduction

Quantum walks have established their place in quantum information sciences. Apart from
existence of specific quantum walk algorithms, they can serve as a universal quantum
computer. Quantum walks have already been realised experimentally in various physical
systems, which also demonstrates their usability for quantum systems simulations.

The basis of a quantum walk is an undirected graph. There are some simple cases of
quantum walks with well established definitions like probably the simplest one: a quantum
walk on a line graph. Nevertheless, when we move to some more complex graphs or more
general situations, it may be unclear, how to define the quantum walk or which one of
the possible variants to choose. Examples of such problematic situations may be: graphs
that are not regular (finite cuts of lattices), graphs with various directions of edges in
different vertices (honeycomb lattice), dynamical changes of the graph in different steps
of the walk (dynamical percolation of edges) and so on.

We present a formalism for defining quantum walks in all cases described above and many
others. This formalism allows to address the ambiguity of the definition and therefore
allows to either examine multiple options or choose the appropriate one.

2 Perfect (Non-Percolated) Quantum Walk

Let us have an arbitrary undirected graph G(V, E') with the set of vertices V' and the set
of edges E, both of which are at most countably infinite. We call G the structure graph
of the quantum walk. In general, the structure graph is not assumed to be simple neither
connected.

2.1 The Hilbert Space

The Hilbert space H of our quantum walk is spanned by states corresponding to directed
edges of a directed graph G@(V, E(¥), which we will call the state graph. The state
graph G@(V, E@) has the same set of vertices V as the structure graph G(V, E) and
its set of directed edges E@ consists of two subsets: E@ = E;(,d) uEY. Edges from the

fist subset E;()d) will be called paired and are derived from the structure graph G(V, E).
For every undirected edge e € E we have two directed edges egd),egd) € Eéd) going in
opposite directions and connecting the same two vertices as e. Corresponding to these
paired edges we have paired states |egd)> ) ]egd)>. Edges in the other subset E\” are called
unpaired and are independent of G(V, E). Unpaired edges are loops — edges beginning
and ending in the same vertex. Adding loops allows us to arbitrarily increase degrees
in vertices of our choice. (There may be some other loops originating from loops in the
structure graph G(V, E), but those are still paired edges.) Overall, for every directed
edge e € E@ | there is a base state |e®) in H. The state |e/®) represents a walker
standing in the initial vertex of e(® facing the direction of the terminal vertex of e(@.
Traditionally, coined quantum walks are described by a position Hilbert space H,
represented by vertices of an undirected graph and so called coin Hilbert space H,. repre-
senting some internal degree of freedom of the walker. The overall Hilbert space is then
H =H, ®H. |5]. Often, the graph G is regular and the dimension of H, corresponds to
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the degree of a vertex, in which case the correspondence is straightforward. Sometimes,
the degree of the vertex is lower than the dimension of the coin space. It may be for
example on borders of finite graphs [2| or if there is some state representing no movement
of the walker [4]. For those cases, we have the possibility to introduce loops in our state
graph G (V, E() that appropriately increase the dimension of the Hilbert space.

Even though the Hilbert space ‘H of a quantum walk according to our definition does
not have to be of the tensor product form H = H, ® H., it can always be written as
a direct sum of vertex subspaces: H = @, Ho, where H, is a subspace spanned by
states corresponding to edges originating in v € V.

2.2 The Time Evolution

Here, we only deal with discrete-time quantum walks. One step of the evolution from
time ¢ to t 4+ 1 is realised by application of a unitary evolution operator U:

[W(t+1)) =U (1)) = U (0))

In analogy with classical random walks, the evolution operator of a quantum walk is a
product of two unitary operators: U = C'S. The operator C'is called the coin operator and
S is called the shift operator. The coin operator C represents some local unitary evolution
in vertices (subspaces H, for v € V are invariant under the operation C'). Therefore C
can be represented by a block-diagonal matrix and can be written as C' = @, C.,
where C), is the operator of the action of C' restricted to the subspace H, for v € V. In
the special (but common) case of a regular graph and one coin C, in all vertices, the coin
operator is a tensor product C' = I, & C,, where I, is the identity on a Hilbert space
spanned by states corresponding to vertices of the structure graph.

The shift operator S realises the movement of the walker among different vertices. The
shift operator has to respect the structure of the state graph G@(V, E(?). In particular,
from an edge e® € E@ going from v; € V to vy € V, the walker moves to some edge
beginning in v9. There is one canonical way of defining the shift operator. We will denote
this particular shift operator by R and refer to it as a reflecting shift operator. The action
of R is defined as follows: If we have an undirected edge e € E with two corresponding
directed paired edges e\”. el € EI?, then R|e”) = |ef”) and R|el”) = |el). Any
unpaired state |1} for [ € E is mapped to itself, so R|l) = |I). Obviously, such shift
operator is defined on any graph in consideration. An example for a finite honeycomb
lattice is given in figure 1(a). It is good to note that the operator R is its own inversion
and therefore is also Hermitian (R = R™! = R).

Any other shift operator S can be composed of the action of the reflecting operator
R and some local permutation P (P only permutes states locally in vertices.) Therefore,
we can write the evolution operator as:

U=CS=CPR.

3 Percolated Quantum Walk

Let us now describe what we call a bond percolation in quantum walks — scenarios, in
which some edges of the original structure graph G(V, E) are broken (closed/missing).
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N

(a) The reflecting shift operation. (b) The cycling shift operation.

Figure 1: Examples of the actions of two different shift operators S on a honeycomb
graph. Colours and line types indicate the action S.

The generic way of introducing percolation is to choose some probability p € (0,1) and
make every edge open with the probability p and closed with the probability 1 — p.
A single realisation of this process gives rise to some percolation graph Gk (V, K), where
only the edges in K C F remained open.

The modification of a quantum walk for the percolated version is very simple in our
formalism. Just by choosing some configuration of the percolation graph, i.e. choosing
a subset of open edges K C F, the whole dynamics of a percolated quantum walk is
determined. For a given percolation structure graph G (V, K) we just modify the state
graph G@(V, E@) into G'?(V, K@). Simply, if some edge e € E is broken (e ¢ K), we
replace the two corresponding directed edges egd), €§d) € E@ with two loops. These two
edges are still paired, but we will now call them broken paired edges. Broken edges result
in a natural change of the reflecting shift operator R to the operator Ry. The difference
is that states corresponding to broken paired edges are also mapped to themselves in R,
as it is for unpaired edges.

The coin operation C' is not altered by the percolation at all and also the local per-
mutation P stays the same.

4 Asymptotic States of Quantum Walks with Dy-
namical Percolation on Finite Graphs

From now on, a quantum walk is assumed to have a finite state graph G@(V, E(4)
with finite number of vertices #V and finite number of edges #E@. The probability of
occurrence mx for a configuration K with #K open edges is 7 = p#&(1 — p)#E-#K
where #F is obviously the number of edges in the structure graph G(V, E).

The term dynamical percolation refers to the situation, in which a new percolation
graph G (V, K) is generated for every step of the quantum walk. Since such percola-
tion introduces a classical uncertainty to the evolution of the quantum walk, we use the
description of the state by a density matrix. We have to take into account all possi-
ble configurations of the percolation graph and therefore one step of the walk must be
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described as:
pt+1) = > mUxp(t)UL,
KCE
where Uy is the evolution operator with the modified reflecting shift operator Ry corre-
sponding to the particular structure graph Gk (V, K) for K C E.

This kind of time evolution is referred to as a random unitary operation. A procedure
for determining the asymptotic behaviour of a system governed by this kind of evolution
has been suggested in [3]. The asymptotic regime of such system is determined by so
called attractors — solutions of the set of equations:

Ux X,\Ul = \X,, forall K € 27, (1)

for some given A fulfilling |A| = 1.
The asymptotic state (the limit for infinitely many steps) of a percolated quantum
walk is than given as [3]:

prsselt) = 3N (p(0)X], ) X
Ai

where 7 distinguishes different attractors for the eigenvalue A in the orthonormal basis of
the solutions of (1) and p(0) is the initial state of the quantum walk.

We can now use the procedure described in [1| using the special structure of Ug. It is
possible to rewrite the set of equations (1) into:

RxXRl = \CP)'X(CP), forall K c2F (2)

The right-hand side is independent of the actual configuration of the percolation graph
K. Therefore, we can solve this set of equations in two steps. First we choose K = () (the
configuration with all edges closed). In that case we have Ry = I, where [ is the identity
operator. The equation (2) becomes:

CPX(CP)' = \X. (3)

The operators C' and P do not mix states in different vertex subspaces H,, so the matrix
CP is block-diagonal (assuming appropriate ordering of the basis). We can then split
the attractor matrix X into blocks X! corresponding to pairs of vertices vi,v, € V' and
solve the equation (3) locally:

(CU1PU1)X521(CUQPUQ)T = >‘X11;121’ (4)

where C,,,C,, and P,,, P,, are blocks of operators C' and P respectively acting on sub-
spaces H.,,, H,, for vertices v1,vo € V. Since the right-hand side of the set of equations
2 is the same for all configurations, the values of the left-hand sides must be mutually
equal for all configurations, so we obtain:

RgXRY, = RLXR!, forall K,L € 2F. (5)

We call this a shift condition and it gives the restrictions for binding the blocks X!
together into one attractor matrix X.
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4.1 Pure Eigenstates Ansatz

A method for finding attractors using pure common eigenstates of all unitary operators
Uk has been proposed in [2]|. If we have common eigenstates {|¢q) }a.i fulfilling

Uk o) = @|pai) , forall K C 2F (6)

corresponding to eigenvalue « (i distinguishes different common eigenstates corresponding
to ) then

Yi= > A3 |6ai) (65l
af*=\
is an attractor corresponding to the superoperator eigenvalue A\ = af*. We will call
attractors of this type p-attractors.
All p-attractors trivially fulfil a larger set of equations

Uk YUl =AYy, (7)

When compared to (1), the operators Ux and Uy can be different here. A non-trivial
result [2] is that any solution of this set of equations is a p-attractor.
The set of equations (6) can be rewritten as:

R |¢ai) = a(CP)V |¢a,) forall K C 27,

with only the left-hand side being dependent on K. We again start by solving the equation
for the empty configuration K = :

CP¢ai) = a|Pai) (8)
and then apply the shift condition:

Ry |¢ai) = RL |¢as) , forall KL € 2", (9)

4.2 The Shift Condition

Let us have a closer look at the shift condition for p-attractors (9) and for general at-
tractors (5). We introduce the following notation: for a paired edge i € E,gd), let ¢ be the
other member of the pair and for an unpaired edge i € E let i = 4. First note that
i =i in all cases. Further note that this notation is not related to any configuration of
the percolation graph K. The relation to the shift operator is that for the graph with all
edges open we have Rg |i) = |i).

Let us chose two configurations of the percolation graph K and L. The operator Ry
(Rx = Rl.) can be written as: Rx = Yoicpw k(@) (@] = Y cpw@ |i) (k(7)|, where we use
k as a map acting on directed paired edges as k(i) = 7 if i is open in K and k(i) = i
otherwise and k(i) = i = i if 4 is an unpaired edge. Similarly we use a map [ for the
configuration L.
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If we write |§) as [¢) = D ;cpw ¢;j) then the shift condition for p-attractors (9) is
Priy = duay, forall i € B K, L € 2P, which can be elegantly summarised indepen-
dently of percolation graph configurations as

¢i=¢;, forallic ED, (10)

The equality (10) is trivial for unpaired edges and for every paired edge we just need one
configuration K with the corresponding undirected edge open and one configuration L
with this edge closed.

A similar argument results in the shift condition for general attractors in the form

k@) A6 . d E
Xeny =Xy, forall i,j€ E9D K L e2

In the case i # j and i # j we have the strongest condition:
X;:X]’-:ij,:X;, (11)

because there are configurations with both relevant edges open, both closed and both
configuration with just one edge open. (Alternativel}i, 7 or j may be unpaired edges, in
which case the equality is trivial.) For ¢ = j and j = ¢ the conditions are only

Xi=X, Xi=X.

A crucial point in practical search for the set of attractors will be the difference of the
shift condition for the p-attractors and the general attractors. The general attractors
may differ from p-attractors only in the shift condition, because since the operator C'P
is unitary, the matrix solution of (3) is just a combination of solutions of (8).

The only cases where the shift conditions may differ are i = j and i = j. Because the
configurations K and L may differ in the p-attractor equation (7), the p-attractors must
also fulfil the equality:

X = X1 (12)

Therefore, every non-p-attractor must violate (12) in at least one case. If we show that
all diagonal elements corresponding to paired edges of an attractor are equal to the non-
diagonal ones from (12), that attractor is a p-attractor.

5 Percolated Grover Quantum Walk on a Honey-
comb Lattice

Let us now focus on a particular example of our general quantum walk. As the structure
graph G(V, E) we take finite honeycomb lattices of various shapes with loops added in

border vertices. Therefore, the Hilbert space H, in every vertex is three-dimensional and
we may use the coin operation:

CUEng
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in every vertex v € V. For simplicity of the argument, we will assume that the structure
graph is always connected.

Let us introduce a notation for directions in our graph so that we may denote any
directed edge by a vertex symbol and a symbol for direction. Let us place the graph
so that some edges are horizontal. All horizontal edges will be denoted by direction
H. The edges going between top-left corner and bottom-right corner will be denoted D
("diagonal") and the remaining ones A ("anti-diagonal"). The computational basis is
chosen in the order H, A, D.

We will be considering two different shift operators S (or two different local permu-
tations P) for our Grover walk on honeycomb lattices.

Reflecting Shift Operator

The first one will be called a reflecting walk, where P = I and we have the situation
shown in figure 1(a). This shift operator is very local - without the action of the coin
operator, the walker would not leave one edge.

When searching for p-attractors, we simply solve the eigenvalue problem for the coin
(8) in a particular vertex: Gs|d,) = a|¢,). There are only two eigenvalues of the Grover
matrix and those are 1 with an eigenvector |¢l) = [1,1,1]T and —1, where eigenvectors
form a plane orthogonal to the eigenvector |¢}).

The shift condition for p-attractors is

gbm,d = ¢v2,57 (13)

where vy,v9 € V, v; and vy are connected by an edge and ¢ is the direction of the
connecting edge (6 is H, A or D). Finding common eigenvectors for a whole graph for
the eigenvalue 1 is trivial - all components of the vector must be equal.

There are two rules for constructing the common eigenstates for the eigenvalue -1.
First, the sum of elements in a given vertex must be equal to zero (form of the eigenvector
space). Second, the two elements corresponding to the same edge e € E must be the
same (the shift condition). Every vertex in V' brings two free parameters and every edge
in £/ poses one restriction. Since all equations are clearly independent, we will have
N = 2#V — #F common eigenvectors on the whole graph. There are many ways how a
(non-orthogonal) basis of these whole-graph common eigenstates can be chosen.

We have found one common eigenstate corresponding to the eigenvalue 1 and N com-
mon eigenstates corresponding to —1. That results in 2 x N p-attractors corresponding
to the eigenvalue —1 and N? + 1 p-attractors corresponding to 1. Let us now search for
the remaining non-p-attractors. We start with the equation (4):

G3EGE = A2,

where = represents general form of blocks X! (u,v € V') of the whole attractor X.
For the eigenvalue -1, the general form of the one-vertex block is:

a B a+ B+
E=| B-—9+0 —a—7y+9d J . (14)
—pB—0 —a—90 v—0
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We will show that there are no non-p-attractors for the eigenvalue —1. We will use
the fact that a non-p-attractor has to violate some of the equations (12). This also means
that we only have to care about matrix blocks X/ for all v € V and their relations to
blocks X, X and X, where v € V' and u are connected by some undirected edge.
Let us assume that vertices u and v are connected by a horizontal edge. (Due to the
symmetry, the result for diagonal and anti-diagonal edges will be similar.) For clarity let
us use indices 1 and 2 instead of u and v. The shift condition among the matrix blocks
in question is:

IH _ 2H v1H _ y1H ~1H _ y2H 1A,1D2A2D __ ~-1A,1D,2A2D
Xig = Xop, Xog = X2H7X1A,1D,2A,2D = X1A,1D,2A,2Da Xin = Xoy :

(15)

Multiple indices are just a short-hand for multiple equalities.

Every one of the blocks X!, X?, X1 and X3 has the form (14), so let us denote param-
eters of each block by the corresponding vertices. If the equation (12) is to be violated
by these blocks, it must be X # XM and therefore ay; # ays.

In terms of parameters, the shift condition (15) results in oy = ag; and therefore
there are no other attractors apart from the p-attractors for the eigenvalue -1.

For the eigenvalue 1, the general form of the attractor in one vertex is:

a y+0 [B+e
E=|v+e [ a+d|. (16)
b+6 at+e v

Let us have three vertices and let us denote them just by numbers 1,2 and 3 for clarity
of equations. We assume that vertices 1 and 2 are connected by a horizontal edge and 2
and 3 are connected by an anti-diagonal edge. The part of the shift condition related to
these three vertices result in the equality: aqo — g = (a3 — [as.

Thanks to the symmetry, similar restriction will result from the shift condition for any
other orientation of the vertices. Overall, due to the shift condition, if the equation (12) is
not violated in one case, it can not be violated in any other (e.g. a2 = g = faz = Paa).

We know that there is at least the identity operator, which is certainly an attractor
and is not a p-attractor. Let us now assume that we have two different non-p-attractors
X1, Xs. If there is a linear combination z; X+ 2, X, = Y for some complex numbers z1, 2o
such that Y is a p-attractor, then we only have one independent non-p-attractor. The
other non-p-attractor (e.g. Xs) is just a linear combination of the first non-p-attractor X;
and some p-attractor Y and therefore we do not want to add X, to the set of attractors.

There clearly exist z1, 23 such that ziaq! + 2o = z1oq" + 2", (Here u,v € V
denote vertices and 1 and 2 distinguish the two attractors.) Since the equality will hold in
all other elements that could violate (12), the resulting linear combination of X; and X5
must be a p-attractor. In conclusion, there is only one non-p-attractor for the eigenvalue
1 in any honeycomb lattice graph and it can be chosen as an identity matrix.

Cycling Shift Operator

The walker may be cycling either clockwise or counter-clockwise in all hexagons. We
will examine for example the clockwise variant, which is shown in figure 1(b). The
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action of a local permutation P for a clock-wise cycling walk is a cyclic permutation
H—-D—A—H.

Since we have started by the most problematic case of the reflecting shift operator, we
will now just replicate the procedure for finding the asymptotic regime. In order to solve
(8) we start by solving: G3PSY |¢,) = a |¢,). The eigenvalues are o = 1, ap = ¢/ and

as = e /3 with corresponding eigenvectors
1 e_"%ﬂ e"%ﬂ
)= | 1| 1oy = | F |.l0) = | %
1 1 1

The shift condition (13) immediately results in three vectors |¢'),|4?) and |¢®) that
are just composed of identical blocks - one block for every vertex independently of the
particular structure of the graph. We have a 3-dimensional subspace of p-attractors
oY) (1], |0*) (9%, |¢®) (@] corresponding to the eigenvalue 1, 2-dimensional subspace
10" (0] ,|0?) (4] corresponding to the eigenvalue e/ and it’s conjugate space and 1-
dimensional subspace |¢?) (¢*| corresponding to the eigenvalue ¢’*™/3 and it’s conjugate
space.

When searching for the remaining attractors, a similar but simpler investigation as
in the case of the reflecting walks leads to the same conclusion that there is only one
non-p-attractor that can be chosen as an identity matrix.

6 Conclusion

In the examples above, we have seen that different choices of the shift operation may
have major influence on the dynamics of the system. (Even the number of attractors is
very different for the two presented variants.) Our definition of a quantum walk gives
us a good overview of all possibilities and those can then be addressed. Further we have
seen that with this definition, we can investigate quantum walks on any graph we want.
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Abstract. We investigate asymptotic dynamics of quantum markov dynamical semigroups
equiped with so-called faithful state. We derive the relation between the asymptotics generated
by the map describing time evolution of the states and the asymptotics of the conjugated
map, which describes time evolution of observables. This relation enables us to show that the
stationary states can be written in a form of so-called Gibbs-like states, which resemble of the
Gibbs states in statistical physics.
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Abstrakt. Studujeme asymptoticky vyvoj kvantovych markovovskych dynamickych semigrup,
pro které existuje takzvany vérny stav. Odvodime vztah mezi asymtotikou kvantovych stavi a
asymptotikou pozorovatelnych. Tento vztah nam umoziiuje napsat stacionirni stavy ve formé,
ktera pripomind Gibbsovy stavy pouzivané ve statistické fyzice.

Klicovd slova: markovovské systémy, asymptoticky vyvoj, integraly pohybu, stacionarni stavy

1 Introduction

Generally, the quantum mechanics is able to analytically describe the time evolution of
a closed quantum system. A closed quantum system is characterized by unitary time
evolution, resulting in a semigroup of unitary maps, which describe the time evolution in
an arbitrary time ¢ > 0. As real systems are alway interacting with their environment,
a closed quantum system is an idealization and it can be used in a very limited number
of cases, where interactions between system and its environment can be neglected. Any
quantum system, whose time evolution is not described by an unitary map is called an
open quantum system. Openness of a quantum system can result from more than an
interaction with an environment. For instance, we may not be able to fully describe the
quantum system itself, neglecting some degrees of freedom. This introduces randomness
in a time evolution of the quantum system, which is impossible to describe with an
unitary operator. For the reasons stated above, the theory of open quantum systems is
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important for both practical applications and for better understanding of the physical
laws governing microscopic systems.

The theory of open quantum systems is mainly focused on so-called quantum markov
processes |1, 2|. These are the systems, which meet the markov condition, which states
that the evolution of the state of the system depends only on the state of the system at
present time and not on the whole history of the system. From microscopic point of view,
this condition requires that the influence of the interaction between the system and its
environment on the environment is quickly dissolved in the environment. This is usually
true for systems, whose environment is much larger than the system itself. Systems of
these kind are called markovian.

There are two main approaches towards the time evolution of markovian systems -
iterative discrete approach and the continuous approach. In discrete approach, we choose
a time interval of length At which then defines our time resolution. The outcome of the
evolution during this time step is then described by a completely possitive map ¢. By
iterating this map, we get an arbitrary long time evolution of an open quantum system.
Within this document, we focus on the continuous approach, in which we describe the
time evolution by a certain dynamical semigroup P;, with ¢ > 0. The markovianity of
the evolution then implies certain properties, which need to be met by the generator £
of the semigroup Py, which needs to be so-called conditionally completely positive [3].

Only a limited number of physically relevant cases can be succesfully solved without
many unphysical restrictions. The mathematical difficulty results from a fact that the
generator responsible for the time evolution is often not normal and thus a diagonaliza-
tion in some orthogonal basis is not guaranteed. However, it can be showed that the
asymptotic part (i.e. for t — 00) of the generator is always diagonalizable in case of finite
systems and thus it can be solved analytically. This enables us not only to study the
asymptotics of the system, but also a general features as stationary states and integrals
of motion corresponding to the system.

The purpose of this document is to sum up known facts concerning asymptotics of
finite markovian systems, to present newest development in a field and to show applica-
tions of the discussed theory on finite quanutm networks. For this purpose, this document
is divided into following sections. In section 2, we define the quantum markov dynam-
ical semigroup and we hint the procedure, which leads to derivation of the asymptotic
evolution of finite markovian systems. We put stress on a fact that to be able to obtain
asymptotics, given system must be equipped with so-called faithful state, which is cru-
cial in obtaining of the set of asymptotic states. Furthermore we discuss the relations of
the asymptotic evolution in different picutres of quantum mechanics. We show that the
Schrodinger picture and the Heisenberg picture are related by the faithful state, should
it exist. In part 3 we give mathematical description of stationary states and integrals of
motion corresponding to the given markovian system and we show that stationary states
can be written in a form which closely resembles of a well-known Gibbs states. The
results and outlook is discussed in section 4.
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2 Asymptotics of Quantum Markov Processess

A quantum markov dynamical semigroup is a continuous one-parameter family of maps
P;, t > 0, which fulfils Py = I. The evolution of quantum state p is given as

p(t) = Pu(p(0)).

Generally, P; can be written as [2]

P, = exp|Lt], (1)

where so-called generator £ can be written in a following form:

£lo) = =il + 3 (oot - 5L} ). 2)

with [-,-] and {-,-} being commutator and anticommutator respectivelly and H =
H' being usually interpreted as the Hamiltonian corresponding to the system under
consideration.The adjoint QMDS generated by a map L' describes the time evolution of
observables. This can be seen from the relation for mean value of observable A = Af:

(A) ) = (A, Pulp))us = (PL(A), p). (3)

Using this equation yields the result for the generator of the adjointed map 77; :
. 1
LI(A) =i[H A+ (L}ALj - §{L}LJ, A}) .
J

We can notice that the map £ fulfils the property

LI(I)=0.

Such maps L' are called unital maps and they form an important class with many
neat properties. An adjoint to the unital map is called trace-preserving map. As a result,
L of form (2) is always trace-preserving map. Note that the property £(I) = 0 implies
P:(I) = I and thus unital maps leave the maximally mixed state undisturbed.

As mentioned in the section 1, generators of QMDS L are usually not normal and
thus the diagonalization in some orthonormal basis is not possible. However, it turns out
that the asymptotic part of the evolution is always diagonalizable and thus we can obtain
it analytically. This is mainly due to the spectral properties of the generator £. In this
section, we review these properties and we indicate the procedure which leads towards
obtaining the asymptotic dynamics. Then we discuss the asymptotic dynamics itself.
Since the discrete and quantum case are very similar, we discuss only the continuous
quantum markov processess. For the sake of transparency, we divide this section in
the following subsections. First, we show that the asypmtotic part of the evolution of
QMDS can be diagonalized. In the next subsection, we present equations fulfiled by the
operators, which are responsible for asymptotic dynamics. Similar derivation for QMC
was done in [6].
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2.1 Diagonalization of the asympotic part of the evolution

As the generator L is not diagonalizable, we are forced to use its Jordan canonical form,
which reads

L=RELNE,

with
N 10 0 ... 0
o XN 1 0 ... 0
0 0 N\ 1 0
Jg=1. .
0O 0 0 0 ... 1
0O 0 0 0 ... N

being the i-th diagonal block of the Jordan form and R being the Jordan transforma-
tion. The time evolution is then generated by a map, which in Jordan form reads

P: = exp|Lt] = Rexp R =

tep Ji(\)

— R@exp [tJ;(\)] R

Clearly, we can write

J(Ni) = NI+ N,

where N; is nilpotent matrix satisfying Nidim(J(Ai)) = (0. We thus have

dim(J(A;))—1 N
Pt = R @ eXp[)\Zt] Z k' ? Rfl.
i k=0 ’
The operator
dim(J(\;))—1 PN

k=0

has a polynomially increasing norm with exception of the case dim(J()\;)) = 1, in
which the norm is constant in time. Considering the latter case, we must have \; = Im(\;).
If the real part of the eigenvalue \; was greater than zero, we would have contradiction
with the existence of the finite bound of the map P;. If the real part of eigenvalue )\,
is lesser than zero, the part exp[\;t|D;(t) converges towards zero operator and thus it
does not contribute to the asymptotic dynamics. Applying similar reasoning for the case
dim(J(\;)) > 1 we conclude that we must have Re();) < 0 as otherwise we would have
contradiction with the existence of the finite bound of the map P;. The norm of the
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operator exp[A;t]D;(t) thus converges towards zero value. We thus make the following
conclusions.

e All eigenvalues of the generator £ have non-positive real parts

e Jordan blocks corresponding to the eigenvalues with negative real parts do not
contribute to asympotitic dynamics

e Jordan blocks corresopnding to the purely imaginary eigenvalues determine the
asymptotics. All these blocks are one-dimensional and thus the asymptotic regime
can be diagonalized

The asymptotic part of the evolution is thus confined to the subspace Atr(P;) defined
as

Atr(Py) = @ Ker (L — \I), (4)
AETasm
with 0,4, being the purely imaginary part of the spectrum of £. However, it is worth
to notice that the elements of the attractor space are generally not density matrices as
they do not need to be possitive or even selfadjointed. They are operators X € B(H) and
they are just a tool to construct the corresponding asymptotic state. This construction
is done in the following subsection.

2.2 Faithful state and attractor equations

To be able to describe the asymptotics, we need a QMDS P, to be equipped with so-called
faithful state p |2, 6]. It is defined as an arbitrary strictly possitive invariant state, thus it
meets the requirements p > 0, P;(p) = p or equivalently p > 0, L(p) = 0. In the rest of
the text, the symbol p will be reserved for faithful state and a general state of the system
will be denoted as 0. The existence of a faithful state is not guaranteed as any system
has an invariant state, but it needs not to be strictly possitive. A system can have more
than one faithful state, in which case it has infinit amount of faithful states a any convex
combination of faithful states can again be a faithful state. In that case, to obtain the
asymptotics we can use an arbitrary faithful state.

One can imidiatelly notice that problem of the existence of a faithful invariant state is
trivial for unital quantum markov processess, as identity operator is always faithful state
in case of unital quantum markov processess.

Suppose the set { X ;|i € Z,} forms an orthonormal basis of the subspace Ker (£ — AI).
Then starting from the initial state ¢(0), the asymptotic state o(¢ > 0) takes form |[7|

o(t>0)= Z M Ty [X)"jTU(O)] X (5)

AECasm,
JEIN

with X*J being dual operators to operators X, ; satisfying relations

Tr [XAJTX)\/J/} = 6)\>\’6jj’-
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Using generalized Schwartz inequalities [5], one can prove that apart from normaliza-
tion, following relation holds [6]:

XM~ Xyt

Furthermore, by using the linear contractive map V(X) = PJ(Xp~1/2)p'/2 and its
adjoint, we obtain following relations linking attractors of maps P; and 77; [6]:

X eKer(L— M) Xp ' € Ker (LM —XI),
X € Ker(£L— M) < p ' X € Ker (LT = AI),
X eKer(L— M) & pXp ' € Ker (L — ), (6)
X eKer(L—- M) e p'XpeKer(L— M),
X eKer(L— M) & p'2Xp™ 2 € Ker (L7 — M) .
These relation are of a significant importance. They map the attractor space generated
by map P, to the attractor space generated by map PtT and vice versa. Furthermore, they

allow us to find equations which must be satisfied by attractors. We note that for instance
first of these equations imply for A\ = ia following relation:

LIX)=ibX & LI(Xp™!) = —ibXp*,

or equivalently

PuX) =X & Pl(XpH) = e XpL.

Using this we can prove the following result [7]:
Let P, be a QMDS generated by a map £ equipped with a faithful state p. Then
X € B(H) is an attractor corresponding to the eigenvalue A = ib iff the following set of
equations hold:

7] = [ehoxs] -
(L p ' X] = [LLp7 x| =0, (7)
(Xp™' Hl =0Xp™", [p7' X, H] = bp' X,

In this part, we presented the form of the asymptotic state of QMDS P, provided
that the QMDS is equipped with so-called faithful state p. Next, we have shown that
attractor spaces corresponding to QMDS P; and 73: are closely related by the faithful state
p. Finally, we derived the equations governing the attractor space, so-called attractor
equations. It is easy to see that the problem of solving attractor equations is considerably
less complicated for the QMDS 773 as its faithful state has a simple form p ~ I, which
reduces attractor equations significantly.

3 Gibbs-like states

Within the statistical physics, one is usualy provided by a set of mean values correspond-
ing to physical observables A; of the system under consideration. According to quantum
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mechanics, these observables form a full set of integrals of motion Z. If the equilibrium is
reached, the state of the system is then described by so-called Gibbs state og [4], given
by

, (8)

1
oG = 7 exp

=Y N4,
j

with A; being Lagrangian multipliers, which need to be determined from the systems
physics and Z is so-called partition sum, defined as

exp [— Z /\jAj
J

The Gibbs state is a result of a physical axiom called the maximal entropy principle
[4], which states that the state of the system in a equilibrium maximalizes von Neumann
entropy S = —Tr[oLog[o]] while satisfying constraints given by mean values of physical
observables.

A typical example of such state is so-called canonical ensembe. Suppose we are pro-
vided by mean value of the energy (H), the equilibrium (or stationary) state then takes
the form [4]:

Z =Tr

1

oG = 7 &Xp [-BH].

In this section, we show that QMDS P;, which is equipped with a faithful state p
has a corresponding set of stationary states, which can be written in a form, which
closely resembles of a Gibbs states. For this similarity, we call them Gibbs-like states
[8]. For better clarity, we divide the rest of this section into two subsections. In the first
subsection, we sum up important properties of the set of stationary states and the set of
integrals of motion. In the second subsection, we derive the form of Gibbs-like states.

3.1 Stationary states and integrals of motion

Stationary states of QMDS P, are closely linked to its attractor space [7]. As they are
defined by requirement P;(c) = o, V¢t > 0 or equivalently £(c) = 0, we see that they
are confined to subspace Ker(L£) C Atr(P;). However, as before we stress that elements
of subspace Ker(L) are not states, but operators X € B(#) which are not necessarily
selfadjointed and/or positive. The subset of stationary states S(L£) thus satisfies

S(L) C Ker(L).

Similarly, the subspace Ker(L") contains the set of integrals of motion Z(£) [7], which
are defined by requirement 772 (A) = A or equivalently £T(A) = 0. As in the previous case
of stationary states, elements of the subspace Ker(L") are necessarily selfadjointed and
thus this subspace contains operators which cannot be interpreted as integrals of motion
resulting in relation

(L) c Ker(LH).
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Relations (6) provide us an important connection between elements of subsets S(L)
and Z(L). According to (6) the following statement holds:

0<AeTZ(L) = p2Ap2 € S(L). (9)

This property is crucial for derivation of Gibbs-like form of stationary states corre-
sponding to QMDS P;.

Unitality of the QMDS PtT provides a neat algebraic properties of subspaces Ker(LT —

AI). Suppose we have operators X1, X, such that X; € Ker(L£T—\;I). As these operators
are the solutions of equations (7) with p ~ I, one can easily verify that we must have

X1 X5 € Ker(LF — (A 4 M)I).

As QMDS P; is generally not unital, it lacks such a property. However, by relations
(6) we can uncover that if we have X, X such that X; € Ker(£—\;I), then for instance
X1 Xop™t € Ker(L — (A + A)I).

A subspace Ker(LT) has thus following properties:

Ker(L") c Atr(P)) c B(H),
X € Ker(£h) = X € Ker(L), (10)
X1, X, € Ker(£h) = XX, € Ker(LT)

These properties imply, that the subspace Ker(L") forms a C*-algebra. One can thus
choose an orthogonal basis in such way that

Ker(L") = span{l, Ay, ..., A}, A; = A}. (11)

Having chosen the orthogonal basis consisting of selfadjointed operators, the set of
integrals of motion Z(£) can be mathematically described as a real space with basis (11).
As a result, the subset Z(L£) itself also forms a C*-algebra. The fact is of a significant
importance, as it means that for any A € Z(£) and any complex analytic function f we

also have f(A) € Z(L).

3.2 Derivation of form of Gibbs-like states

An important example of an analytic function is exponential, defined by its Taylor series
as

[e.e]

X"
n=0

For selfadjointed operator X = XT we have exp[X] > 0. Thus, if o represents a
quantum state, the operator 7, defined as

1

= Tefexplol] V)

To

represents a strictly positive quantum state. However if ¢ represents a stationary
state of QMDS P;, then 7, is not a strictly positive stationary state apart from the case
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of unital Py, as the subset S(L£) is not a C*-algebra and thus it is not closed with respect
to the operator multiplication.
The subspace Z(L) forms a C* algebra, thus if we have A € Z(L£), then for Ty defined

as

Ta = exp[A]

satisfies thanks to unitality of P/ Ty € Ker(L") and thus it is also an integral of
motion. Being provided by an integral of motion A, we can thus define a strictly positive
stationary state 74 as

1 1

= Teop))” PP

There are two important problems concerning such a map. We ask if for each strictly
positive stationary state o € Ker(L£) exists an integral of motion A € Ker(L') such that
o = 74 and in case of positive answer, we would like to investigate, if this result can be
extended to any stationary state.

To answer these questions, we will stude the inverse map of exponential, which is
the logarithm function. Generally, operator Log[A] is not uniquelly defined, however for
A > 0 is is uniquelly defined by its Taylor expansion as

NI

= (1
Log[A] = Log[l + (A—1)] = —(A-=-0D"
og[A] = Logl[] + ( )] nz_o — )
NOW suppose we have a strictly positive stationary state o. Then the operator A, =
1
p20p72 is an strictly positive integral of motion and thus we must have Log[A,] €
Ker (L") which according to (11) means that

Log|A,] = al — Z)\A

with A; real. Consequently, for the state o we have

ol

o =p* exp|Log|A,]]p

,0% exp [a[ — Z AjA;

J

—p?exp[ Z)\A

b=

l\DM—‘

with

7 =Tr

exp [— Z )\jAj
J

We call this state a Gibbs-like state, as it resembles the Gibbs states of statistical
physics. For an arbitrary strictly positive stationary state o and the set of integrals of
motion (11) we can find a set of real valued parameters \; such that (12) holds.
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Can this result to be extended to any stationary state? Suppose we have stationary
state w such that 0 € o(w) and thus w is not strictly positive. In this case, for an arbitrary
strictly positive stationary state o exists a real parameter s such that the quantum state

We g = (w+ so)

7 Trjw + so

is strictly positive and thus it can be written in Gibbs-like form

ws,UZZ p2€Xp[ Z/\

The original state w can be then retrieved as a limit

l\J\»—\

w\»—t

(13)

1
w_}qli%z p? exp[ Z)\

Since w is not strictly positive, some of the parameters A; must be necessarily diver-
gent. This is analogous situation to the zero-temperature limit known from a statistical
physics. However, as we have freedom in choosing a strictly positive state ¢ in definition
of ws », the operator inside the limit (13) is not uniquelly defined.

Contrary to Gibbs states, Gibbs-like states do not maximalize the von Neumann
entropy. However, a more general result can be derived concerning so-called relative
entropy S(wi|wsz) [1]. For quantum states w; and wy such that supp(w; C supp(ws), the
relative entropy of the state w; with respect to the state wo is defined as

S(w1|wg) = Tr[w; (Log|ws] — Log[wy])]. (14)

It can be shown that the relative entropy is monotonically decreasing under positive
maps [9]. Applying this result to a general quantum state o and the faithful state p, we
have

S(alp) = S(Pu(a)lp)-

Thus, the stationary states, which have form of Gibbs-like states must minimize the
relative entropy with respect to any faithful state p. In fact, this principle is a general-
ization of the principle of von Neumann entropy maximalization. If QMDS P; is unital,
then p ~ I and (14) reduces to the negative of the von Neumann entropy and we obtain
original maximal entropy principle.

4 Conclusion

In the preceeding text, we have investigated the asymptotic dynamics of quantum markov
dynamical semigroups for finite quantum systems equipped with so-called faithful state.
We have shown that the asymptotic part of the generator of the time evolution is diago-
nalizable, the asymtptotic evolution is confined to so-called attractor space and we have
presented the equations which determine elements of the attractor space. Furthermore,
we discussed the relation of the Schrédinger picture and the Heisenberg picture, which
allow us to switch from one to another.
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Next, we have shown the relation between the set of stationary states and the set of
integrals of motion. The stationary states can be written in a form which closely resembles
the Gibbs state used in statistical physics. For this similarity, we call these states Gibbs-
like states. Also, Gibbs-like states are determined by a principle of minimalization of
relative quantum entropy, which is a generalization of the maximal von Neumann entropy
principle for nonunital quantum channels.

A natural generalization of the presented theory would be the one for quantum markov
processes with no faithful state. Another direction is to generalize presented results for
trace nonincreasing quantum channels. This has been done for QMC [6] but the situation
is more complicated for QMDS as it requires more general form of the generator £. These
problems will be adressed in the future research.

References

[1] Nielsen A., Chuang I. Quantum Computation and Quantum Information Cambridge
University Press, 2000

[2] Alicki R., Lendi K. Quantum Dynamical Semigroups and Applications Springer, 2007

[3] Attal S., Joye A., Pillet C. Open Quanutm Systems II: The Markovian Approach
Springer-Verlag Berlin, 2006

[4] Balian R. From Macrophysics to Microphysics Springer-Verlag Berlin, 2007

[5] Paulsen V. Completely Bounded Maps and Operator Algebras Cambridge University
Press, 2002

[6] Novotny J., Alber G., Jex 1. Asymptotic properties of quantum markov chains J.
Phys. A, 45 485301, 2012

[7] Novotny J., Maryska J., Jex L. In preparation (concerning connection between inte-
grals of motion and stationary states)

[8] Novotny J., Maryska J., Jex L. In preparation (concerning Gibbs-like states)

[9] Pétz D. Monotonicity of quantum relative entropy revisited arXiv:quant-ph /0209053,
2002






Competitive Rank Based Integer
Optimization Heuristic with Lévy Flights*

Matej Mojzes

6th year of PGS, email: mojzemat@f jfi.cvut.cz
Department of Software Engineering
Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

advisors:

Jaromir Kukal, Department of Software Engineering
Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

Quang Van Tran, Department of Software Engineering
Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

Abstract. Novel evolutionary integer optimization heuristic yields from the theory of Mean
Field Annealing and is based on population quality rank instead of objective function values.
This way population center and covariance matrix are estimated for given temperature and then
used as directional correction of Lévy Flight mutation. Similarly to Competitive Differential
Evolution, the heuristic is of competitive nature. Here, nine Lévy Flight mutations compete
and are selected according to their success. Resulting heuristic has four parameters: population
size, regularization factor, annealing temperature and Lévy Flight temperature. This heuristic is
suitable integer optimization tasks with many local extremes. One such task is the Clerc’s Zebra-
3, discrete optimization benchmark problem, which is used for evaluation of novel heuristic.

Keywords: Heuristic, Mean Field Annealing, Lévy Flights, Rank, Integer Optimization

Abstrakt. Nova evolucné celociselnd heuristika Gerpa z teorie Zihania stredného pola a je
zaloZzena na poradi kvality populacie namiesto pévodnych hodndt ucelovej funkcie. Tymto
sposobom odhaduje stred populacie a kovarianénii maticu pre danu teplotu, ktoré nasledne
pouzije pre smerovu korekciu mutacie pomocou Lévyho letov. Podobne ako napr. kompetitivna
diferencialna evolucia, aj tato heuristika je zalozend na koncepte sutazivosti. V tomto pri-
pade sutazi deviat mutaénych operatorov a st vyberané podla tspegnosti. Vysledna heuristika
maé Styri parametre: velkost populacie, regularizaény faktor, teplotu Zihania a teplotu Lévyho
letov. Heuristika je vhodna pre tlohy celoé¢iselnej optimalizacie s mnohymi lok&lnymi extré-
mami. Jednou takou tlohou je Clercova Zebra-3, zatazova tloha pre diskrétnu optimalizaciu,
ktora je pouzita pre posudenie vykonnosti a spolahlivosti novej heuristiky.

Y

Kliicové slovd: Heuristika, zihanie stredného pola, Lévyho lety, poradie, celo¢iselné optimaliza-
cia

1 Introduction

There is a variety of optimization methods and meta-heuristics including integer and
binary ones. Let n € N be task dimension, x, a, b € Z" be independent variable, its

*This paper is supported by grant SGS14/208/OHK4/3T/14 CTU in Prague.
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lower and upper bounds satisfying a < b. The domain of integer optimization is

D={xe€Z"'a<x<b} (1)
as a frame of objective function
f:D—-R (2)
minimization. This task can be enriched by threshold
* > : .
f* 2 minf(x) (3)
Then the goal set
G={xeD|fx) <} (4)

also contains global optimum of objective function. Finding any X, € G is called here
as sub-optimization task to be solved. It is useful to define range vectorasd =b—a+1
and then denote

M* = card(G) > 1, (5)

M =card(D) = | | dr, > 2" (6)
k=1
as number of goal states and total number of states. Meta-heuristic approach to sub-
optimization task plays main role in the case of NP-hard problems [5], e.g.: set covering
[3], or travelling salesman [1| problems.

Traditional integer optimization meta-heuristics include many discrete variants of Ge-
netic Optimization [6], Simulated Annealing [7], Fast Simulated Annealing [12|, Random
Descent with Lévy Flights [8], Cuckoo Search [15], [9], Modified Cuckoo Search [13], and
many others.

2 Rank Mean Field Integer Flight

The novel integer optimization heuristic is motivated by Evolutionary Search (ES), Mean
Field Annealing (MFA), Parzen Estimate (PE) [11| of Probability Density Function
(PDF), Lévy Flight Mutation (LFM), and competitive approach.

The Rank Mean Field Integer Flight (RMFIF) is population based heuristic but the
population of N € N vectors is unsorted. Denoting f, = f(x;) we form the population as
N-tuple of pairs in ascending order, sorted by objective function values,

P:((Xl7f1)7"'7(XN7fN))' (7)
Traditional MFA is based on the partition function

Z =) exp(—fx/Thra) (8)

k=1

over all N states for annealing temperature Tyira > 0. Resulting steady state probabilities
of MFA are directly

pr = exp(—fi/Tura)/Z (9)
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for k=1,..., N. The MFA estimate of global minimum is the mean value

N
e=> piX. (10)
k=1

The efficiency of RMFIF is based on rank approach when the values f; are substituted
by k for k =1,...,N. Therefore, the probabilities are

1-Q
1-QN
where Q = exp(—Typs)- Novel RMFIF heuristics also employs Parzen Estimate (PE)

of the probability density function (PDF) for given population P of fixed size N, fixed
width ¢ > 0, and Gaussian kernel in the form

pr = exp(—k/Tvira)/Z = Q! (11)

- 1 x — x3||?
q(x) = N kz WGXP <—%) . (12)

1

Steady state probabilities of MFA are directly used for Weighted Density Estimate (WDE)

as N
Dk [1x — x|
k=1

Very important particular cases are:
e When Tyipa — +00 then g — q which is the Parzen Estimate.

e When X,,;, is unique minimum from given population P and
Tara — 04 then g — N(Xpyin, 0°I) which is Gaussian distribution centered in the
best population point.

Using characteristic function

(t) = E exp(yx't) (14)
we explicitly obtained
N
Y(t) =Y prexp (xit — 7 (0°1)t/2) (15)
k=1

which is useful for direct calculation of moment characteristics. The first moment is the
mean value of sampled population which is well known from the MFA theory as

N
e=Ex= Zpkxk (16)
k=1

in formal agreement with (10) meanwhile the covariance matrix is composed from two
terms as

C=E(x—e)(x—e')=Cy + 0’1 (17)
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where

Craw = Y _ pr(x — €)(x — €)" (18)
k=1

is obvious covariance matrix of sampled population and the second term of (17) is resulting
effect of Parzen estimation as a kind of statistical regularization.

The main idea behind RMFIF method is in directional mutation based on C of P
but driven by Lévy distribution. Novel Rank Mean Field Integer Flight Mutation (RFM)
consists of several steps:

e Calculate C,,,, for given population P and temperature Typa > 0,

Generate random n-dimensional Gaussian vector y ~ N(0, 1),

Calculate directional vector z = (Crayw + 0212 - (y/|l¥ll2),

Generate d ~ Levy(f) using Lévy distribution with 0 < 8 < 2,

Real unlimited mutation of x € D using mutation temperature
Tt > 0 produces r = x + Ty - d - 2,

e Using component-wise rounding and perturbation via mirroring we calculate Xy, =

P([r],a,b).

This novel type of mutation operator yields from the properties of given population P
applying MFA theory to obtain the direction of mutation as vector z. Final mutation
of x is realized as perturbed directional integer Lévy flight with dimensionless mutation
temperature 1.

The RFM operator has four tuning parameters:

Tyvra > 0 for Mean Field Annealing,

Tt > 0 for Lévy flights,

B € (0,2) for Lévy distribution,

0 > 0 for Parzen estimate.

3 Basic Frame of RMFIF

First we set N € N, H € NNH > 2,n9p € N,0 > 0, f*, Nuax as population size,
mutation portfolio size, initial counter value, threshold, final value and maximal number
of evaluations. Then we introduce mutation family

F = {RFM; (x), RFMy(x), ..., RFMy(x)} . (19)

The algorithm of RMFIF is described in detail in Algorithm 1.
Individual RFM; is described by parameters (Tnpa, Tout, 5,0); for i = 1,..., H.
General suggestion is to use fixed o € (0,1) for all mutations in the portfolio due to
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Algorithm 1 RMFIF
1: Set counters n = ngl € N¥ and mutation portfolio.
2: Init population P of size N by uniform sampling from D.
3: while fiet > f* and neval < Npay: do
4: Sort population in ascending order

5: Using systematic selection strategy find x, € P
6: for k=1,...,N do

7: Generate randomly index j according to mutation probabilities p; = n;/ ||n||;
8: Perform x,e, = RFM;(x)

9: Evaluate frew = f(Xnew)-

10: if foew < fr) then

11: Update n; = n; + 12 Xi = Xnews J(k) = fnew
12: if min,— g pi = rﬁﬁl'ﬁz < % then

13: Reset counters as n = ngl

14: end if

15: end if

16: end for

17: end while

integer nature of searching domain D. The parameter of Lévy distribution can be also
set to fixed value § = 1 for the first experiments. Therefore, the competition of mutations
is only about adaptive changing of temperature 7, ; for< =1,..., H, for given N, Typa.

4 Experimental Results

Our testing task will be Clerc’s Zebra-3, which is a non-trivial binary optimization prob-
lem (a =0, b=1) and part of discrete optimization benchmark problems [2|. Zebra-3
function is defined for n = 3d*, d* € N as

d*

2(X) = Y Z1smod(h-12) (&) (20)

k=1
where &, = (3%-2,...,%3%) and
0.9 for ||€]];=0 0.9 for ||&|];, =3
) 06 for [[£]]; =1 ) 0.6 for |[€]|, =2
28 =93 03 for léll,=2 P 2EO=903 for &, =1
1.0 for ||£]], =3 1.0 for [|&]|, =0

Zebra-3 function is a subject of maximization with the maximum value of n/3. There-
fore we will minimize

f(x) = % — 2(x) (23)
for n = 30 with f,, = 0. This binary task consists of 2" = 230 = 1,073,741, 824 states
with single global optimum and 2% = 2! = 1,024 local minima. Simulations were

performed for Ny, = 100, 000.
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Table 4 summarizes performance of the novel heuristic compared to referential meth-
ods (Fast Simulated Annealing [12] and Simulated Annealing |7]) using basic heuristic
performance measures [10]:

o M NFE as mean number of objective function evaluations until optimal solution was
found,

o SNE as standard deviation of the number of evaluations,

o REL — reliability, ratio between the number of successful runs (when f* was
reached) and total number of runs (100).

Heuristic Parameters MNE SNE REL
SA Ty = 0.00005,n9 = 0, Tgauss = 0.5 13,402 9,497 100%
FSA To = 0.01,n90 =1, Tgauss = 0.5 12,221 8,468 100%

RMFIF N =100,n9=1,6 = 0.2, Typa = 2,0 = 0.001 7,808 1,721 100%

Table 1: Performance comparison of RMFIF with referential methods

All heuristic parameters were empirically tuned to the given problem and from this
perspective we can conclude that RMFIF can outperform referential methods:

e it is clearly faster (having lower M NE) and
e it exhibits much better ratio of SNE/M N E, which describes heuristics stability.

On the other hand, RMFTF, as all heuristics [14], does not always perform optimally.
Figure 1 demonstrates its performance for different temperatures Typa using Feoktistov
criterion [4], defined as

FEO =MNE/REL . (24)

Figure 1: RMFIF performance measured by FEO criterion for different temperatures
Thira
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Figure 1 provides evidence on importance of correct setup of the Typp temperature.
Mainly, very low temperature causes the algorithm to overestimate quality of the best
population solution and thus become unreliable and slow. Based on our experience, good
range for Typa selection is

1 Tura
100 = N

<2, (25)

5 Conclusions

We have contributed to family of evolutionary heuristic method with a novel population
based integer optimization heuristic that is of competitive nature and yields from the
theory of Mean Field Annealing and reputable performance of Lévy Flights. The most
important parameter is Typa that needs to be adjusted mainly according to population
size and thanks to the rank correction, the selection of temperature does not need to
reflect expected objective function ranges. As we have shown on Zebra-3 benchmark
function, the novel heuristic has promising performance. However, more research and
development is in progress, also because of the No Free Lunch Theorem for optimization
[14].
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Abstract. The paper concerns abstract equations of the type
F\u) =7G(1, A\ u). (1)

Here U and V are Banach spaces, F: R x U — V and G: R? x U — V are maps, and it is
supposed that
F(X\0)=G(r,\,0)=0 forall 7,AeR. (2)

Hence, for all 7 and A there exists the so-called trivial solution v = 0 to (1) and local bifurcation
of nontrivial solutions to (1) from the trivial solution is described. Under certain assumptions
and if 7 = 0, the set of all solutions to (1) close to zero is described by the celebrated Crandall-
Rabinowitz Theorem, see [1]. A typical field of applications of the Crandall-Rabinowitz Theorem
are elliptic boundary value problems. The abstract setting (1) of the present paper is initiated
by elliptic boundary value problems with non-smooth nonlinearities.

—div A(z, A\, u, Vu) + f(z,\,u, Vu) = 7h(x)g(z,7,\,u)t in Q,
u = 0 on 012

with 7 € R, h € LP(Q2) with p > n and g: Q@ x R* — R such that g(x, 7, \,0) = 0 for all , 7 and
A. Here g(x, 7, \,u)" := max{g(z, 7, A\, u),0} is the positive part of g(x, 7, \,u). The right-hand
side of this equation is a so-called non-invasive perturbation, because it does not disrupt the
existence of the trivial solution u = 0, but it may stabilize or destabilize this solution. In many
applications this is just the reason to introduce this term. The perturbation works only in those
points x, for those parameters 7 and A and for those states u for which g(x, 7, A\, u(z)) is above
the threshold zero.

Another field of applications of main abstract result are reaction-diffusion systems exhibiting
a Turing diffusion driven instability:

di1Aug + f(ul,UQ) =0 in €,
d2Aug + g(u1, uz) + T([Q—(%Uz)l@]i - [9+($,U2)U2]+) =0 in©Q,
8u1 61@
—_—— = Q
ey ey 0 on 09,
*Prace autora byla finanéné podpofena grantem ¢. SGS16/239/0HK4/3T /14
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with f and g being C'! functions and satisfying additional sign conditions

£(0,0) = g(0,0) =0,

af g B af ag
of of
det ] = 5o~ =L (0, 0)6 (0, 0)—6—(0 O)a (0,0) > 0.

In this case the main results of the paper means a contribution to a study of domains of diffusion
parameters for which spatial patterns, i.e. stationary spatially nonhomogeneous solutions of the
corresponding evolution problem, exist.

Keywords: Crandall-Rabinowitz Theorem, Turing patterns, unilateral sources
Abstrakt. Clanek se zabyva rovnicemi typu
F(\u) =7G(1, A\, u), (3)

kde U a V jsou Banachovy prostory, F: RxU — V a G: R? x U — V jsou zobrazeni, o kterjch
se dale predpoklada, ze

F(\0)=G(r,\,0) =0 pro vsechna 7, A € R. (4)

Potom pro vSechny hodnoty parametri 7 a A zde existuje tzv. trividlni feseni u = 0 rovnice (3),
a dale je popsana lokalni bifurkace netrividlnich feSeni rovnice (3) z tohoto trividlniho FeSeni.
Pokud 7 = 0, tak za dalsich pfedpokladi je mnozina vSech feSeni rovnice (3) blizkych nule
popséna slavnou Crandall-Rabinowitzovou vétou, viz [1]. Typickou oblasti aplikace Crandall-
Rabinowitzovy véty jsou okrajové tlohy pro parcidlni diferencialni rovnice eliptického typu.
Abstraktni formulace (3) v tomto ¢lanku je motivovana pravé témito rovnicemi, ke kterym se
navic pridava maléd nediferencovatelna nelinearita, cely systém pak vypada nasledovné:

—div A(z, A\, u, Vu) + f(z,\,u,Vu) = 7h(x)g(z,7,\,u)t v Q,
u = 0 na 0§,

kde h € LP(Q) s p > n a g: @ x R — R je takové, ze g(z,7,),0) = 0 pro viechna z, 7 a .
Vyraz g(z,7,\,u)" := max{g(z, 7, \,u),0} oznacuje kladnou ¢ast g(z, 7, \,u). Prava strana v
této eliptické rovnici je tzv. neinvazivni porucha, nebof nenarusuje existenci trividlniho feSeni
u = 0, ale mize toto feSeni destabilizovat. V mnoha aplikacich je pravé toto diivodem pro
zavedeni takového ¢lenu. Porucha pisobi jen v bodech z, jen pro parametry 7 a A a jen pro
pfislusné hodnoty funkce u, pro které je hodnota funkce g(z, 7, A, u(x)) kladna.

Dalsi oblasti aplikace hlavniho abstraktniho vysledku tohoto ¢lanku jsou systémy reakce-
difuze vykazujici Turingovu difuzi fizenou nestabilitu:

diAuy + f(ug,u2) =0 v Q,

daAug + g(ur, ug) + T([Q—(%Uz)w]_ - [9+(l‘,u2)u2]+) =0 vQ,
Our _ Oup
ov v

s funkcemi f a g t¥idy C' a spliiujicimi navic nésledujici podminky:

£(0,0) = 9(0,0) = 0

=0 na 0¢),

of dg _of 9g

aul(o 0)>0>672(0 ,0), trJ = aul(o 0)+a—u2(0 ,0) <0
of of
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Pro takovy pfipad je hlavnim vysledkem tohoto ¢lanku prispévek ke studiu oblasti difiznich
parametri, pro které existuji prostorové vzorky, tj. stacionarni prostorové nehomogenni reseni
prislusného evolu¢niho problému.

Kli¢ovd slova: Crandall-Rabinowitzova véta, Turingova nestabilita, jednostranné zdroje
Plna verze: Tato prace byla ¢astecné prezentovana na “Self-assembly in soft matter and
biosystems” v Bad Honnefu a je sou¢ésti stejnojmenného ¢lanku [2], ktery byl odeslan k

publikaci do sborniku konference “Patterns of Dynamic”, ktery vyjde v casopise ” Springer
Proceedings in Mathematics & Statistics”.

Literatura

[1] Crandall, M. G. and Rabinowitz, P. H., Bifurcation from simple eigenvalues, J. Funct.
Anal. 8 (1971), 321-340.

2] Recke L., Viath M., Kucera M., Navrétil J. Small Non-Differentiable Perturbations of
Crandall-Rabinowitz Bifurcation, submitted.






Numerical Modeling of Non-Isothermal Gas
Flow and NAPL Vapor Transport in Soil*

Ondrej Partl

5. rocnik PGS, email: ondrej.partl@fjfi.cvut.cz
Katedra matematiky
Fakulta jaderna a fyzikalné inzenyrska, CVUT v Praze

skolitel: Michal Benes, Katedra matematiky
Fakulta jaderna a fyzikalné inzenyrska, CVUT v Praze

Abstract. In our paper, we introduce a mathematical model for the description of non-isothermal
compressible flow of gas mixtures in heterogeneous porous media and we derive an efficient
semi-implicit time-stepping numerical scheme for the solution of the governing equations. We
experimentally estimate the order of convergence of the scheme in spatial variables and we
present several computational studies that demonstrate the ability of the numerical scheme.

Keywords: non-isothermal flow, heterogeneous porous medium, semi-implicit scheme

Abstrakt. V nasem ¢lanku navrhujeme matematicky model pro popis neizotermického proudéni
smési dvou plynil v heterogennim poréznim prostiedi a odvozujeme vykonné numerické schéma,
které je semiimplicitni v Case, pro feSeni systému rovnic, z nichz model sestava. Dale prezen-
tujeme vysledky experimentalnich odhadi fadu konvergence odvozeného schématu a rovnéz
nékolik vypocetnich studii, které demonstruji schopnosti a moznosti tohoto schématu.

Klicova slova: neizotermicky proudéni, heterogenni porézni prostiedi, semiimplicitni schéma
Plna verze: O. Partl, M. Benes, P. Frolkovi¢, T. Illangasekare, K. Smits. Numerical

modeling of non-isothermal gas flow and NAPL vapor transport in soil. Computer Physics
Communications 202 (2016), 175-187.

*Tato prace byla podporena grantem Development and Validation of Porous Media Fluid Dynamics
and Phase Transitions Models for Subsurface Environmental Application Kontakt IT LH14003 Minister-
stva gkolstvi, mladeze a té&lovychovy Ceské republiky.

127






On Uniqueness of T—duality with Spectators®

Filip Petréasek

3rd year of PGS, email: petrafil@fjfi.cvut.cz
Department of Physics
Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

advisor: Ladislav Hlavaty, Department of Physics
Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

Abstract. We investigate the dependence of non-Abelian T—duality on various identification
of the isometry group of target space with its orbits, i.e. with respect to the location of the
group unit on manifolds invariant under the isometry group. We show that T—duals constructed
by isometry groups of dimension less than the dimension of the (pseudo)-Riemannian manifold
may depend not only on the initial metric but also on the choice of manifolds defining positions
of group units on each of the sub-manifold invariant under the isometry group. We investigate
whether this dependence can be compensated by coordinate transformation.

Keywords: sigma model, string duality, non-Abelian T—duality, isometry group, spectator,
coordinate transformation

Abstrakt. Zkoumame zavislost neabelovské T—duality na rizném ztotoznéni grupy isometrii
cilového prostoru s jejimi orbitami, tj. s ohledem na pozici grupové jednotky na varietach
invariantnich vzhledem ke grupé isometrii. Ukazujeme, Ze T—dualy konstruoviny pomoci grup
isometrii dimenze mensi nez dimenze (pseudo)-Riemannovy variety mitizou zaviset nejen na
pocatecni metrice, ale také na volbé variet definujicich pozice grupovych jednotek na kazdé
z podvariet invariantnich vzhledem ke grupé isometrii. VySetfujeme, zda lze tuto zavislost
kompenzovat pomoci transformace souradnic.

Klicovd slova: sigma model, strunova dualita, neabelovska T—dualita, grupa isometrii, pfihlizec,

transformace soufadnic

Full paper: L. Hlavaty and F. Petrasek. On uniqueness of T—-duality with spectators.
Int. J. Mod. Phys. A 31 (2016) 1650143. arXiv:1606.02522 |hep-th].

*This work has been supported by the Grant Agency of the Czech Technical University in Prague,
grant No. SGS16/239/0HK4/3T/14.
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Abstract. As the world supply of conventional light crudes decreases, the production from
heavy oils and bitumens can supplement the societal energy needs. Knowledge of phase behavior
of mixtures of heavy oils and bitumens with various light normal alkanes and COs is important
in efficient production from heavy petroleum fluids, especially bitumens. As the solvent (e.g.
COy) dissolves in the bitumen reducing its viscosity, decreasing the steam requirement, and
consequently decreasing the cost of bitumen and heavy oil recovery, the development of an
accurate and reliable thermodynamic model to predict the solvent solubility in bitumen over
wide ranges of temperatures and pressures is the key to proper design of solvent injection
processes.

In hydrocarbon reservoir simulators, the most common models are regular cubic equations
of state, such as the Peng-Robinson (PR) and Soave-Redlich-Kwong (SRK), which are used to
model the phase behaviour of simple hydrocarbon systems where van der Waals and physical
forces are the dominant interaction forces between molecules. Bitumen consists of various mo-
lecules with different hydrocarbon chains and polarities, especially asphaltene molecules which
are the most polar, and the most complicated fraction of the crude oil. Asphaltenes give rise
to molecular association and increase the polarity and complexity of the system. Therefore, the
complex system of bitumen and solvent should be modeled using thermodynamic models, which
take into account association forces between molecules.

In [1], a model for investigation of phase-stability and computation of multi-phase equilib-
rium at constant pressure, temperature and chemical composition was used together with two
equations of state (Peng-Robinson (PR) 2] and Cubic-Plus-Association (CPA) [3] equations of
state) to predict the phase behavior and solubility of CO3, and normal alkanes from C; to nCyg
in several bitumens over wide ranges of temperature and pressure. The predicted results were
compared with available experimental data and modeling results available in the literature. The
results show that the PR-EOS describes mixures of bitumens with COs, and alkanes when there
is no second liquid phase or when the asphaltene content in the second liquid phase is not high.
The CPA-EOS describes the phase behavior of mixtures of bitumens and CO2, and alkanes in
liquid-liquid states even when the asphaltene content of one of the phases is high. High aspha-
tene content results in significant association and cross-association where the CPA-EOS is a
natural choice.

Keywords: petroleum engineering, bitumen, asphaltenes, phase equilibrium, constant-pressure
flash, Peng-Robinson equation of state, Cubic-Plus-Association eqution of state.

_“Prace vznikla v ramci projekti Vypocetni metody v termodynamice viceslozkovych smési LH12064
MSMT CR.

131



132 T. Petrikova

Abstrakt. Vzhledem ke ztenc¢ujicim se konvenénim zasobam ropy a rostouci svétové poptavce
po energiich se v poslednich letech stavaji diive alternativni zpisoby tézby ropy ¢im dal zajima-
v&jsi. Mezi tyto zpusoby t&zby patii nap¥. vyroba z tézkych oleji a ropnych piskd (bitument).
Zmalost fazového chovani smési t&zkych oleji a bitumeni s riznymi lehkymi normalnimi alkany
a COq je dulezita pii efektivni vyrobé ropy z tézkych ropnych kapalin, zejména bitument. Pii
rozpousténi solventu (napt. CO2) v bitumenu dochazi ke sniZeni jeho viskozity a sou¢asné k nizsi
spotiebé pary, v disledku ¢ehoz dochaz{ ke snizeni nakladd na zvySovani vytéznosti bitumenu
a tézkych ropnych kapalin. Klicovou roli ve spravném névrhu procesi zaloZenych na vstiiko-
vani solventd hraje vyvoj presnych a spolehlivych termodynamickych modeld, které umoziiuji
predikovat rozpustnost solventu v bitumenu v Sirokém rozsahu teplot a tlaki.

V kompozi¢nich simulatorech ropnych rezervoart patii k nejcastéji pouzivanym modeltim
oby¢ejné kubické stavové rovnice, jako je napiiklad Pengova-Robinsonova (PR) a Soaveho-
Redlichova-Kwongova (SRK) stavova rovnice, které se pouzivaji k modelovani fazového chovani
jednoduchych uhlovodikovych systémil, kde mezi dominantni interakéni{ sily mezi molekulami
patii van der Waalsovy sily. Bitumen se skladé z fady molekul s riznymi uhlovodikovymi Fetézci
a polaritami, zejména molekuly asfaltenu jsou silné polarni a nejslozitéjsi frakci ropy. Asfalteny
vyvolévaji molekularni asociace a zvysuji polaritu a slozitost systému, proto by komplexni sys-
témy bitumenu a solventu mély byt modelovany pomoci termodynamickych modeli, které berou
v tivahu asociaéni sily mezi molekulami.

V [1] byl pouzit model pro vysetfovani fazové stability a vypocet vicefazové rovnovahy vice-
slozkovych smési pri konstantnim tlaku, teploté a chemickém sloZeni spolu se dvémi stavovymi
rovnicemi (Pengovou-Robinsonovou (PR) stavovou rovnici [2]| a kubickou stavovou rovnici s aso-
cia¢nim ¢lenem [3]) k predikei fazového chovani a rozpustnosti COg, a normalnich alkant C; az
nCyg v nékolika bitumenech v Sirokém rozsahu teplot a tlaku. Predikované vysledky byly po-
rovnany s dostupnymi experimentalnimi daty a vysledky modelovani dostupnymi v literatute.
Vysledky ukazuji, ze PR-EOS popisuje dobfe smési bitumenu s COs2 a alkany v piipadé nepfi-
tomnosti druhé kapalné faze nebo neni-li obsah asfaltenu v druhé kapalné fazi vysoky. CPA-EOS
popisuje fazové chovani smési bitumenu a CO2 nebo alkanti ve stavech kapalina-kapalina, i kdyz
je obsah asfaltenu v jedné z fazi vysoky. Vysoky obsah asfaltenu vede k vyznamné asociaci
molekul, kde je CPA-EOS pfirozenou volbou.

Klicovd slova: ropné inZenyrstvi, bitumen (Zivice), asfalteny, fazova rovnovaha pii konstantnim
tlaku, Pengova-Robinsonova stavova rovnice, kubické stavova rovnice s asocia¢nim ¢lenem.

Full paper: This work is an abstract of article [1].
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Abstract. In many research and engineering tasks, optimization of real-world black-box func-
tions that are costly to evaluate is a challenging problem of great importance. A single evaluation
of the expensive function may require a great amount of resources in terms of time and performed
experiments, measurements or simulations. In order to decrease the number of evaluations of
the costly black-box function and still produce reasonably good solutions, a suitable regres-
sion model, also called surrogate model, of the black-box function can be employed [3]. In [4]
we present a new variant of surrogate-model utilization in expensive continuous evolutionary
black-box optimization. This algorithm is based on the surrogate version of the state-of-the-art
evolutionary algorithm CMA-ES [2|, the Surrogate Covariance Matrix Adaptation Evolution
Strategy (S-CMA-ES) [1]. Similarly to the original S-CMA-ES, expensive function evaluations
are saved through a surrogate model. However, the model is retrained after the points in which
its prediction was most uncertain have been evaluated by the true fitness in each generation.
We demonstrate that within small budget of evaluations, the new variant of S-CMA-ES using
Gaussian processes [5] as a surrogate model improves the original algorithm and outperforms
two state-of-the-art surrogate optimizers, except a few evaluations at the beginning of the op-
timization process.

Keywords: benchmarking, black-box optimization, surrogate model, Gaussian process

Abstrakt. Optimalizace tzv. black-box funkci, tedy funkci pro néz nelze najit spravné matem-
atické vyjadreni, je vyznamnou tlohou pfi feSeni problémi ve vyzkumu i v praxi. Pouhé jedno
vyhodnoceni této funkce muze vyzadovat znatné mnozstvi zdrojua potiebnych k provedeni piis-
luSnych experimentt, méfeni a simulaci. Abychom dosahli sniZeni poctu vyhodnoceni drahé
black-box funkce a zaroven zachovali vysokou kvalitu feSeni, nabizi se pouziti vhodného regres-
niho modelu, ktery je nékdy také nazyvan nahradni model [3]. V ¢lanku [4] pFedstavujeme novy
zpusob vyuziti ndhradniho modelu v oblasti optimalizace drahych spojitych black-box funkei.
Tento novy algoritmus je zaloZen na verzi v sou¢asnosti nejlepsiho evoluéniho algoritmu CMA-
ES [2]|, ktera pouZziva nédhradni modely, Surrogate Covariance Matrix Adaptation Evolution
Strategy (S-CMA-ES) [1]. Stejné jako u ptuvodniho algoritmu S-CMA-ES, jsou vyhodnoceni
drahé funkce Setfena pomoci ndhradniho modelu. Rozdilem oproti pfedchozimu algoritmu je

*This work was supported by the Grant Agency of the Czech Technical University in Prague with its
grant No. SGS14/205/0HK4/3T/14 by the Czech Health Research Council project NV15-33250A, by
the project “National Institute of Mental Health (NIMH-CZ)”, grant number ED2.1.00/03.0078 and the
European Regional Development Fund, and by the project Nr.LO1611 with a financial support from the
MEYS under the NPU I program.

tThis study has been provided in cooperation with Lukas Bajer.
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pretrénovani modelu v kazdé generaci po prehodnoceni bodi, jejichz predpovézené hodnoty
mély nejvétsi miru nejistoty, pomoci skuteéné black-box funkce. Ukazujeme, Ze pfi vyuZiti
pouze malého poc¢tu vyhodnoceni se nova verze algoritmu S-CMA-ES, ktera pouziva gaussovské
procesy [5] jako nahradni model, blizi k optimu nejen rychleji nez algoritmus ptivodni, ale i rych-
leji nez dva ze v soucastnosti nejlepsich algoritmt pouzivajicich ndhradni modely s vyjimkou
nékolika vyhodnoceni na pocatku optimalizaéniho procesu.

Klicovd slova: benchmarking, black-box optimalizace, ndhradni modelovani, gaussovské procesy
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Abstract. This paper provides a common framework, a generic model, for Computerized
Adaptive Testing (CAT) for different model types. In CAT students are modeled by many
different model types which are usually used separately. Although these models are separate
and often very different, they show similarities and similar approaches when used in the CAT
domain. We focus on joining these models under the common framework to allow them to share
methods and to simplify the process of adaptive testing with different models. We present CAT
procedure and question selection methods for the generic model. Any specific model fitting to
the CAT generic framework can use these methods. We use three different types of specific
models, Item Response Theory, Bayesian Networks, and Neural Networks, that instantiate the
generic model. We describe these models and show how they fit into the generic structure.
Moreover, we discuss an additional condition — the monotonicity — in these individual models.
We illustrate the usefulness of its inclusion for CAT. With Bayesian Networks we use specific
type of learning using generalized linear models to ensure the monotonicity property. We
conducted simulated CAT tests on empirical data and we present methods used and results.
The behavior and performance of individual models was assessed based on these tests. The
best performing model was the BN model constructed by a domain expert; its parameters were
learned from data under the monotonicity condition. Source codes used for our experiments are
available online, with one of our data sources, and we are working to create R-language package
for CAT tests.

Keywords: Bayesian Networks, Computerized Adaptive Testing, Generalized Linear Models,
Item Response Theory

Abstrakt. Tento ¢lanek vytvari spole¢ny ramec, genericky model, pro adaptivni testovani
znalosti (CAT) pro rizné typy modeli. Studenti jsou v CAT modelovani riznymi druhy modeld,
které jsou dnes obvykle vSechny pouzivany samostatné. Pfestoze jsou tyto modely samostatné
a Casto velmi odligné, sdileji i spole¢né pfistupy a metody v kontextu CAT. V tomto ¢lanku se
zaméfujeme na sjednoceni t&chto modeli pod spoleény ramec, abychom umoznili sdileni téchto
metod a zjednodusili proces adaptivniho testovani za pouziti riiznych modeld. Pro genericky
model prezentujeme proces adaptivniho testovani a metody vybéru otazky. Libovolny model
spadajici do spole¢ného rdmce tak miize vyuzivat tyto spoletné metody. Prezentujeme 3 rtizné
typy specifickych modelu (teorii odpovédi na polozku, bayesovské sité a neuronové sité) k ini-
cializaci generického modelu. Popisujeme je a ukazujeme, jak spadaji do generického ramce.
Navic se zabyvame dalsi vlastnosti — monotonicitou — v téchto modelech. Ilustrujeme vyhod-
nost vyuziti této vlastnosti v CAT. Pro bayesovské sité vyuzivame specidlni zptsob uceni s

*The work on this paper has been supported by the Czech Science Foundation, GACR project
No. 16-12010S and by the Grant Agency of the Czech Technical University in Prague, grant
No. SGS16/175/0OHK3/2T/14.
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pomoci zobecnénych linearnich modelt k dodrzeni této vlastnosti. Na empirickych datech jsme
provedli simulované CAT testy a prezentujeme pouZité metody a vysledky. Na zakladé téchto
testi jsme vyhodnotili chovani{ a ispéSnost jednotlivych modeli. Jako nejlepsi model nam vy-
chéazi bayesovska sit, ktera je naucena za dodrZeni podminky monotonicity pomoci zobecnénych
linearnich modelti. K dispozici, online na strance jednoho z autori, daviame zdrojové kody, které
byly pro experiment pouzity (spolu s jednou datovou sadou). Pracujeme na publikaci téchto
kodt v podobé balicku pro adaptivni testovani do jazyka R.

Klicovd slova: bayesovské sité, pocitacové adaptivni testovani, zobecnény linearni model, teorie
odpovédi na polozku

Full paper: This article was presented at the 8th International Conference on Proba-
bilistic Graphical Models (PGM2016) held in Lugano, Switzerland, 6.9.2016 — 9.9.2016.
The full version is available in the conference proceedings: M. Plajner and J. Vomlel.
Student Skill Models in Adaptive Testing. In the Proceedings of the 8th International
Conference on Probabilistic Graphical Models (PGM2016), Lugano, Switzerland, 2016.
Editors: A. Antonucci, G. Corani, C. de Campos.
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Abstract. Homogeneous droplet nucleation is a phenomena occuring in atmosphere or indus-
trial processes such as crude gas cleaning. In this work, we investigated the density gradient
theory (DGT) and the influence of the capillary waves (CW) on the computed nucleation rates
and surface tension of two n-alkanes. We found out that there are three major contributions to
the surface tension of a droplet: linear increase by a Tolman’s effect, quadratic decrease by the
thickness of the interface and another increase by extraction of the CW. The extraction of the
CW is important, because in the range of experimental data, the CW cancel out and does not
play any role.

This text is a short version of the one that will be submited to Journal of Chemical
Physics.

Keywords: nucleation, nucleation rate, surface tension, density gradient theory, capillary waves

Abstrakt. Homogenni nukleace kapek je fenomén, ktery se objevuje v atmosferickych nebo
prumyslovych procesech, jako je ¢isténi zemnfho plynu. V této praci jsme zkoumali povr-
chova napéti a nukleacni rychlosti dvou alkanu, spoc¢tené s pomoci teorie gradientu hustoty a
kapilarnich vin. Nagli jsme tii zakladni p¥ispévky povrchovému napéti kapky: linearni prirtstek
zpusobeny Tolmanovym efektem, kvadraticky pokles zpusobeny tloustkou fazového rozhrani a
dalsi piirtstek zptisobeny odstranénim kapilarnich vin. Toto odstranéni je dilezité, protoze v
oblasti experimentélnich dat se kapilarni vlny vyrusi a nehraji zidnou roli.
Tento text bude ve zkracené formé poslan do zurnalu Journal of Chemical Physics.

Klicovd slova: nukleace, nukleacni rychlosti, povrchové napéti, toerie gradientu hustoty, kapilarni
viny

1 Introduction

Description of homogeneous droplet nucleation is important in many natural and indus-
trial processes such as formation of secondary aerosols in the atmosphere, formation of
water droplets in the steam turbines, or nucleation during the gas-cleaning procedures,
e.g. in processing of natural gas.

Despite many attempts that resolved partial subproblems of the nucleation, there is
no complete theory which would give quantitatively correct predictions.

The simplest method to describe the nucleation is the classical nucleation theory
(CNT) developed by Becker and Déring|1] and extended by Zeldovich[18, 19].
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However, a smooth change of the density between the two phases describes reality
better. This approach is considered in the density gradient theory (DGT). The DGT was
first developed in pioneering work of van der Waals[15, 13|, then further elaborated by
Cahn and Hilliard|3, 4].

Besides the non-zero thickness, the interface is also disturbed by a thermal motion of
molecules. These undulations are called the capillary waves (CW), developed by Buff,
Lovett and Stillinger|2].

2 Nucleation rates

We say that a thermodynamic system that consists of the liquid, its vapor and a phase
interface between them is in a saturated state if it is in thermodynamic equilibrium stable
to all fluctuations. Both phases in this system have the same temperature 7', pressure p
and chemical potential . The degree of its supersaturation is defined as

S— oxp (%) | (1)

where py is the chemical potential of the vapor, pv.. is the chemical potential (of the
vapor) of the saturated state and kg is the Boltzmann constant.

These droplets can be also viewed as clusters of n-mers. Microscopically, these clusters
grow or shrink if a monomer join or leave the cluster. Of all the n-mers, important is the
so-called critical cluster with n., numbers of molecules which has the same probability to
grow as to shrink. The number of droplets formed in unit of volume per unit of time is
called nucleation rate, J, and is given by

PV PV o 205 AQ)
Jo = oS exp (— s ) 2
e VM eXp( k:BT) @

where py is the density of the vapor phase, py . density of the vapor phase of the
saturated state, pr, o is the liquid density and o, surface tension of the saturated state.
The work of formation A2 of the critical cluster according to the CNT is given by

167 o3,

AQ =
N (3)

3 Density gradient theory

The work of formation of a droplet according to the DGT is a volume integral consisting
of homogeneous and gradient part,

a0() = [

where 7 is the radial coordinate; it is the distance from the center of the droplet. In Eq.
(4), the grand-potential density difference is given by

A’ ( )—I—lc dp 2 4rr?dr (4)
PIT o\ ar ’

Aw’ = O — puy + pv, (5)
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where vy is the chemical potential of the vapor phase and py is the pressure of the vapor
phase.

The work of formation (4) has its saddle point for the density profile corresponding
to the so-called critical cluster; the critical cluster has its minimum with respect to all
the properties in the functional space except for its size where it is maximal. This point
is described by variating Eq. (4) which leads to an Euler-Lagrange equation,

d?p  2dp 1
—Cy 2P ZA 6
dr? + rdr ¢ i), (6)
where Ay = p°(p) — py is the difference of local chemical potential and chemical potential
of the homogeneous (vapor) phase.
To solve the problem, two boundary conditions are needed,
dp

p(r — 00) = pv, 5(0) = 0. (7)

4 PC-SAFT

In this work, DGT was combined with the PC-SAFT|7, 8| equation of state, which
belongs to the family of modern SAFT-type EoSs being developed since 1990’s|5].

The SAFT-type EoSs are defined in the form of the Helmholtz free energy, which
is given as a sum of the ideal gas part Flq evaluated from the isobaric heat capacity
of the ideal gas and the residual part Fi. defined by the SAFT terms. An important
advantage of the SAFT-type equations is that the residual part of the Helmholtz energy is
defined as a sum of individual contributions accounting for various types of intermolecular
interactions, e.g., the van der Waals attractions, Coulombic forces or hydrogen bonds. In
PC-SAFT, the residual part consists of the hard chain contribution F},. representing the
reference fluid and the perturbation contribution Fyip.

5 Capillary waves

Thermal motion of molecules causes that the interface is not a plain surface but it is
rather disturbed by the CW[2]. Meunier|[11]| developed so-called mode-coupling theory
that adds the CW-broadening effect to the surface tension of the planar phase interface.

We define a “bare” surface tension oyp..., as surface tension cleared of the CW. The
bare surface tension still accounts for some thermal motion of molecules, but only those
that are caused by non-zero thickness of the interface. The experimental surface tension
Oexp 18 then given by a difference of this bare surface tension and the CW contribution|11],

3
Oexp = Obare — _kBqunax: (8)

8T
where quax is the upper cutoff of the wave-numbers considered. ¢, describes CW with
the smallest wave-length that are not already accounted in the DGT|11|. The CW cause
decrease of the surface tension; they are a result of an entropic effect which, in a product
with temperature subtracted from internal energy, decreases energy.
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Using the mode-coupling theory, ¢un.x can be derived as

1
max — F qpe_ - 9
¢ 5156~ (%)
Both correlation lengths obey a scaling law
T —v
+ +

= 1—— 10
€ §0 Tc ) ( )

where v = 0.63 is a critical exponent.
Using Eq. (9), 0pare in (8) can be expressed using oeyp, as|6],

3T 1
are — Uex 1 — Q== - 11
Tbare = 7 p( +87TTC2.70> (11)

Aside from the upper cutoff ¢.x, we can also define a lower cutoff of the wave-number
(min, the largest wave-lengths that can fit into a nanoscopic droplet. We will take a simple
idea that the longest wave-length should twice fit into the circumference of the droplet,

2/\max - 27’(’7"5, (12)

where radius of the droplet is represented by the radius of the surface of tension, rs. The
lower cutoff of the wave-vector would be then

2T 2

min — = . 13
1 )\max Ts ( )

6 Method

Equation (6) with boundary conditions (7) forms a boundary value problem. This simply
looking problem has several difficulties: the density profile near the gaseous phase has
sharp shape; its slope changes abruptly from the very steep decline to an almost constant
profile. Second problem is that for large droplets the density profile in the interior of the
droplet changes only negligibly and is almost constant. This causes significant cumulation
of numerical errors.

We developed an original algorithm based on the simple but robust shooting method
combined with the halving method. The boundary value problem was modified into an
initial value problem by estimating (shooting) the density in the center of the droplet p,
so the initial conditions were

dp
p(0) = po, --(0)=0. (14)
The initial value problem was then solved using the Runge-Kutta method (MATLAB
function ODE45). The other boundary condition, p(R) = py for R sufficiently high, had
to be matched. However, we encountered several numerical problems.
Density profiles solving iterations of Eq. (6) with conditions (14) showed an oscillatory
behavior around a density in the physically unstable region. For first 3 nm, the supposed
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Figure 1: Nucleation rates J of n-heptane as functions of supersaturation S for various
temperatures in logarithmic scale. One color always corresponds to one temperature.
Comparison of theoretical nucleation rates (2) with experiments by Rudek etal. [14].
Solid lines correspond to the DGT, dashed lines to the CNT. Lines with light-color sym-

bols corresponds to the PC-SAFT Eos, with white symbols to the PR EoS. Experimental
data are depicted by dark-color symbols.

decline from liquid density pr, = 713kg/m? towards the vapor density py = 0.3534kg/m?
can be observed. Then the density rises and oscillates around density p ~ 250kg/m?
which lies in numerically stable but physically unstable region.

Therefore, the second condition of (14) had to be changed to

min p(r) = pv, (15)

which made it impossible to use Newton method for the initial guess iteration.

Moreover, the secant method failed to converge with the combination of ODE45,
because this method uses adaptive step-size. Then, when the solution is approached, the
error does not monotonically decrease and the error analysis is rather chaotic. However,
ODEA45 is very fast solver and we wanted to take advantage of it, so we changed the secant
method to the slower, but more robust, halving method.

7 Results and discussions

We performed DGT and CNT computations for two alkanes, n-heptane and n-octane for
temperatures that correspond to experimental data for the nucleation rates by Rudek
etal. [14]|, Hung et al. [9], Luijten [10], Viisaanen et al. [16] and Wagner and Strey [17],

e n-heptane (C7): 249 K, 259 K, 268 K, 276 K,
e n-octane (C8): 241 K, 248 K, 258 K, 267 K, 287 K, 298 K, 302 K,
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Figure 2: Nucleation rates J of n-octane as functions of supersaturation S for various
temperatures in logarithmic scale. Experimental data are given by Rudek etal. [14].
Markers and lines are same as in Fig. 1.

Calculations were done using the PC-SAFT EoS and the Peng-Robinson[12] (PR) EoS.
Influence parameters ¢ were computed using the “bare” surface tension of the planar phase
interface that was obtained from the experimental surface tension using Eq. (11). Using
Eq. (11), we removed the effect of the capillary waves from the input of the DGT. The
reason is that the DGT does not contain capillary waves and it is more consistent to
exclude them.

Computations were performed using the algorithm described in Sec. 6. Program was
implemented in MATLAB. The nucleation rates were evaluated using Eq. (2), DGT works
of formation were computed using Eq. (4).

Figures 1 — 2 show nucleation rates depending on the supersaturations in logarithmic
scales computed using the combinations of the DGT and the CNT and PC-SAFT and PR
EoSs compared with the experimental data. One color and one symbol always correspond
to one temperature. Lines depict the theoretical data: solid lines with light-colored
symbols are the DGT-PC-SAFT computations, dashed lines with light-colored symbols
correspond to CNT-PC-SAFT, solid lines with white symbols to DGT-PR, dashed lines
with white symbols to CNT-PR.

Slope of experimental data quite nicely corresponds to the slope of the results, how-
ever, all the lines are somewhat shifted.

Another way how to evaluate nucleation rates with respect to experiments is via
their ratios. Figure 3 shows ratios of theoretical and experimental nucleation rates corre-
sponding to the experimental temperatures and supersaturations as functions of inversed
reduced temperatures. Numerical data were therefore twice interpolated using cubic
spline; first, In J were interpolated so that their (logarithms of) supersaturations match
In Sexp on two isotherms neighboring T¢.,. Then these two nucleation rates were again
interpolated with respect to temperature to match Tip,.
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Figure 3: Ratios of nucleation rates of both n-alkanes computed using the DGT (left)
and the CNT (right) and experimental nucleation rates as functions of inverse reduced
temperature. Experimental data are given by Rudek et al. [14] (R).

In Fig. 3 ratios of nucleation rates computed using the DGT and the CNT and
experimental nucleation rates are depicted. In both plots, one color and one symbol
correspond to one group of experimental data.

The x axis is chosen so that the data from different substances are more compact and
inhibit differences between the substances. Ideally, the symbols should lie on the constant
line 1 (10°), which is clearly not the case. Therefore there is a temperature trend which
is not described by neither of the theories.

Our last two results discuss the effect of the capillary waves. Figure 4 shows the surface
tension depending on the Laplace pressure Ap computed using the DGT and combination
of the two EoSs, PR and PC-SAFT, and different types of influence parameters. We
computed n-heptane at the temperature 7' = 276K. Laplace pressure is connected with
the radius of the droplet r via Young—Laplace equation. Therefore, Ap = 0 correspond
to infinite radius, i.e. the planar phase interface with value of surface tension o.. In the
other end is the spinodal where surface tension vanishes ¢ = 0. Spinodal is not possible
to reach with the DGT, therefore we used a cubic interpolation to have a continuous line.

From Fig. 4 can be seen that opae > 0exp. Surface tension of both EoSs start at
either opae Or at geyp for Laplace pressure Ap = 0, but then tends to the spinodal value
given by the particular EoS. The inset figure shows a detail of the trend. It can be seen
that capillary waves have an effect on the surface tension.

Figure 5 shows nucleation rates depending on the supersaturation of n-heptane at
the temperature T" = 276K. Again, combination of the two EoSs and the two influence
parameters was used, same as in Fig. 4. The stars depict the experimental data. Erasing
the capillary waves lowers the nucleation rates. The effect is quite large, which proves
importance of such a treatment. Of course, adding the effect of capillary waves to the
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Figure 4: Surface tensions ¢ as functions of Laplace pressure Ap of n-heptane at tem-
perature T' = 276 K. Inset is the detail of the beginning where the lines cross. Lines
are results of the DGT computations with PR and PC-SAFT EoS using ¢ obtained from
experimental surface tension o, and bare surface tension opee, Eq. (11).

108
10 6 L
h
mED
|
E 104}
~ exp
PC-SAFT
are
JPC-SAFT
102 *®
bare ’PR
PR
exp
10°

Figure 5: Nucleation rates J as functions of supersaturation S of n-heptane at tempera-
ture T' = 276 K. Lines are the same as in Fig. 4. Nucleation rates are also compared to
the experimental data by Rudek et al. [14] (black stars).
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nucleation rates via surface tension and work of formation is also important. This will
be a topic of the next article.

8 Conclusions

We computed nucleation rates of two alkanes: n-heptane and n-octane using the density
gradient theory and the classical nucleation theory. For the calculations an original
algorithm was developed in MATLAB to solve an Euler-Lagrange equation which with
boundary conditions forms a boundary value problem. During the process of solution,
we had to develop several numerical enhancements because the problem was numerically
unstable. We used a traditional cubic Peng—Robinson EoS and a modern PC-SAFT EoS.

We also studied the effect of the CW on the surface tension and nucleation rates. We
found out that in the range of the experimental data, the droplets are so small that the
longest wave-lengths of the CW that could fit into a nanoscopic droplet, are already too
small for the CW description. This means that the only thermal motion of the molecules
is already accounted for in the DGT description and the CW play no role. Therefore, for
a consistent description of droplets by the DGT it is necessary to remove CW from the
input.

There are three contributions accounted for the shape of the surface tension of a
droplet which is depicted in Fig. 4. First is the Tolman’s linear effect which accounts for
the mild increase of surface tension (for low Ap). Second, quadratic, effect accounts for
the curvature bending down. This one is caused by a non-zero thickness of the interface.
Third is the effect of the CW. Extraction of the CW increased the surface tension since
Obare > Oexp- 1he effect was rather significant on the surface tension and nucleation
rates, so it is important to consider CW removal from the influence parameter in the
DGT description.
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Abstract. Acute Myocardial Infarction (AMI) is the leading cause of death in most countries.
Our research reported in this paper is twofold. In the first part of the paper we use standard
statistical methods to analyze medical records of patients suffering myocardial infarction from
the third world Syria and a developed country - the Czech Republic. One of our goals is to find
whether there are statistically significant differences between the two countries. In the second
part of the paper we compare different predictive models of hospital mortality for patients with
AMI. All results presented in this paper are based on a real data about 603 patients from a
hospital in the Czech Republic and about 184 patients from two hospitals in Syria. Although
the learned models may be specific for the data we also draw more general conclusions that we
believe are generally valid.

Keywords: Machine Learning, Data mining, Data analysis, Classification, Bayesian networks,
Acute Myocardial Infarction

1 Introduction

Acute myocardial infarction (AMI) is commonly known as a heart attack. A heart attack
occurs when an artery leading to the heart becomes completely blocked and the heart
doesn’t get enough blood or oxygen. Without oxygen, cells in that area of the heart
die. AMI is responsible for more than a half of deaths in most countries worldwide. Its
treatment has a significant socioeconomic impact.

One of the main objectives of our research is to design, analyze, and verify a predictive
model of hospital mortality based on clinical data about patients. A model that predicts
well the mortality can be used, for example, for the evaluation of the medical care in
different hospitals. The evaluation based on mere mortality would not be fair to hospitals
that treat often complicated cases. It seems better to measure the quality of the health
care using the difference between predicted and observed mortality.

A related work was published by krumholz [1]. The authors analyze the mortality
data in U.S. hospitals using the logistic regression model.

147
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2 Data

Our data-set contains data about 787 patients characterized by 24 variables. 603 patients
of them are from Czech Republic and 184 are from Syria. The attributes are listed in
the Table 1. Most of the attributes are real valued, four attributes are nominal. Only a
subset of attributes was measured for the Syrian patients. Most records contain missing
values, i.e., for most patients only some attribute values are available. The thirty days
mortality is recorded for all patients.

In the Czech Republic the results of blood tests are reported in millimoles per liter of
blood. In Syria some of the measurements are reported in milligrams per liter and some
in millimoles per liter. We standartize all measurements to the millimoles per liter scale.

Attribute Code type value range in data Country
Age AGE real [23, 94| SYR, CZ
Height HT real [145, 205] CZ
Weight WT real [35, 150] CZ
Body Mass Index BMI real [16.65, 48.98] CZ
Gender SEX nominal {male, female} SYR, CZ
Nationality NAT nominal {Czech, Syrian} SYR, CZ
STEMI Location STEMI  nominal {inferior, anterior, lateral} SYR, CZ
Hospital Hospital nominal {CZ, SYR1, SYR2} SYR, CZ
Kalium K real [2.25, 7.07] CZ

Urea UR real [1.6, 61] SYR, CZ
Kreatinin KREA  real [17, 525] SYR, CZ
Uric acid KM real [97, 935] SYR, CZ
Albumin ALB real [16, 60| SYR, CZ
HDL Cholesterol HDLC  real [0.38, 2.92] SYR, CZ
Cholesterol CH real [1.8, 9.9] SYR, CZ
Triacylglycerol TAG real [0.31, 11.9] SYR, CZ
LDL Cholesterol LDLC real [0.261, 7.79] SYR, CZ
Glucose GLU real [2.77, 25.7] SYR, CZ
C-reactive protein CRP real [0.3, 359] SYR, CZ
Cystatin C CYSC  real [0.2, 5.22] SYR, CZ
N-terminal prohormone of | \ppnp ) [22.2, 35000] CZ
brain natriuretic peptide

Troponin TRPT  real [0, 25] CZ
DRy | GEMD real (013,731 oz
Glomerular filtration rate

(based on Cystatin C) GFCD  real [0.09, 7.17] CZ

Table 1: Attributes
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3 Preliminary Statistical Analysis

For a preliminary statistical analysis 2| we randomly choose 150 Czech patients and 150
Syrian patients from our dataset so that we had two groups of equal size. We selected
a subset of attributes presented in both groups, namely, we considered these variables:
age, nationality, gender, STEMI location, and mortality.

Since STEMI location is nominal and takes three states for most experiments we
transform it to three binary variables STEMLinf, STEMI.ant, and STEMI.lat. The
nationality is encoded by a binary variable, where 0 means Czech and 1 means Syrian.
The Gender is encoded by a binary variable where 0 denotes a man, while 1 stands for
a female. The mortality is also encoded as a binary variable, where 0 means that the
patient survived 30 days, while 1 means that he/she did not.

Already from Figure 1, where the histogram of the age values is presented, we can see
that from patients that didn’t survive a high percentage are young patients from Syria.
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Figure 1: Histogram of the age values

In Table 2 we present the correlation matrix (since it is symmetric we present only
the upper triangular part without the diagonal). The correlations that were statistically
significant (at the level 0.05) are highlighted. We can see that there is a negative correla-
tion between the age of the patients and the nationality (the Czech Republic is encoded
using 0 and Syria 1). Hence, the average age of the Czech patients is greater than the
age of Syrian patients. There is also a significant difference between the percentage of
male and female patients in each country — the percentage of female patients is 28% in
the Czech Republic and 40.6% in Syria. We also observe a significant difference between
mortality of the Syrian (12%) and Czech (5.4%) patients.
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Table 2: The correlations and their statistical significance

gender STEMI loc. mortality nationality

age corr. | 0.092 0.001 -0.074 -0.460
sign. | 0.111 0.982 0.199 0.0001

gender COIT. 0.034 0.018 0.133
sign. 0.557 0.757 0.021

STEMI loc. corr. 0.104 0.106
sign. 0.071 0.066

mortality COIT. 0.128
sign. 0.026

Table 3: The Chi-Square Test of conditional independence

gender STEMI loc. mortality nationality

age value | 52.63 136.7 102.57 104.78
sign. 0.821 0.242 0.001 0.001

gender value 1.605 0.096 5.337
sign. 0.448 0.756 0.021

STEMI loc. value 10.678 17.173
sign. 0.005 0.0001

mortality value 4.925
sign. 0.026

The standard chi-square test of conditional independence between two variables re-

veals (see Table 3) that there is a significant dependence between the mortality and
nationality. There is also a significant dependence between the mortality and STEMI
location — the patients from Syria with a lateral infarction have the lowest probability to
survive.

Table 4: The Mann-Whitney U test

age gender STEMIlat STEMILant STEMIinf nationality
mortality value | 3100 10036 2833 2952 3567 2860
sign. | 0.173  0.757 0.002 0.045 0.748 0.027

We also performed the Mann—Whitney U test (see Table 4) to see whether there is a
significant difference between mean values of mortality if we classify patients into groups
according to their age, gender, STEMI location, and nationality. From the test we can
conclude the patients from the Czech Republic have lower mortality than Syrians and
the patients with lateral infarction have a lower probability to survive.

Finally, we learned the logistic regression model, that describes the relationship be-
tween the considered independent variables and the mortality as the dependent variable.
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We have got:

logit P(Y = 1|X = x)
Bo + Bixr + ...+ Bss
= —2375—-0.006-27 —0.026 - x9 + 0.613 - 3 + 0.916 - z4, — 0.489 - x5

where x; is the age, x5 is the gender (0 for a male and 1 for a female), x3 is the nationality
(0 for Czech and 1 for Syrian), z4 is the STEMI.lat (0 for no, 1 for yes), and x5 is the
STEMILant (0 for no, 1 for yes). But only the intercept and the variable STEMI. lat
appeared to be statistically significant for mortality prediction.

From the preliminary statistical analysis we can conclude that although the diverse
test we used do not suggest exactly the same relations between the studied variables they
mostly agree on few significant relations:

e In Syria the mortality from AIM is significantly higher than in the Czech Republic
— 87.3% Syrian patients survive, while 94.7% patients from the Czech Republic
survive.

e The age of patients in Syria is lower in average (the average difference is 13 years)
and there is a higher prevalence of women among the patients with AIM in Syria
than in the Czech Republic.

e The STEMI location is related to the mortality.

4 Machine Learning Methods

The preliminary statistical analysis studied mostly the pairwise relations only. Since the
explanatory variables may combine their influence and the influence of a variable may be
mediated by another variable it is worth of studying the relations of variables all together.
We will do it in two steps: (1) since the mortality prediction is of our prime interest we
will compare how different classifier are able to predict the mortality, (2) to get an overall
picture of the relations between all variables we will learn a Bayesian network model from
the collected data.

We will work with different versions of data. They depend on how we treat variables
that have more than two states: (1) real valued ordinal variables, (2) discrete valued
variables (with at most five states), and (3) binary variables. We will discuss the values’
transformation in more detail in the next sections.

4.1 Ordinal attributes

In our data, we have several categorical variables (sometimes also called nominal vari-
ables). These are variables that have two or more categories. For example, gender is
a categorical variable having two categories (male and female). But for some machine
learning methods we need ordinal attributes which are attributes whose values have an
ordering of values that is natural for the quantification of their impact on the class. This
is satisfied by all attributes that can take only two values — even if they are nominal, e.g.
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by gender (0 for male, 1 for female), mortality (0 for survived, 1 for died). In our data it
seems that the ordinality can be assumed for most real valued attributes, but note that
there might also exist laboratory tests whose values deviating from a normal range in
both directions (i.e. both lower and higher values) may both increase the mortality. We
will refer to the ordinal data as D.ORD.

4.2 Discrete attributes

Discrete variable is a variable that can take values from a finite set. Some classification
methods require discrete variables. To get a statistically reliable estimates of model
parameters it is advisable to keep the number of values as low as possible while still
being able to express the significant relations. We performed discretization of all real-
valued attributes. It is not easy to find the optimum number and the values of split
points in discretization. Fortunately, there exists the Czech National Code Book that
classifies numeric laboratory results, with respect to age and gender, into nine groups
1,2,...,9. The group 5 corresponds to standard values in the standard population. We
further reduced the number of states to 5 by joining some groups together. We will refer
to data in this form as D.DISCR.

4.3 Binary attributes

Binary data are data whose variables can take on only two possible states, traditionally
termed 0 and 1 in accordance with the binary numeral system and Boolean algebra. In
our case all laboratory tests are encoded using two binary attributes. The first attribute
takes value 0 for the standard values of the test and value 1 if the values are decreased.
The second attribute takes value 0 for the standard values of the test and value 1 if the
values are increased. The attributes Age, Height, and Weight are removed. From the
demographic group of attributes only Gender and the Body Mass Index (BMI) were kept
with BMI being encoded using two binary attributes BMI high and BMI low where the
BMI is greater than the mean takes value 1, otherwise it takes value 0. We will refer to
data in this form as D.BIN.

4.4 Attribute Selection

Before learning a model, we preprocess the data. Ussually, one of the most useful parts
of preprocessing is the attribute selection, where irrelevant attributes are removed. At-
tribute selection is a process by which we automatically search for the best subset of
attributes in our dataset. The notion of AAIJbestaAl is relative to the problem we are
trying to solve, but typically means the highest accuracy. Three key benefits of perform-
ing attributes selection on our data are:

e Reduces Overfitting: Less redundant data means less opportunity to make decisions
based on a noise.

e Improves Accuracy: Less misleading data means that modeling accuracy improves.

e Reduces Training Time: Less data means that algorithms train faster.
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The CfsSubsetEval method of Weka 3] selects the subsets of attributes that are highly
correlated with the class while having low inter-correlation. We searched the space of all
subsets by a greedy best first search with backtracking. Data D after the application of
this attribute selection method will be suffixed as D.AS.

4.5 Tested classifiers

For tests we used a large subset of classifiers implemented in Weka. Classifiers that
performed best in the preliminary tests qualified for the final tests. In the final tests we
compared following classifiers:

e Decision tree C4.5 [4].
e Logistic regression [5].

e Naive Bayes (NB) classifier [6] assume that the value of a particular explanatory
variable (attribute) is independent of the value of any other attribute given the class
variable.

e Bayesian network (BN) classifiers (1) learned by K2 algorithm |7] - referred as
BN.K and (2) Tree Augmented Naive Bayes classifier refer as BN.TAN |[8].

We use the leave-one-out cross validation as the model evaluation method. It means
that N separate times, the classifier is trained on all the data except for one point and a
prediction is made for that point. After that the average error is computed and used to
evaluate the model.

4.6 Results of experiments

For each data record classified by a classifier there are possible classification results. Either
the classifier got a positive example labeled as positive (in our data the positive example
is the patient survived) or it made a mistake and marked it as negative. Conversely, a
negative example may have been mislabeled as a positive one, or correctly marked as
negative. This defines the following metrics:

e True Positives (TP): number of positive examples, labeled as such.

e False Positives (FP): number of negative examples, labeled as positive.
e True Negatives (TN): number of negative examples, labeled as such.

e False Negatives (FIN): number of positive examples, labeled as negative.

Our results are summarized in Table 5 using the following measures of the prediction
quality:

e Accuracy measures how often the classifier makes the correct prediction. It is the
ratio between the number of correct predictions and the total number of predictions.

TP+TN

A —
ce TP+TN+FP+ FN
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e Recall is also known as sensitivity. It is the fraction of positive instances that are
correctly classified as positive (rate of true positives).

TP
REC = ———m—
TP+ FN
e Precision is the fraction of true positives over the number of all reported positives.
TP
PRE = ——
h TP+ FP
e F-measure is the harmonic mean of the precision and the recall
P PRE - REC
B PRE + REC
e Specificity is the fraction of true negatives over the number of all negatives.
TN
SPE = ————
FP+TN

e Area under the ROC curve (AUC). The ROC curve shows how the classifier
can sacrifice the true positive rate (recall or sensitivity) for the false positive rate
(1-specificity) by plotting the TP rate to the FP rate. In other words, it shows you
how many correct positive classifications can be gained as you allow for more and
more false positives. As an example, in Figure 7 we report the ROC curve for the
Naive Bayes classifier with the ordinal attributes. Its area under the curve is 0.782.

In Table 5 we compare the results of different classifiers on different versions of data.
The C4.5 classifier with D.DISCR has the highest accuracy of 0.942 its recall and precision
are also among the best achieved. But its area under the ROC curve is very low, only
0.371, which suggests that this classifier can not be satisfactory tuned if we want to
sacrifice precision to recall or vice versa.

In Figure 2 we present the tree structure of the C4.5 learned from the discrete data. It
has achieved the highest accuracy from all tested classifiers. Its structure is surprisingly
simple. If the patient is Czech then it is predicted to survive if the patient is Syrian
then the LDL cholesterol value should be checked. If it is below 4.78 then the patient is
predicted to survive, otherwise, if LDL cholesterol value is between 4.78 and 6.28 then
it depends on the Syrian hospital he/she is treated. If he/she is treated in the public
hospital (SYR1) then he/she dies if it is the private one (SYR2) then he/she survives.
If his/her LDL cholesterol values are higher than 6.28 then he/she dies (no matter what
Syrian hospital he/she is treated in). The simplicity of the C4.5 classifier is in line with
the general recommendation that in order to avoid over-fitting of training data the models
should be as simple as possible.

The highest area under the ROC curve (AUC) was achieved by Naive Bayes classifier
with the ordinal attributes. The highest value of F-measure was achieved by BN.K2 with
discrete attributes selected by the method CfsSubsetEval method of Weka [3]. The learned
BN model is actually also a Naive Bayes model — see Figure 3. We can conclude that
there is a single winner — a classifier that would be the best in all considered criteria. Also,
the classifiers differ in what variables they consider to be important for AMI mortality
prediction. We believe that it is worth learning diverse classifiers since it may help medical
specialists to get a deeper insight into the modeled problem.
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Table 5: Results of experiments

Classifier Criteria D.ORD D.ORD.AS D.DISCR D.DISCR.AS D.BIN D.BIN.AS
ACC 0.855 0.925 0.860 0.914 0.875 0.911
AUC 0.782 0.722 0.744 0.781  0.695 0.717
Naive Bayes Recall 0.439 0.158 0.351 0.368  0.246 0.140
Prec. 0.234 0.450 0.215 0.396  0.203 0.276
F-measure 0.305 0.234 0.267 0.382  0.222 0.186
ACC 0.935 0.933 0.942 0.921  0.926 0.927
AUC 0.527 0.621 0.371 0.627  0.528 0.273
C4.5 Recall 0.263 0.105 0.246 0.123  0.070 0.035
Prec. 0.625 0.750 0.875 0.368  0.444 0.333
F-measure 0.370 0.185 0.384 0.184 0.121 0.063
ACC 0.930 0.925 0.907 0.919 0.926 0.919
AUC 0.746 0.755 0.622 0.746  0.675 0.746
LOG.REG  Recall 0.140 0.018 0.193 0.140  0.070 0.140
Prec. 0.571 0.250 0.289 0.364 0.364 0.364
F-measure 0.225 0.033 0.232 0.203  0.118 0.203
ACC 0.932 0.936 0.914 0.920 0.913 0.920
AUC 0.658 0.480 0.701 0.726  0.701 0.726
NB-Tree Recall 0.211 0.228 0.228 0.088  0.070 0.088
Prec. 0.600 0.684 0.310 0.313  0.211 0.313
F-measure 0.312 0.342 0.263 0.137  0.105 0.137
ACC NA NA 0.886 0.918  0.900 0.926
AUC NA NA 0.750 0.775  0.687 0.671
BN.K2 Recall NA NA 0.316 0.368 0.193 0.105
Prec. NA NA 0.265 0.429 0.256 0.462
F-measure NA NA 0.288 0.396  0.220 0.171
ACC NA NA 0.908 0.925 0.904 0.927
AUC NA NA 0.721 0.768  0.653 0.642
BN.TAN Recall NA NA 0.193 0.228  0.088 0.053
Prec. NA NA 0.297 0,464 0.179 0.333
F-measure NA NA 0.234 0.306  0.118 0.091

4.7 Bayesian Networks

A Bayesian network [9] is a probabilistic graphical model whose structure is defined by
an acyclic directed graph and specifies conditional independence relations among model
variables corresponding to the nodes of the graph. We learned Bayesian networks by the
PC algorithm [10] implemented in Hugin [11].

We learned a joint BN model for all data (see Figure 4) but also one BN model for
the Czech data (see Figure 5) and one BN model for the Syrian data (see Figure 6). We
can see that latter two models are very different.

In the BN model of the Syrian data there is far less edges and many variables appear
independent. We do not know the true reason, a conjecture might be it is because we
have less data from Syria. Another reason might be that there are two groups of Syrian
patients each getting different blood tests. However, few things can be observed: in the
CZ model the mortality depends on TRPT attribute but it is not measured in Syria. The
relation of Mortality to ALB is present in both models (despite in the SYR model its
influence is mediated through Hospital variable). LDLC seems to play important role in
both models (in the CZ model its influence is mediated through other variables).
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Hospital <= 0: 0 (603.0/36.0)
Hospital > 0

| LDLC <= 4.78: 0 (157.86/6.0)
| 4.78 < LDLC <= 6.28

| | Hospital <= 1: 1 (12.95/2.95)

| |  Hospital > 1: 0 (9.0/1.0)

| LDLC > 6.28: 1 (4.18/0.18)

Figure 2: Decision tree C4.5 learned from D.DISCR has the highest accuracy 0.943 of all
tested models.

It is surprising that in all BN models the STEMI location is independent of mortality.
This is in a contradiction to the basic statistical analysis where its influence on mortality
was found significant by the The Mann—Whitney U test and by the Chi-Square Test of
conditional independence.

The BN structure is reflected in some of the classifiers. For example, consider the
decision tree presented in Figure 2. We can see that for the patients from Syria two
considered variables are Hospital and LDLC. If we look into BN for Syrian patients
(Figure 6) we can see that these two variables are exactly the variables that separate
Mortality from the rest of the BN model.

Although these models are not learned to optimize the mortality prediction quality
we compared the prediction quality of the joint model and of the combination of separate
models. Again we used the leave-one-out method for learning and testing. From Figure 8
we can see that the combined model has a better performance, its AUC is 0.679 while
the joint model has AUC = 0.5707282. These values are worst than values of the best
performing classifiers but we again believe it is worth considering the BNs since they
describe the whole modeled domain and the relations among variables even if they do
not have a direct impact on better mortality prediction.

5 Conclusions

We used medical data on patients with AIM to compare results of (a) basic statistical
analysis with (b) classification models and (c) Bayesian networks modeling the relations
found in data. Although the conclusions might seem to be specific only for the used data
here we report also a general observation.

We could see that the results of basic statistical analysis do not provide a complete
picture of the modeled problem. Some variables may appear to be significantly correlated
to the class variable but they are actually not directly correlated. Their correlation
observed in data can be due to other variables that are correlated to both the analyzed
variable and to the class variable. For the basic statistical analysis it is hard to reveal
it. In principle the BN learning algorithms are able to discover the mediated correlation
since they test not only pairwise independence but also the conditional independence
given values of other variables. This is exactly what the PC algorithm does.
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Abstract. This paper deals with numerical solution of the problems of two phase flow in
porous media. For solving this type of problems we propose a numerical method based on mixed
hybrid finite element method. We implement several variations of this method using different
approaches to solving resulting system of linear algebraic equations. We use direct and iterative
solvers and describe a parallel implementation of this method based on domain decomposition
using MPI. The method is verified on problem with known exact solution, on which we compare
accuracy and computational time. Numerical experiments show that the errors are similiar for all
variations of the method. The method is convergent and the experimental order of convergence
is slightly less than one. There are differences in the computational time. Iterative solvers are
faster and the paralelism is avantageous while using fine meshes.

Keywords: domain decomposition, two phase flow, mixed hybrid finite element method, MPI,
porous media, upwind

Abstrakt. Clinek se zabyva numerickym FeSenim tloh dvoufizového proudéni v poréznim
prostiedi. Pro feseni tohoto typu tloh navrhneme numerickou metodu vychézejici z hybridni
metody smiSenych koneénych prvki. Implementujeme nékolik variant této metody s pouzitim
rliznych ptistupti pro feSeni vzniklé soustavy linearnich algebraickjch rovnic. Vyzkousime ptimé
i iterac¢ni fesice a podrobné se budeme vénovat paralelizaci metody, vychazejici z domain decom-
position, s vyuzitim MPI. Numerickou metodu testujeme na tloze, pro kterou je zndmé piesné
FeSeni. Jednotlivé varianty metody porovnavame s ohledem na chyby feseni a vypocetni cas.
Ukazuje se, Ze chyby jsou ve vSech pripadech témér totozné, feseni konverguje a experimentalni
fad konvergence je o néco mensi nez jedna. Vyrazné rozdily jsou ve vypocetni naro¢nosti. Pouziti
iteracnich Tesicti je rychlejsi a piinos paralelizace se vyrazné projevi na jemnéjsich sitich.

Klicovd slova: domain decomposition, dvoufazové proudéni, hybridni metoda smisenych konec-
nych prvka, MPI, porézni prostiedi, upwind

1 Uvod

Matematické modelovani dvoufazového proudéni v poréznim prostiedi lze vyuzit pii reseni
mnoha problémt, které jsou v soucasné dobé aktualni. Modelovani Sifeni kontaminantt
a latek rozpusténych ve vodé lze vyuzit pti ochrané zdroju pitné vody nebo pii likvidaci
nasledki nehod, pii kterych doslo k tiniku nebezpecnych latek. U téchto tiloh az na nékolik
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specialnich pfipadl neni znamé presné feseni, ale s pomoci numerickych metod lze nalézt
pomeérné dobré aproximace reseni.

V této praci se zaméfime na testovani predstavené numerické metody na tloze dvou-
fazového proudéni, pro kterou je znamé presné feSeni. Pii vypoctech na jemnych sitich je
diilezita nejen presnost vysledku, ale také doba vypoctu. Proto se budeme vénovat také
paralelizaci numerického feseni, ktera umozni rychle fesit i ilohy na velmi jemnych sitich.

2 Numericka metoda

Metodu lze pouzit pro feSeni soustavy n parcialnich diferencidlnich rovnic ve tvaru:

j=1

= fi; (1)

ZNi’ja_tJ + Z’U,Z‘J‘ . VZJ + V-
j=1 j=1

kde Z; = Z;(x,t) oznacuji nezndmé funkce V¢ > 0, Vx € Q, kde Q C R? je oblast
a d je dimenze prostoru (d € {1,2,3}). N;;,m; jsou skalarni koeficienty, u; ;, w; vek-
torové koeficienty a D), ; symetrické tenzory druhého fadu. Dale uvedeme jen shrnuti

vvvvvv

Jako rychlostni ¢len v; oznac¢ime vyraz:

VUV, = — Z DZ'JVZJ' + w;. (2)

j=1

Uvazovanou oblast  C RY rozdélime na elementy. Tyto elementy budou tsecky
v jedné dimenzi, trojuhelniky ve dvou dimenzich a ¢tyrstény ve tfech dimenzich.

2.1 Aproximace rychlostnich ¢lenu

Budeme predpokladat, ze funkce v; a u; ; patii do funkcionalniho prostoru H(div, §2) a za-
roven, ze je muzeme na kazdém elementu aproximovat funkcemi z Raviartova-Thomasova-
Nédélecova prostoru RT'Ny(K) [1]. Aproximace funkci v; a u;; budou mit na kazdém
elementu K tvar:

v, = E Vi,K,EWK,E, U;; = E Ui, j, K,EWYK E,
EcoK EcdK

kde wgk g jsou bazické funkce prostoru RT'Ny(K). S vyuzitim vyjadfeni v; v bazi prostoru
RTNy(K) a definice rychlostniho ¢lenu (2) mizeme jednotlivé koeficienty v; i p urcit
pomoci Z; x a Z; :

n
Ui7K’E = : : <b7’7]’K7EZ.7’K - : : bZ,],K,E,FZj,F> + wi,K,E’ (3)

j=1 FedK

kde {B;jk}ter =[x w?FD;J-le,E, bi ;i je inverze B, j c a w; k i je koeficient projekce
vektoru w; do prostoru RT'Ny(K) podle bazického vektoru wg g.
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2.2 Aproximace zakonu zachovani a ¢asova diskretizace

Kazdou z rovnic (1) nejprve integrujeme pfes element K a déle upravujeme. Metoda
je semiimplicitni v ¢ase. Ve vSech vyrazech, které jsou v Z; linedrni pouzijeme hodnoty
z aktualni Casové vrstvy, u nelinedrnich vyrazi pouzijeme hodnoty z predchozi casové
vrstvy (metoda zamrzlych koeficientti). Po provedeni vSech tprav ziskame:

n

ZNk]K|Z|d (Zk+1 Z]kK + Z Z 'LL ]KE Zk+1 Zjlc}r(l)

j=1 j=1 E€dK
n
kupw k k+l k+1 k _ k
+ E m; E | o i KEL) I E b,],KEFZ +wigp| = |Klafix, (4)
E€OK =1 FEdK

kde |K|4 je d - rozmérna Lebesgueova mira elementu K a Aty je ¢asovy krok. Hodnota

kupw . < . o
m; s’ je spole¢nd hodnota na hrané E zvolend podle sméru v; [9].

2.3 Bilance na vnitinich hranach a okrajové podminky

K soustavé rovnic (4) popisujici chovani na jednotlivych elementech musime dodat dalsi,
které mezi sebou elementy provazi. Ty vyjadiuji bilanci hmoty na hranicich elementii:

2 n
> (Z <biijbEZJk DD bf,j,Ke,E,FZf,F> + wz’fi@ﬂ) =0. (5)

/=1 j=1 FedK,

Rovnice (5) popisuji pouze vnitini hrany. Pro Dirichletovu podminku dodame rov-
nice, které predepisuji hodnoty stopy veli¢iny na hranici. Zadani Neumannovy podminky
z vlastnosti bazickych funkci prostoru odpovida urceni koeficientu v; i p definovaného
vztahem (3).

2.4 Konstrukce matice soustavy

ZkJrl 7L ve tvaru:

Z rovnice (4) lze na kazdém elementu vyjadfit hodnoty pomoci

Zk+1 Z QKlRK FZ]H_1 + QKlRKy (6>
FeoK

kde Z]I“(Jrl je vektor, ktery obsahuje jednotlivé nezndmé v case ?;4; a matice Qy, Ri r
a vektor Ry maji nasledujici vyznam:

(@x)ij = [K[alN m*Atk( > ubixpt Y, migb k,JK,E>> (7)

EcOK EcoK

(RK,F)i,j = Aty ( Z mk upwa]KEF uijF) ) (8)

EcOK

(Rk)i = |K|dZNz']fj,KZ]]iK + Aty <|K|dffz< Z mfgpwwaE> . (9)
j=1

EcoK
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Takto vyjadrené stfedni hodnoty Z Jk;l dosadime do bilance toku na hranach (5), do za-
dani Neumannovych okrajovych podminek a pfiddme rovnice pro Dirichletovy okrajové
podminky. Jako vysledek dostaneme celkovou soustavu lineadrnich rovnic pro Z]’?J};l. Tuto

soustavu lze symbolicky zapsat:
MZM' =b, (10)

kde Z" = {{ZkJrl " }rer, je vektor nezndmych.

2.5 Algoritmus

Na zavér jesté pro prehlednost uvedeme shrnuti algoritmu.

2.5.1 Inicializace:

la. Nastav to = 0, £ = 0 a nastav ¢asovy krok At na zvolenou hodnotu.

1b. Z pocatecnich podminek urci hodnoty Z; 0

1c. Pro v8echny vnitini hrany £ urci hodnoty mZ Ew ze vztahu m;’;" = 0,5 - (M ke, & + Mi K, 1)
(E = 0K, UOJK,;), pro vnéjsi hrany pouZij informace z okraJovych podminek.

2.5.2 Hlavni vypocetni smycka algoritmu:

2a. Spocitej miizkové koeficienty b; ; k. p,r @ b;j i E-

2b. Spocitej prvky matic Q g, Rg r, inverzni matici Q' a slozky vektoru Ry
2c. Sestav matici soustavy M.

2d. Resenim soustavy (10) ziskej hodnoty Z*}!.
2e. S vyuzitim (6) spo¢itej hodnoty Z]]f}l.

2f. S vyuzitim (3) spocitej koeficienty v; .
2g. Nastav k =k + 1, tpy1 =t + At.

3 Implementace

Implementujeme dvojrozmérnou (2D) verzi numerické metody. Numerické schéma bylo
implementovano v jazyce C++, pro paralelizaci bylo vyuZito standardu MPI! [7]. Pro gene-
rovani trojihelnikovych siti byl vyuzit program Gmsh [4]. Vypocty probihaly na vypocet-
nim klastru katedry matematiky, osazeném procesory AMD Opteron 6272 (16 x2, 1GHz).

3.1 Sériova implementace numerického schématu

Nejprve se budeme vénovat sériové implementaci, ktera je jednodussi a navic se v porov-
nani s ni ukaze pfinos paralelizace. Jako sériovou budeme oznacovat implementaci bézici
jednovlaknové na jednom jadru procesoru.

V zakladni verzi je pouzita knihovna UMFPACK [2]. Pro jemnéjsi sité, a tedy vétsi roz-
méry matice soustavy (10), vyrazné nartistd doba vypoctu. Vypocet se pokusime urychlit
pouzitim iteracnich metod pro feseni soustav linearnich algebraickych rovnic.

Pfi feSeni uvazovanych tloh nebude matice soustavy (10) symetrické, coz z(zi vybér
moznych iteracnich metod. Vyzkousime dvé metody vychazejici z metod Krylovovskych

I Message Passing Interface
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podprostori: restartovanou metodu zobecnénych minimalnich rezidui (GMRES) a stabi-
lizovanou metodu bikonjugovanych gradienti (BICGSTAB). Podrobny popis metod lze
najit napfiklad v [8]. Pro obé metody budeme uvazovat pfedpodminéni netplnym LU
rozkladem. PouZijeme variantu, kdy neuvazujeme vznik zaplnéni a matice ILU? rozkladu
ma stejnou fidkou strukturu jako pivodni matice soustavy — ILU(0) [8].

Pro iteracni fesice je velice diilezité kritérium pro zastaveni iteraci. Budeme pouzivat
normu rezidua délenou normou pravé strany a k zastaveni iteraci dojde, pokud bude
splnéna podminka:

a1 ZE b
I

(11)

kde Z ’;H je Teseni ziskané v ¢-té iteraci a € je hodnota zastavovaciho kritéria.
Z divodu jednodussi implementace a kratsich vypocetnich ¢asi na testovacich ilohach
v sériové implementaci se pri paralelizaci zaméfime vyhradné na metodu BICGSTAB.

3.2 Paralelni implementace numerického schématu

Jako pfedpodminéni pouzivame ILU(0), které se samo o sobé Spatné paralelizuje. Zakladni
idea bude rozdélit matici na bloky a provadét ILU(0) pouze na diagonalnich blocich. Ty uz
budou nezévislé a bude je mozné zpracovat soucasné (tj. paralelng).

Pro rozdéleni matice na bloky, a tedy i distribuci dat mezi procesory, zvolime piistup
vychézejici z metody Domain Decomposition [10]. Nabizi se déleni podle elementi, ale pro-
toze primarni nezndmé v soustavé (10) jsou stopy na hranach, je vyhodnéjsi oblast délit
podle hran. Podle poc¢tu procesorii rozdélime hrany do patficného poctu skupin a tyto
skupiny pak mapujeme na jednotlivé procesory. Snazime se, aby byly vSechny skupiny
priblizné stejné velké, aby byla zatéz na procesory rozdélena rovnomérné. Také budeme
chtit, aby byl pocet elementil, které maji hrany v rtiznych skupinach, co nejmensi. Hod-
noty z téchto hran bude vyuzivat vice procesorii a budeme proto chtit omezit mnozstvi
prenasenych dat. Celou oblast rozdélime na dany pocet ¢tverct (pfipadné obdélniki)
a hrany pfifazujeme do skupin podle toho, ve kterém ¢tverci (obdélniku) lezi jejich stied.

Nepracujeme pouze se stopami na hranach, ale také se strednimi hodnotami na ele-
mentech. Pro omezeni komunikace a jednodussi implementaci budeme na kazdy procesor
mapovat vSechny elementy, které maji alesponn jednu hranu mapovanou na dany pro-
cesor. Elementy, které maji hrany v riznych oblastech, budeme mit ulozené duplicitné
(elementy jsou v tomto pfipadé trojihelniky — maximalné na tiech rtiznych procesorech).

3.2.1 Komunikace

Projdeme jednotlivé kroky algoritmu popsaného v sekci 2.5 a urc¢ime, kdy bude nutné
provadét komunikaci a jaka data bude nutné prenaset. Pri inicializaci z poc¢atec¢nich pod-
minek (kroky la - 1c¢) komunikace neni nutna.

Pii kroku 2a — vypoctu miizkovych koeficientl b; ; x g r @ b; j kg — se obejdeme bez
komunikace. Komunikace bude potieba az u kroku 2b — vypoctu matic Qx, R r a vek-
tori Ry . Matice prislusi danému elementu a pro jejich vypocet je nutné znat hodnoty

27 anglického Incomplete LU
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na vsech hranach tohoto elementu. Ty jsou vSechny na stejném procesoru pouze v pripadé,
Ze méa element vsechny hrany ve stejné skupiné.

Pii kroku 2c — sestavovani matice soustavy M — je dilezité poradi rovnic a ne-
zndmych. Pokud ocislujeme skupiny hran ¢isly 0, 1,2..., bude poradi radkt néasledujici:
nejprve bilance na hranach skupiny 0, pak skupiny 1, apod. Uvnitf kazdé skupiny pak uve-
deme bilanci pro jednotlivé neznamé ve vzestupném potadi. Poradi sloupcii bude voleno
tak, aby meéla matice strukturu co nejvice podobnou blokové diagonalni matici. To od-
povida poradi: nejprve neznamé odpovidajici hranam skupiny 0, potom skupiny 1, apod.
Potradi uvnitt skupin bude stejné, v jakém byly prochazeny bilan¢ni rovnice pii fazeni
rfadkt. Rozdéleni do skupin je voleno s ohledem na to, ze pro vyjadieni bilance na hrané
potfebujeme hodnoty ze vSech hran elementi, pro které je tato hrana spolecna. Matice
bude mezi procesory rozdélena podle radki tak, aby mél kazdy procesor blok radki,
které odpovidaji bilanci na hranach, které jsou mapovany na dany procesor a prislusnou
cast pravé strany.

Pti kroku 2d — fesSeni soustavy — pak bude komunikace nejvice. Pfi pouziti metody
BICGSTAB je pottfeba provadét skalarni soucin vektori, soucin matice a vektoru a apli-
kovat predpodminéni [8]. Nejjednodussi operaci je aplikace pfedpodminéni. Na kazdém
procesoru to odpovida konstrukci rozkladu diagonalniho bloku a dvéma zpétnym chodtm.
Protoze jsou diagonalni bloky na procesoru ulozené celé, neni potieba zadna komunikace.
P1i skalarnim soucinu dvou vektori, které jsou rozdélené mezi vice procesorti, kazdy pro-
cesor spoCita skalarni soucin na své ¢asti vektoru. Pomoci paralelni redukce [7] s operaci
+ se pak dil¢i skalarni souciny sec¢tou na jeden procesor a vysledek se pomoci operace
scatter [7] zase rozesle vSem. Pfi ndsobeni matice a vektoru je na kazdém procesoru
ulozZen cely blok rfadki a odpovidajici ¢ast vektoru. Pro ziskani celého souc¢inu vyuzijeme
operaci cyklicky posun [7]. Na zac¢atku je na kazdém procesoru mozné provést soucin
diagonalniho bloku a prislusné casti vektoru. Po provedeni této operace posle procesor
svoji ¢ast vektoru procesoru s ¢islem o jedna mensim a nulty procesor posila data posled-
nimu. Na kazdém procesoru pak opét miizeme vynasobit jeden blok matice s prislusnou
¢asti vektoru a vysledek pficist k tomu ziskanému z prvniho kroku. Tento postup opaku-
jeme, dokud neziskame cely soucin matice s vektorem. Tento postup je mozné vylepsit,
pokud vyuzijeme znalosti o struktufe matice, kterou nasobime. Pokud predem urc¢ime nu-
lové bloky, mtzeme misto cyklického posunu o jedna pouzit cyklicky posun o vice krokt
a omezit tak komunikaci. Takové omezeni komunikace vede obzvlasté pii pouziti vice
procesoru k vyraznému zrychleni [9].

V kroku 2e — vypoctu strednich hodnot na elementech Zﬁ}'{l ze stop na hranach

elementi Z f}gl — je opét nutnd komunikace a situace je velice podobné jako v kroku 2b.
U kazdého elementu opét potiebujeme hodnoty na vsech jeho hranach a ty si v pfipadé,
ze ma element hrany v riznych skupinach, musime preposilat. V krocich 2f a 2g uz se pak
zase obejdeme bez komunikace.

Typ komunikace v krocich 2b a 2e je tiplné stejny, lisi se jen data, ktera je nutné ode-
slat. Bylo by extrémné neefektivni posilat hodnoty z jednotlivych hrany jako samostatné
zpravy. Na zacatku kazdého provedeni krokit 2b nebo 2e muiizeme sestavit jednu dlouhou
zpravu, ve které budou vsechny hodnoty, které bude potieba pfeposlat z jedné skupiny
do druhé a odeslat je vSechny najednou.
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4 Vysledky

Regen4 tloha bude rozsifenim ¢isté difuzni jednorozmérné (1D) McWhorterovy—Sunadovy
tlohy v homogennim prostfedi. Tato tloha je definovana na polopfimce (0; +00), na které
je dana pocatecni hodnota saturace S; a v bodé nula je ddna okrajova podminka pro satu-
raci Sp. Pro nestlacitelné faze bez vlivu gravitace lze nalézt pfesné feseni [6, 3. Pro dvoj-
rozmérnou (2D) verzi numerické metody, budeme misto polopfimky uvazovat nekonecény
pas a presné feseni bude konstantni ve sméru kolmém na poloptimku, na které je fesena
puvodni 1D tloha.

4.1 Volba koeficientu

Pro feSeni této tlohy zvolime v obecné formulaci tlohy (1) koeficienty:

N = c%‘?i dpn | » u =0, m:(wi\fL)a
<_(I)pn dpe (I)Snd;ﬁ pn)\_f

. )\tK _/\tK o _/\tprg _ _fw
p-(N ) w(aks) ()

kde A\; = Ay + A,,. Podrobnosti k odvozeni koeficientii lze nalézt v [9].

Pro numerické reseni se omezime na oblast konecné délky. Rozméry pouzité oblasti,
znaceni hranic a zdkladni trojihelnikovéa sit jsou znézornéné na Obrazku 1. Pfesné a nu-
merické feseni budeme porovnavat v case t = 60 000 s, kdy celo Teseni jesté nedorazilo
k hranici reprezentujici nekonecno (T'y).

Cela oblast bude vyplnéna piskem C, jehoz vlastnosti jsou prevzaty z [9]. Jako smaci-
vou fazi budeme uvazovat vodu a jako nesmécivou fazi vzduch. Parametry pouzitych
tekutin jsou uvedeny v [9]. Pro numerické feSeni pouzijeme hodnotu pocateéni saturace
S; = 0,1 a okrajové podminky:

u, -n=>0, Uy -1 =0, nal'y Uy UTy, (12)
pn = 10° Pa, S, = 0,6, na I's. (13)

4.2 Chyby reseni

Nejprve porovname jednotlivé variant numerické metody s ohledem na pfesnost feseni.
Pro itera¢ni fesice zvolime zastavovaci kritéria e = 107!° pro metodu GMRES a ¢ = 10~1°
pro metodu BICGSTAB v sériové i paralelni verzi. Pro vyssi hodnoty e chyby na jem-
néjsich sitich vyrazné nartistaji a numerické feseni nekonverguje, jak je ukazano v [9].

V Tabulce 1 jsou uvedeny chyby numerického feSeni pro jednotlivé varianty metody
na ruznych sitich, v Tabulce 2 pak hodnoty experimentalniho fadu konvergence.

Z téchto vysledki je patrné, ze feseni konverguje a rad konvergence je o néco mensi
nez jedna, coz jsou hodnoty typické pro metody vyuzivajici techniku upwind prvniho
fadu [5]. Také je vidét, ze pro dané volby zastavovaciho kritéria pro iterac¢ni metody,
jsou hodnoty ziskané iteracnimi metodami velice podobné hodnotam, které dostaneme
s pouzitim knihovny UMFPACK. Také vidime, ze paralelni verze metody dava témér
stejné vysledky jako sériova.
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Obrazek 1: Vypocetni oblast, zdkladni nestrukturovand sif generovand programem Gmsh
(246 elementti, 394 hrany) a numerické Feseni v ¢ase ¢ = 60 000 s.

Pocet UMFPACK BICGSTAB GMRES Paralelné - 6 jader
elementu L1 L2 L1 L2 L1 L2 L1 L2
246 62,33 | 234,93 | 54,55 | 208,04 | 54,55 | 208,23 | 54,54 208,22
984 29,06 | 116,93 | 29,05 | 116,92 | 29,06 | 116,93 | 29,04 116, 88
3396 | 15,17 | 62,20 | 15,14 | 62,12 | 15,17 | 62,19 | 15,17 | 62,23
15 744 7,86 | 32,36 | 7,84 | 32,31 | 7,86 | 32,34 | 7,85 32,33
62 976 4,10 | 16,96 | 4,11 | 17,04 | 4,09 | 16,96 | 4,08 17,07
251904 | 2,20 | 9,51 | 2,21 | 9,52 | 2,20 | 9,53 | 2,21 9,51

Tabulka 1: Chyby numerickych feseni pro jednotlivé varianty metody.

4.3 Vypocetni naroc¢nost

V predchozi ¢asti jsme ukazali, Ze pro pouzité hodnoty € jsou chyby pii pouziti jednotli-
vych variant metody skoro stejné. Nyni nas bude zajimat srovnani vypocetnich casta. Vy-
pocetni Casy pro sériové implementace jsou uvedeny v Tabulce 3, vypocetni ¢asy pro pa-
ralelni implementaci s riiznym poctech vypocetnich jader jsou uvedeny v Tabulce 4.
Urychleni pfi vypoc¢tu na p procesorech U, a efektivita paralelizace F, jsou uvedeny

v Tabulce 5.

Z Tabulky 3 je vidét, Ze ze sériovych implementaci je nejrychlejsi metoda BICGSTAB.
Také GMRES je na jemnéjsich sitich rychlejsi nez knihovna UMFPACK. Z Tabulek 4 a 5
je vidét prinos paralelizace. Vyhoda vyuziti vice vypocetnich jader se vyraznéji projevi
pii vypoctech na jemnéjsich sitich.
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UMFPACK | BICGSTAB | GMRES Paralelné

Zjemnéni sité eocy | eocy | eocy | eocy | eocy | eocy | eocy | eocs
246 — 984 1,10 | 1,01 {091 | 0,83 | 0,91 | 0,84 | 0,91 | 0,83
984 — 3 936 0,94 | 0,91 | 0,94 | 091 [0,94|0,91 0,94 | 0,91
3936 — 15744 | 095 | 0,94 | 0,95| 0,94 |0,95| 0,94 | 0,95 | 0,94
15744 — 62976 | 0,94 | 0,93 [ 0,93 | 0,92 | 0,94 | 0,93 | 0,93 | 0,92
62 976 — 251904 | 0,90 | 0,83 | 0,89 | 0,83 | 0,89 | 0,83 | 0,88 | 0,83

Tabulka 2: Experimentalni fady konvergence pro jednotlivé varianty metody.

Pocet elementt | Rozmér matice soustavy M | UMFPACK | BICGSTAB | GMRES
246 788 1,3 14 1,7
984 3 052 7,7 5,2 36,4
3 936 12 008 67 45 800
15 744 47 632 756 373 999
62 976 189 728 9 160 3 968 7272
251 094 757 312 186 435 34 401 84 900

Tabulka 3: Vypocetni ¢asy pro jednotlivé sériové varianty metody v sekundéach.

Pocet | Rozmér matice Pocet vypocetnich jader
elementd | soustavy M 1 2 4 6 8 16 32
246 788 1,4 0,5 0,4 0,4 0,4 - -
984 3 052 5,2 2,9 1,8 1,3 1,2 - -
3 936 12 008 45 28 11 7 7 6 -
15 744 47 632 373 294 107 79 63 37 30
62 976 189 728 3968 | 2947 | 1393 | 921 820 387 305
251 094 757 312 34401 | 21 147 | 12718 | 8 093 | 7 578 | 6 222 | 3 203

Tabulka 4: Vypocetni casy pro paralelni implementaci metody v sekundéch.

Pocet Pocet vypocetnich jader
elementti 2 4 6 8 16 32
U E U E U E U E U E U E
246 28140 % | 35| 8% 35| 58% |35 |44 % | - - - -
984 1,8 90% 29| 72% [40| 67% |43 |54 % | - - - -
3 936 1,6 | 80 % |4,1|102% | 6,4 |107 % | 64|80 % | 75 |47% | - -
15744 1,31 63% |35 | 8% [4,7| 78% |6,0|74% | 10,1 |63 % | 12,4 |39 %
62976 | 14| 67% (29| 1% |43 1% |48]60%|10,3|64% |13,0|41 %
251904 | 16| 81 % |27 67% [43| 70% | 4,6 |57 % | 55 |35% | 10,7 | 34%

Tabulka 5: Urychleni (U) a efektivita (E) paralelizace pfi pouziti rtizného poctu vypocet-

nich jader.
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5 Zavér

V této praci jsme se zabyvali numerickym fesenim tloh dvoufazového proudéni v poréz-
nim prostfedi. Navrhli jsme numerickou metodu pro feseni tohoto typu tloh zalozenou
na hybridni metodé smisenych konecnych prvki. Metoda je implementovana pro dvoj-
rozmérné ulohy. Jsou popsany sériové implementace pouzivajici piimé feSeni s pouzi-
tim knihovny UMFPACK i itera¢ni metody BICGSTAB a GMRES s pfedpodminénim
ILU(0). Vénujeme se paralelni varianté metody zalozené ma metodé Domain Decomposi-
tion, vyuzivajici standardu MPI.

Tuto metodu poté testujeme na tiloze, pro kterou je znamé presné feseni. Je ukazano,
Ze numerické schéma konverguje a hodnoty experimentalniho fadu konvergence se pohy-
buji kolem jednicky. Ukazuje se, ze chyby pfi pouziti rtiznych variant metody jsou velice
podobné, ale lisi se jejich vypocetni naroc¢nost. Ze sériovych implementaci je nejrychlejsi
metoda BICGSTAB a na jemnéjsich sitich je vyhodné pouziti paralelizace, ktera prinasi
dalsi urychleni.
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Abstract. The problem of blind separation is to estimate unknown source signals from ob-
served mixtures of the signals, i.e. linear combinations of the original signals, without detailed
knowledge of the mixing process. In this paper, we consider underdetermined mixtures, that
is the number of observed mixtures is lower than the number of the original signals. We pro-
pose a method relying on the nonstationarity of the source signals. The signals are assumed
to be piece-wise stationary Gaussian processes with zero means and different variances in each
epoch. In comparison with the previous works [3|, the sources are not assumed to be i.i.d.
in each epoch. Instead, we adopt the autoregressive process of order one as a model for the
source signals with different autoregressive coefficient in each epoch. This model was shown
to be more appropriate for the blind separation of the natural speech signals especially for the
speech records with a high sampling frequency. The proposed separation method is derived by
applying the maximum likelihood estimation method to the approximate probability density
of the sample covariances, which are computed in each epoch. For artificial data following the
assumed model, the accuracy of the method approaches the corresponding Cramér-Rao lower
bound. In the case of natural speech signals, the proposed method achieves better separation
than the competing algorithms [3], [1], [2].

Keywords: Autoregressive Processes, Cramér-Rao Bound, Blind Source Separation

Abstrakt. Ulohou slepé separace je odhad neznamych ptivodnich signalt z jejich pozorovanych
smési, tj. linedrnich kombinaci piivodnich signéali. Nepfedpokladdme zadnou apriorni znalost
samotného procesu miseni. V této praci uvazujeme nedourcené smési, tj. pocet pozorovanych
smési je mensi nez pocet separovanych signald. Navrhujeme metodu zaloZenou na nestacionar-
ité separovanych signali. Predpokladame, Ze separované signaly jsou po ¢astech stacionarni
Gaussovské procesy s nulovou stfedni hodnotou a s riznym rozptylem v kazdém ¢asovém
useku. Na rozdil od prechozich praci 3] nepfedpokladame nezéavislost jednotlivych vzorki
pozorovanych smési. Namisto toho modelujeme separované signaly v jednotlivych ¢asovych
usecich Gausovskym autoregresnim procesem prvniho fadu. Tento model je vhodnéjsi pro
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separaci fecovych promluv a to zvlasté v pfipadé vysoké vzorkovaci frekvence separovanych
promluv. Navrhovana metoda byla odvozena pouZzitim metody maximélni vérohodnosti na pfi-
bliznou pravdépodobnostni hustotu empirickych kovarianci, které jsou napocitdny z kazdého
tseku pozorovanych smési. V aplikaci na uméla data odpovidajici uvazovanému modelu se
presnost separace blizi Cramérové-Raové dolni mezi. V piipadé separace fecovych promluv
dosahuje navrhovana metoda lepsi separace nez konkurenci algoritmy [3], [1], [2].

Klicovd slova: Autoregresivni procesy, Cramérova-Raova mez, slepa separace signali.

Full paper: This work was presented at 2016 IEEE International Conference on Acous-
tic, Speech and Signal Processing held in Shanghai on March 20-25, 2016.
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Abstract. The object-oriented approach usually does not follow any formal design process
and is mostly ad hoc in real software development. This makes it more of an art than a
science. The quality of the resultant design therefore depends to a large extent on the skills of
the individual designer and cannot be evaluated easily. In this paper we present an approach
to normalization of the object-oriented conceptual model based on UML class diagrams. The
normalization of the object-oriented data model is performed in algorithmic way based on model
transformation rules. The algorithm is able to transform the object-oriented data model from
one into the other normal form following the transformation rules. The algorithm application
rids the design process from the above-mentioned problems and yields a better object model by
bringing formalism and taking a scientific approach. Recently, development of the CASE tool
based on this approach has been started.

Keywords: Data normalization, object-oriented data model (ODM), first object-oriented normal
form (10NF), second object-oriented normal form (20NF), third object-oriented normal form
(30NF), Craft.CASE

Abstrakt. Objektové orientovany piistup obvykle nedodrzuje zadny formalni proces navrhu a
je vét8inou ad hoc v redlném vyvoji softwaru. Diky tomu je dnes vyvoj softwaru vice uménim
nez védou. Kvalita vysledného navrhu proto zavisi do znac¢né miry na schopnosti jednotlivych
designérii a nemtze byt snadno ohodnocena. V tomto ¢lanku prezentujeme piistup k nor-
malizaci objektové orientovaného konceptuéalniho modelu zalozeného na UML diagramech ti{d.
Normalizace objektové orientovaného datového modelu se provadi algoritmickym zptsobem na
zékladé transformacnich pravidel. Algoritmus je schopen transformovat objektové orientovany
datovy model z jedné normalni formy do druhé podle transformac¢nich pravidel. Pouziti tohoto
algoritmu zbavuje proces navrhu vyse uvedenych problémi. Vysledkem je poté lepsi objektovy
model v disledku zavedeni formalismu a védeckého pfistup. V posledni dobé byl zahajen vyvoj
néastroje na zakladé tohoto piistupu.

Klicovd slova: Datova normalizace, objektové orientovany datovy model (ODM), prvni objek-
tové orientovana normalni forma (10ONF'), druha objektové orientovana normélni forma (20NF),
tfeti objektové orientovana normélni forma (30ONF), Craft. CASE

1 Introduction

The object-oriented programming (OOP) has its origins in the researching of operating
systems, graphic user interfaces, and particularly in programming languages, that took
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place in the 1970s [11]. It differs from other software engineering approaches by incorpo-
rating non-traditional ways of thinking into the field of informatics. We look at systems
by abstracting the real world in the same way as in ontological, philosophical streams.
The basic element is an object that describes data structures and their behavior. OOP
has been and still is explained in many books [6, 9, 3, 12]. The [6], written by OOP
pioneers, belongs to the best.

In real software development, the object-oriented approach usually does not follow any
formal design. In this paper, we propose the transformation of object-oriented design
to correct one following the transformations rules. Moreover, to make the process of
transformation automatic and self-sustaining, we introduce the algorithms handling these
transformations. The goal of the paper is to obtain a cohesive framework providing
the resultant design with high quality. The final framework could be used in software
development for design improvements.

This paper is organized as follows. Section 2 presents three normalization rules for
model transformation from one into the other normal form. In Section 3, the introduction
to Craft.CASE scripting is stated and the description of algorithm for algorithmizable
modeling is given. In the last section, the algorithmizable modeling is investigated and
evaluated on one more complicated example.

2 Three Object Normal Forms and Transformation
Rules

In the data world, there is a common process called data normalization by which the data
are organized in such a way as to reduce and even eliminate data redundancy, effectively
increasing the cohesiveness of data entities. Data normalization only deals data and
not behavior. We need to consider both when normalizing the object schema. Class
normalization is a process of reorganizing the structure of object schema in such a way
as to increase the cohesion of classes while minimizing the coupling between them.

In this section, three object normal forms are introduced [11, 10]. Moreover, the
transformation rules from one into the other normal form are discussed in a detailed way

15, 14, 13, 2, §].

2.1 First Normal Form Rule

Definition 1. A class is in the first object normal form (10NF) when its objects do
not contain group of repetitive attributes. Repetitive attributes must be extracted into
objects of a new class. The group of repetitive attributes is then replaced by the link at
the collection of the new objects. An object schema is in 1ONF when all of its classes are

i 10NF.

More formally; Let us have an object a in the object system 2 as a € €2, where for
k > 1 (length of collections of similar attributes) and n > 1 (number of repetition of
these collections) is data(a) = [...,x1,..., 2}, ..., 27, ..., 2}, ...] having Vi € (1,...,k) :
class(z}) = class(z?) = ... = class(x?).

7 %
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Order Supply
SupplierFirstname :String SupplierFirstname :String
SupplierSurname :String SupplierSurname :String
SupplierAddress :String SupplierAddress :String
ClientFirstname :String ClientFirstname :String
ClientSurname :String ClientSurname :String
ClientAddress :String ClientAddress :String
OrderDate :Date SupplyDate :Date
PaymentMethod :Integer PaymentMethod :Integer
ProductNamel :String ProductNamel :String
ProductPricel :Real ProductPricel :Real
ProductName2 :String ProductName2 :String
ProductPrice2 :Real ProductPrice2 :Real
ProductName3 :String ProductName3 :String
ProductPrice3 :Real ProductPrice3 :Real

Figure 1: Model in 0OONF

Then it is required to modify object a and create new objects b; € 2 for j € (1,...,n)
as data(a) = [...,{b;},...] and data(b;) = [x],...,27].
In Figure 1, there is the example of data structure in non-normalized form and in the

Figure 2, there is the same example in 10ONF.

Order 0.* Products 1.* Product
SupplierFirstname :String Name :String
* *
SupplierSurname :String 0.* Products 1. Price :Real
SupplierAddress :String

ClientFirstname :String Supply
ClientSurname :String

ClientAddress :String SupplierFirstname :String
OrderDate :Date SupplierSurname :String
PaymentMethod :Integer SupplierAddress :String

ClientFirstname :String
ClientSurname :String
ClientAddress :String
SupplyDate :Date
PaymentMethod :Integer

Figure 2: Model in 1ONF

2.2 Second Normal Form Rule

Definition 2. A class is in the second object normal form (20NF) when it is in 10ONF
and when its objects do not contain attribute or group of attributes, which are shared with
another object. Shared attributes must be extracted into new objects of a new class, and
in all objects, where they appeared, must be replaced by the link to the object of the new
class. An object schema is in 20NF when all of its classes are in 20NF.

More formally; Let us have two objects a,b € Q for k& > 1 (length of a collection
of shared attributes) as data(a) = [...,x1,...,2k,...| and data(b) = [...,y1, .., Yk, - |
having Vi € (1,...,k) : x; = y;.
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Then it is required to modify objects a and b and create new object ¢ € Q as data(a) =
[...,c,...] and data(b) = ... c,...] and data(c) = [x1,..., 2] = [Y1,- -, Yk)-

Contract Order

SupplierFirstname :String OrderDate :Date 0.* Products 1.*
SupplierSurname :String
Su.pplie‘rAddress :Str.ing 1 Detail 1 Product
ClientFirstname :String 0.* Products 1.*
ClientAddress :String N Stri

. R ame ring
PaymentMethod :Integer 1 Detail 1 Supply Price ‘Real

SupplyDate :Date

Figure 3: Model in 20NF

In Figure 3, it concerns the attributes SupplierFirstname, SupplierSurname and Sup-
plierAddress for Supplier and ClientFirstname, ClientSurname and ClientAddress for
Client and method of payment in our example. Because these attributes are common for
both concrete order and supply, it was necessary to create the new object class Contract.

2.3 Third Normal Form Rule

1 Detail 1 Order 0..* Products 1..* Product
Contract
OrderDate :Date Name :String
PaymentMethod :Integer Price :Real
1 Detail 1
1.%*
Supply
* *
.. 0.. 0.* Products
SupplyDate :Date
Client 1
Supplier 1 Person Address
- ) 0.*  Address 1
Firstname :String Street :String
Surname :String City :String
HouseNumber :Integer
ZIPCode :String

Figure 4: Model in 30ONF

Definition 3. A class is in the third object normal form (30ONF) when it is in 20NF and
when its objects do not contain attribute or group of attributes, which have the independent
interpretation in the modeled system. These attributes must be extracted into objects of
a new class and in objects, where they appeared, must be replaced by the link to this new
object. An object schema is in SONF when all of its classes are in 3ONF.

More formally; Let us have an object a € Q for £ > 1 (length of a collection of inde-
pendent attributes) having data(a) = [...,x1,...,Zg,...], where [z1, ..., 2] is collection
of independent attributes.
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Then it is required to create new object b € Q and modify object a as data(a) =
[...,b,...] and data(b) = [x1, ..., zk].

In Figure 4, it concerns the data about suppliers and clients in the objects of the class
Contract. These attributes represent some persons having independent interpretation on
contracts. The same applies to addresses.

3 Algorithmizable Modeling in Craft.CASE

Craft.CASE is a business process analysis (BPA) tool based on a C.C method [4]. The core
of this method explains how to progress in a BPA project without forgetting anything.
The C.C method consists of small steps, sequences of which are tested and validated as
soon - and as often - as possible. Following this method allows processes to remain con-
sistent even if the problem is complex. Craft.CASE leads its users step-by-step according
to the C.C method. This means that the notation of the tool is rigid enough to discover,
understand, and analyse processes in a consistent way.

Last but not least, another very important feature is the ability to simulate the pro-
cess. Whether man use it for model validation, verification, or just to present and visualize
process progress, depends on his current needs. The list of the most common features is
given below:

e guidelines set according to the C.C. method

e process analysis categorization into interview, business and conceptual phases
e ability to set the user-defined properties to individual objects

e graphically visualize any object according to its values and properties

e performing process animations and simulations

e generating reports and specifying their content

e team collaboration

e advanced functions or functions not common in the field of BPA software are defined
by users who can define and run their own scripts using our built-in programming
language

3.1 Introduction to Craft.CASE scripting

This section explains some details of C.C programming language and the environment
used for programming in the language [5, 10]. The Craft.CASE tool contains integrated
development environment with a source code editor (Module Browser), a workspace (place
for instant testing of pieces of code) and a debugger. C.C language is a simple program-
ming language that user can use for:

e querying the process model developed in the Craft.CASE tool
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e automatic transformation and modification of the process model in Craft. CASE
e specification of user-defined reports and exports

e extension to the Craft. CASE tool functionality (normalization of models, design
patterns application, refactoring, ...)

Table 1: Important objects for normalization of models

conceptual::class represents a specific class
conceptual::composition | represents a specific attribute of some class
conceptual::method represents a specific method of some class
conceptual::association | represents a relation between two classes

We have prepared a simple ODM representing relationship between a car and the
owner of this car. In Figure 5, the ODM of our example is given. We use it for demon-
strating of scripting in Craft.CASE.

Car Person
0.*  Ownership 1
Color :String Firstname :String
MaximumSpeed :Real Surname :String

ConstructionYear :Integer

accelerate()
brake()

Figure 5: The ODM representing relationship between a car and the owner of this car

In the following example, the code is printing the list of all attributes, methods and
associations to other classes for class Car in Craft.CASE.

# it gets all classes from project

Classes := project:elements(conceptual::class).
# initialization of ClassCar variable
ClassCar := nil.

# searching for class Car
from 1 to size(Classes) do { :I |
if ClassCar = nil then

{
if Classes[I]["name"] = "Car" then
{
ClassCar := Classes[I].
T.
+.

.

# it gets all attributes and relations to other classes
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ClassLinks := element:1links(ClassCar).
from 1 to size(ClassLinks) do { :I |
if element:type(ClassLinks[I]) = "Composition" then

{
stream:print-nl("Attribute: " + ClassLinks[I]["name"]).
}.
if element:type(ClassLinks[I]) = "Association" then
{
stream:print-nl("Relation to class " +
element:target(ClassLinks[I]) ["name"] + ": " +
ClassLinks[I] ["name"]).
}.

.

# it gets all methods

ClassMethods := conceptual:methods(ClassCar).

from 1 to size(ClassMethods) do { :I |
stream:print-nl("Method: " + ClassMethods[I]["name"]).

We run the code in Workspace of Craft.CASE. To organize code in well-arranged way,
the creation of own packages is also possible in Module Browser. The output of the code
follows:

Relation to class Person: Owner
Attribute: Color

Attribute: MaximumSpeed
Attribute: ConstructionYear
Method: accelerate

Method: brake

3.2 Normalization Algorithms for ODM

In this section, we introduce algorithms enabling transformation from one into the other
normal form. We call this process as the normalization of ODM. Firstly, the algorithm
for transformation from OONF to 10NF is given, see Algorithm 1. To remind, a class
is in IONF when specific behavior required by an attribute that is actually a collection
of similar attributes is encapsulated within its own class. An object schema is in 1ONF
when all of its classes are in 10ONF.

Then, the algorithm for transformation from 10NF to 20NF is given, see Algorithm 2.
To remind, a class is in second object normal form (20NF) when it is in 1ONF and when
“share” behavior that is needed by more than one instance of the class is encapsulated
within its own class(es). An object schema is in 20NF when all of its classes are in 20NF.

All attributes are identified only by their names and data types. It means the men-
tioned algorithms are dependent on well-named attributes and their uniqueness in order
to transform model correctly. Of course, the violation of this restriction might cause
unsuccessful and incorrect transformations.
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Algorithm 1 Transformation from 0ONF into 1ONF algorithm

Classes < get all classes in current project
for all Class € Classes do
Duplicated Attributes < get all duplicated attributes of class Class
for all DuplicatedAttribute € Duplicated Attributes do
remove attribute DuplicatedAttribute from class Class
end for
for all Duplicated Attribute € Duplicated Attributes do
NewClassName < get name of new class from name of DuplicatedAttribute
NewAttributeName < get name of new attribute from name of DuplicatedAttribute
if class with name NewClassName already exists then
NewClass <+ get class with name NewClassName
else
NewClass < create class with name NewClassName
end if
if attribute with name NewAttributeName in class NewClass does not exist yet then
create a new attribute with name NewClassName in class NewClass
end if
if association between Class and NewClass does not exist yet then
create a new association between Class and NewClass
end if
end for
end for

Finally, the algorithm for transformation from 20NF to 3ONF should be also given.
To remind, a class is in third object normal form (30NF) when it is in 20NF and when
it encapsulates only one set of cohesive behaviors. An object schema is in 30ONF when
all of its classes are in 30ONF. Unfortunately, the algorithm would be more complex than
the previous ones and its implementation is going beyond the scope of this article.

To identify attribute or group of attributes having the independent interpretation in
the modeled system is not a straightforward process. It must be considered what each
physical attribute represents. It is not a simple task to identify these representations
without any information handling them from other models (participants, function and
scenarios, participant relations, business interactions, business diagrams, etc.) incorpo-
rated in a whole process of analysis.

For the identification of attributes representation, it could be also used clustering,
pattern recognition, reinforcement learning, neural networks, etc. In sum, any technique
based on the machine learning. We can see repeating groups of data from a data entity.

4 Test Case

In this section, we test, investigate and evaluate proposed algorithms on the example.
The example is quite well-known. We can find it also in several other publications [11, 1].

Consider the class Student in Figure 6. This design is clearly not very cohesive. This
single class is implementing functionality that is appropriate to several concepts. To
transform this example from OONF into 10NF, we use Algorithm 1.

With 10NF we remove repeating groups of data from a data entity and create a new
class Seminar. All these repeating attributes have been moved to this class. In Figure 7,
we can see the resultant design in 1ONF.

Consider Seminar in Figure 7. It implements the behavior of maintaining both in-
formation about the course that is being taught in the seminar and about the professor
teaching that course. Although this approach would work, it unfortunately does not work
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Algorithm 2 Transformation from 10NF into 20NF algorithm

Classes < get all classes in current project
Agreement Number < 0
ClassXGlobal <+ nil
ClassY Global < nil
TransformationTo20N F Done + false
while —T'ransformationTo20N F Done do
for all ClassX, ClassY € Classes do
if ClassX # ClassY then
Current Agreement Number < 0
AttributesX < get all attributes of class ClassX
AttributesY < get all attributes of class ClassY
for all AttributeX € AttributesX, AttributeY € AttributesY do
if AttributeX and AttributeY represent same attribute then
Current Agreement Number <— Current AgreementNumber + 1
end if
end for
if AgreementNumber < CurrentAgreement Number then > searching for two classes with the highest
agreement

Agreement Number <+ CurrentAgreement Number
ClassXGlobal < ClassX
ClassY Global < ClassY
end if
else
Attributes < get all attributes of class ClassX with the same Prefix
if Attributes # () then
remove attributes Attributes from class ClassX
NewClass < create class with name Prefix
create all attributes Attributes in class NewClass
create a new association between ClassX and NewClass
end if
end if
end for
if AgreementNumber > 0 then
AttributesX < get all attributes of class ClassX Global
AttributesY < get all attributes of class ClassY Global
NewClassName < get name of new class from name of ClassXGlobal and ClassY Global
NewClass < create class with name NewClassName
for all AttributeX € AttributesX, AttributeY € AttributesY do
if AttributeX and AttributeY represent the same attribute then
remove attribute AttributeX from class ClassX Global
remove attribute AttributeY from class ClassY Global
create a new attribute represent the same attribute in class NewClass
end if
end for
create a new association between ClassX Global and NewClass
create a new association between ClassY Global and NewClass
Agreement Number < 0
ClassX Global <+ nil
ClassY Global <+ nil
else
TransformationTo20N F Done < true
end if
end while

very well. When the name of a course changes we would have to change the course name
for every seminar of that course.

To transform our example from 10ONF into 20NF, we use Algorithm 2. Figure 8
depicts the object schema in 20NF. To improve the design of Seminar we have intro-
duced two new classes, Course and Professor which encapsulate the appropriate behavior
needed to implement course objects and professor objects.

Unfortunately, we do not have any algorithm for transformation from 20NF into
30ONF, since it is going beyond the scope of this article. The exact reasons have already
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Student

StudentNumber :Integer

Name :String

Address :String

PhoneNumber :String
SeminarlD1 :Integer
SeminarLocationl :String
SeminarStarDatel :Date
SeminarEndDatel :Date
SeminarProfessorlD1 :Integer
SeminarProfessorNamel :String
SeminarProfessorlD2 :Integer
SeminarProfessorName2 :String
SeminarCourseNamel :String
SeminarCourseNumberl :Integer
SeminarCourseName2 :String
SeminarCourseNumber?2 :Integer
SeminarCourseName3 :String
SeminarCourseNumber3 :Integer

Figure 6: Test Case in 0OONF

Student Seminar
StudentNumber :Integer StarDate :Date
Name :String EndDate :Date

* H *
Address :String 0. Seminars L. ID :Integer

PhoneNumber :String ProfessorID :Integer
Location :String
ProfessorName :String
CourseName :String
CourseNumber :Integer

Figure 7: Test Case in 10NF

Student Seminar Course
0.* Seminars 1
* H *
StudentNumber :Integer 0. Seminars L*| StarDate :Date Name :String
Name :String EndDate :Date Number :Integer
Address :String ID :Integer
PhoneNumber :String Location :String
0..* Seminars 1
Professor
ID :Integer

Name :String

Figure 8: Test Case in 20NF

been mentioned in previous section.
To have the whole transformation process complete, we introduce also the model de-
sign in 3ONF, however, the final transformation from 20NF into 30ONF is done manually.
In Figure 8, the Student class encapsulates the behavior for both students and ad-
dresses. The first step would be to refactor Student into two classes, Student and Address.
This would make our design more cohesive and more flexible because there is a very good
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Student

0.*  takes 1.%

StudentNumber :Integer
Name :String

Seminar

ID :Integer
Location :String

0.*

is offer of

1

Course

Name :String
Number :Integer

PhoneNumber :String

1.7

.*
teaches 1

during

Professor

lives at

1 1
Address

ID :Integer
Name :String

DateRange

Street :String

City :String
HouseNumber :Integer
ZIPCode :String

StartDate :Date
EndDate :Date

Figure 9: Test Case in 30ONF

chance that students are not the only things that have addresses. This realization leads
to the class diagram presented in Figure 9.

We are still not done, because the Seminar class of Figure 8 implements “date range”
behavior. It has a start date and an end date. Because this sort of behavior forms a
cohesive whole, and because it is more than likely needed in other places, it makes sense
to introduce the class DateRange of Figure 9.

5 Conclusion

In this paper we have shown that the principle of normalization can be applied to object-
oriented design. This framework thus provides us with a formal mechanism of method-
ically analyzing an object-oriented design and improving its overall quality by applying
these normalizations in a systematic and scientific manner.

Moreover, all normalization processes have been automated using our transforma-
tion algorithms. All classes containing well-named, unique attributes are transformable,
firstly, from OONF into 10NF, secondly, from 10NF into 20NF. The requirement on
well-named and unique attributes in classes is the constraint of our research and it is ab-
solutely essential, since we have used them for identification of particular transformation
rules.

Our future research can focus on several directions. One direction could be describing
the rules of our object-oriented normal forms as a sequence of refactoring steps. The
algorithm for transformation from 20NF into 3ONF is also still waiting for a deeper
investigation. Moreover, there is also possibility to make our algorithms less dependent
on well-named attributes and their uniqueness in our model.
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Abstract. There are many measures of chaotic behaviour: Hurst and Lyapunov exponents,
various dimensions of attractor, various entropy measures, etc. Permutation entropy of equidis-
tantly sampled data is preferred for analysing EEG signal which is a chaotic system. The novelty
of the approach is in bias reduction of permutation entropy estimates, memory decrease, and
time complexities of permutation analysis. Therefore, EEG signal and permutation sample
lengths are not limitation. This general method was used for channel by channel analysis of
Alzheimer’s diseased (AD) and healthy (CN) patients to point out the differences between AD
and CN groups. The technique also enables to study the influence of EEG sampling frequency
in wide range.

Keywords: permutation entropy, unbiased estimation, EEG, Alzheimer’s disease, hash table,
resampling

Abstrakt. Existuje mnoho mér chaotického chovani: Hurstovy a Lyapunovy exponenty, rizné
dimenze atraktori, rizné miry entropie, atd. K analyze chaotického EEG signalu je zde pouzita
permutaéni entropie konstantné vzorkovanych dat. VylepSenim daného postupu je redukce
odchylky odhadu permutacni entropie, niz$i pamétova a ¢asovi naro¢nost permutacni analyzy.
Z tohoto divodu délka EEG signalu a permutacnich vzorkt neni limitujici. Tato metoda byla
pouzita pro analyzu po kanal po kanale, aby urcila rozdil mezi skupinami zdravych pacientt
a pacienti s Alzheimerovou chorobou. Tento postup také umoznuje studovat vliv vzorkovaci
frekvence.

Klicovd slova: permutacni entropie, nestranny odhad, EEG, Alzheimerova choroba, heSovaci
tabulka, pfevzorkovani{

1 Introduction

Alzheimer’s disease (AD) is the most common form of dementia, which gradually destroys
the host’s brain cells. Recent findings estimate that 35 million people worldwide currently
suffer from AD. Clinically, AD manifests itself as a slowly progressing impairment of men-
tal functions whose course lasts several years prior to the death of the patient. Structural
changes in AD are related to the accumulation of amyloid plaques between nerve cells
in the brain and with the appearance of neurofibrillary tangles inside nerve cells, par-
ticularly in the hippocampus and the cerebral cortex. Although a definite diagnosis is
possible only by necropsy, a differential diagnosis with other types of dementia and with

*The paper was created with the support of CTU in Prague, Grant SGS14,/208/OHK4/3T /14.
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major depression should be attempted. Magnetic resonance imaging and computerized
tomography can be normal in the early stages of AD, but a diffuse cortical atrophy is the
main sign in brain scans. Mental status tests are also useful.

It has been shown that AD patients have lower correlation dimension (Ds) values as
a measure of the underlying system dimensional complexity than control subjects [12].
Furthermore, AD patients also have significantly lower values of the largest Lyapunov
(A1) exponent than controls in almost all EEG channels. However, estimating the non-
linear dynamic complexity of physiological data using measures such as Dy and A; is
problematic, as the amount of data required for meaningful results in their computation
is beyond the experimental possibilities for physiological data [8]. One alternative solution
lies in computing the entropy of the EEG [1]. The concept of entropy has achieved a large
consensus as an indicator of complexity of nonlinear signals [10], [9]. Dauwels et al. [5] and
many other authors have shown that Alzheimer’s disease increases power in the delta and
theta-bands in the case of EEG analysis in frequency domain but the power spectrum is a
global characteristics of EEG signal which disables to study local events in the signal. A
number of variants of this notion have been proposed in the literature which show different
degrees of flexibility, relevance to different problems, efficiency in their computation,
as well as theoretical foundations. This work investigates the potential of complexity
analysis of multidimensional EEG as indicator of AD onset through permutation entropic
modelling.

2 Permutation entropy

2.1 Shanon entropy and its estimation

Definition. Shannon entropy [11] Hgs of a discrete random variable X with possible
values x1, ..., x,, and probability mass function p(X) is defined as

Hg = —Zpiln]% (1)
i=1

where p; = p(x;).

If the probability function is unknown for an experimental data set, and the number
of possible values is finite for random variable X, I estimate probability function p; by
relative frequency p;n and number of events ky as

/rL .

PjN = #7 (2)

kn=» 1<k (3)
nj>0
where n; is the number of occurrences x; of random variable X, and n the total number
of measurement results. Then I get naive estimate of Shannon entropy as

kn
Hy = — ij,N Inp;~. (4)
=1
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This estimate is biased, and therefore it has a systematic error.

Miller [7] modified naive estimate Hy using first order Taylor expansion, which produces

better estimation
kn — 1

2n

Hy = Hy + (5)

2.2 Application to permutation analysis

Entropy estimates can be easily applied to permutation event analysis [2], [4]. Method-
ology from [7] estimates a smaller bias. Let time series be {a;}’_, and sliding window
{br}i_ of length w, then I can substitute signal values b, in the window with their orders
and then obtain permutation pattern {m}}_;.

The universe of random variable X is a set of all permutation of length w. Therefore,
the number of possible permutations is

m = w!, (6)

but the number of various permutations in given signal cannot exceed the number of

sliding samples as
kn<n=T-w+1. (7)

The number of occurrences of j™ permutation pattern corresponds with n;, and n is
the total number of samples. The difference between typical AD and CN patients are
illustrated in Fig. 1. Supposing ordering n(;) > n(41) for j = 1,...,m-1, ten most fre-
quent permutation patterns (n(1),...,n(10)) were plotted to union diagram for f; = 200 Hz,
w = 14, ch = 8. In the case of AD, I observed systematic increasing or decreasing of
EEG signal with small fraction of exceptions. But in the case of CN, the patterns rarely
increased, no systematic decreasing was observed and EEG signal exhibited higher diver-
sity. Therefore, this primary observation is in agreement with hypothesis of diminished
EEG signal entropy in the case of AD.

Now, (4) can be used directly and the biased naive estimation Hy calculated as in
[11]. Our methodology is based on Miller’s approach [7] and direct application of (5) to
permutation patterns. The difference between estimates (4) and (5) varies according to
number of distinct patterns and time series length.

3 Permutation analysis for large samples

The main disadvantage of the original procedure of permutation analysis [2]| is in its
memory and time complexities. They realized permutation memory as a matrix of w
columns and w! rows together with counter vector of length w!. It enables permutation
analysis only for w < 13 on a typical computer. Traditional applications 2| of permuta-
tion entropy apply window of length w < 8. The time complexity of single permutation
counting is also w!, in the worst case. Therefore, I decided to use more sophisticated
data structure for permutation analysis. There are many data structures and algorithms
for realizing of look-up table as a kind of memory with fast access. Our memory has to
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AD

Figure 1: Ten most frequent permutation patterns as union plot for 8" EEG channel

be optimized only for two operations: FIND and INSERT. I used hash table with open
addressing and linear probe strategy [6] as a model, which is easy to realize. Let P > n
be the optional prime number. Then the loading factor is defined as a ratio « = n/P < 1.
The mean number of permutation vector comparisons during successful FIND operation

was determined [6] as
1 1
ET =—|1 :
OPT 2( +1_a) (8)

In the case of unsuccessful FIND operation and INSERT operation, the mean number of
permutation vector comparisons is higher [6] than in the previous optimistic case

FTpgs — % (1 + ﬁ) | (9)

Our tiny and fast implementation of permutation memory is a matrix of occurred permu-
tations with w columns and P > n rows together with counter vector of length P. The
time complexity of single permutation counting is constant and dependent only on load-
ing factor in the best (8) and worst (9) cases. It enables very fast permutation analysis for
higher sample length w and long EEG sequences. The last implementation detail is how
to realize hash function index = h(7r) for given permutation pattern 7. By subtracting
vector of units from vector 7r, I obtain digital form y = 7t — 1 in the first step. Let R = w
be the base of digital system. In the second step, I calculate the value v of y according
to base R. The resulting index into hash table has a value index = v mod P. In the case
when P > 3n, we have a < 1/3 and then the mean number of trials is less than 1.25 in
the optimistic case (8) and less than 1.625 in the pessimistic (9).

The main argumentation against large window size w is in sparse sampling effect,
which increases the variance of permutation entropy estimates. That is why many au-
thors [2| prefer short windows with w < 8. Despite of window size constrain recommenda-
tion, large window can be efficient in classification tasks where between close differences
in mean permutation entropy can also increase. There are two main aims related to
classification power of permutation entropy in given classification task:
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e Find optimum window length for given sampling frequency f; which causes the best
class separation measured as pyaue Of statistical testing.

e Find optimum sampling period f; which also minimize pyaue. It is also useful for
the decreasing of length w using smaller sampling frequency f.

Resulting optimum values w, fs, Pyalwe Will help to decide whether the constrain w < 8,
undersampling and oversampling are useful in given task.

4 Application to EEG

Permutation entropy was applied to EEG signals obtained from two groups of patients.
EEG data were obtained during examinations of 10 patients with moderate dementia
(MMSE score 10-19). All subjects underwent brain CT, neurological and neuropsycholog-
ical examinations. The other group is a control set consisting of 10 age-matched, healthy
subjects who had no memory or other cognitive impairments. The average MMSE of the
AD group is 16.2 (SD of 2.1). The ages of the two groups are 69.4 + 9.2 in Alzheimer’s
group and 68.7 + 7.7 in normal group, respectively. Informed consent was obtained from
all included subjects and the study was approved by the local ethics committee. All
recordings were performed under similar standard conditions. The subjects were in a
comfortable position, on a bed, with their eyes closed. Electrodes were positioned ac-
cording to the 10-20 system of electrode placement; the recording was conducted on a
21-channel digital EEG setup (TruScan 32, Alien Technik Ltd., Czech Republic) with a
22-bit AD conversion and a sampling frequency of 200 Hz. The linked ears were used as
references. Stored digitized data were zero-phase digitally filtered using a bandpass FIR
filter (100 coefficients, Hamming window) of 0.5-60 Hz and a bandstop filter of 49-51 Hz
[6]. The analysis started by manual artefact removal. Time series length T varies between
70000 and 120000. I tried to separate these two groups of patients by two-sample t-test
with null hypotheses and alternative hypothesis as

H, : EH(AD) = EH(CN), (10)

Hp : EH(AD) # EH(CN). (11)

Using linear interpolation I performed resampling of original 200 Hz EEG signal to
frequencies from 50 Hz to 500 Hz. For every EEG channel and sampling frequency, I
found optimum window length which minimizes pyae of two-sided two-sampled t-test in
the case of naive permutation entropy estimation. Using critical value 0.05, I recommend
to use sampling frequency fs up to 200 Hz for all channels. Frequency 300 Hz is suitable
only for 2-12 channels and higher rate of sampling is not recommended. Minimum pyajue =
0.0009 was obtained for 8" channel and f, = 100 Hz using window length w = 10 which
is in contradiction to generally accepted condition w < 7 [1], [§8]. Previous constrain
enforces to use f; = 20 Hz only (signal decimation) and w = 4 which brings significant
AD/CN differences for 12, 14-17, 19 channels.

All the calculations were also performed for Miller correct permutation entropy with
optimum window lengths in Tab. 1 and p-values in Tab. 2. Using the same critical level
0.05 in the case of Miller correction, I obtained similar results as without it. Sampling
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Table 1: Optimum window length w in the case of Miller permutation entropy
Channel fs [Hz|

10 | 20 | 50 | 70 | 100 | 150 | 200 | 300 | 500
131010 | 10| 10 | 13 | 14 | 15 | 15
9 (111010 10 | 12 | 14 | 15 | 15
1010 | 13|12 | 11 | 13 | 14 | 15 | 15
9 |14114| 9 | 10 | 12 | 14 | 15 | 15
1515710 9 | 10 | 12 | 14 | 15 | 15
1311 (11| 9 | 10 | 12 | 14 | 15 | 15
11101110 10 | 12 | 14 | 15 | 15
12211199 ] 10|12 ] 13| 15 | 15
9 1015139 | 10 | 12 | 14 | 15 | 15
10 141113 |10| 10 | 12 | 14 | 15 | 15
11 1011 15|15 10 | 12 | 14 | 15 | 15
12 13| 4 (15|15 10 | 12 | 14 | 15 | 15
13 15 (15|13 |14 14 | 13 | 14 | 15 | 4

14 10 4 | 15|14 | 10 | 12 | 14 | 15 7

15 144 (13|14 | 10 | 12 | 14 | 15 | 1
16 134 |15 |15| 14 | 13 | 15 | 15
17 12| 4 (15|15 | 11 | 13 | 15 | 15
18 15 5115015 | 15 | 15| 5
19 13 1311415 |15 | 15| 5

CO 1 O U W

ot

—
S
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frequencies up to 200 Hz are suitable for all channels again. Frequency 300 Hz can be
used only for channels 4, 8-10, 12. Optimum sampling frequency f; = 100 Hz with
window length w = 10 brought pyaiwe = 0.0006 in the case of 8" channel, which is slightly
better value then without Miller correction. Therefore, I suppose Miller correction of
permutation entropy has positive effect mainly in the case of well separated group data.
Traditional window length w < 7 was observed only for f; = 20 Hz on channels 12, 14-17,
19 again.

The p-values in Tab. 2 are results of multiple testing and Bonferroni correction is
necessary. Using False Discovery Rate (FDR) methodology [3| I obtained corrected crit-
ical value appr = 0.0391 < 0.05. This correction eliminated only several channels for
fs = 300 Hz in both approaches to entropy estimations. Therefore, only f; < 200 Hz is
recommended for all channels to produce significant AD/CN entropy differences under
stringent FDR conditions. The difference between naive and Miller estimates is not con-
stant because both EEG signal length and the number of occurring patterns vary within
patient groups. Therefore, Miller estimate of permutation entropy causes results which
differ from naive approach. Fortunately, novel estimate generates results with more clear
biomedical interpretation.
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5 Conclusion

Using Miller’s approach instead of direct calculation of Shannon’s entropy from permu-
tation frequencies, I have developed a novel method of EEG analysis via permutation
entropy. The second advantage of our method is in its very fast permutation analysis and
low consumption of computer memory which enables analysis of large time series with
greater length of permutation patterns and also parametric study of sampling frequency
role. The method was applied to diagnose Alzheimer’s disease from 19 channel EEG.
I focused on the influence of sampling frequency, channel choice, and window length
on separation power of permutation entropy, which were evaluated as pyae of standard
two-sided t-test.

Significant results were obtained for raw EEG and its undersampling (10 Hz < f;
< 200 Hz) meanwhile oversampling is not recommended strategy. The best result for
naive permutation entropy was obtained for f; = 100 Hz, w = 10, and 8" channel
(Pvale = 0.0009). Permutation entropy with Miller correction offered similar results with
optimum settings f; = 100 Hz, w = 10, and 8" channel (pyaue = 0.0006). Therefore,
Miller correction slightly improve the separation power but from the statistical point of
view, all procedures with significant results are equivalent.

Table 2: Optimum pyaue for Hy : EH (AD) = EH (CN) in the case of Miller permutation
entropy

Channel fs [Hz|

10 20 50 70 100 150 200 300 500

0.0156 | 0.0162 | 0.0158 | 0.0132 | 0.0099 | 0.0088 | 0.0084 | 0.0817 | 0.6310
0.0156 | 0.0161 | 0.0161 | 0.0114 | 0.0054 | 0.0060 | 0.0058 | 0.0540 | 0.5578
0.0170 | 0.0159 | 0.0161 | 0.0168 | 0.0112 | 0.0104 | 0.0091 | 0.0579 | 0.5156
0.0144 | 0.0162 | 0.0163 | 0.0082 | 0.0045 | 0.0049 | 0.0048 | 0.0391 | 0.3607
0.0163 | 0.0150 | 0.0170 | 0.0079 | 0.0046 | 0.0045 | 0.0042 | 0.0465 | 0.4374
0.0159 | 0.0163 | 0.0159 | 0.0065 | 0.0032 | 0.0038 | 0.0042 | 0.0463 | 0.5431
0.0155 | 0.0155 | 0.0158 | 0.0116 | 0.0031 | 0.0039 | 0.0056 | 0.0456 | 0.6880
0.0158 | 0.0155 | 0.0111 | 0.0018 | 0.0006 | 0.0007 | 0.0013 | 0.0074 | 0.2396

O ~J O Ul Wi

9 0.0163 | 0.0163 | 0.0160 | 0.0100 | 0.0031 | 0.0031 | 0.0039 | 0.0220 | 0.2575
10 0.0153 | 0.0158 | 0.0163 | 0.0121 | 0.0042 | 0.0040 | 0.0042 | 0.0373 | 0.3840
11 0.0152 | 0.0165 | 0.0170 | 0.0159 | 0.0058 | 0.0049 | 0.0053 | 0.0550 | 0.5570
12 0.0150 | 0.0118 | 0.0164 | 0.0162 | 0.0085 | 0.0058 | 0.0067 | 0.0427 | 0.6866
13 0.0157 | 0.0148 | 0.0166 | 0.0168 | 0.0169 | 0.0173 | 0.0155 | 0.1109 | 0.4494
14 0.0158 | 0.0035 | 0.0166 | 0.0168 | 0.0131 | 0.0098 | 0.0098 | 0.1026 | 0.6807
15 0.0149 | 0.0061 | 0.0162 | 0.0169 | 0.0120 | 0.0091 | 0.0086 | 0.0871 | 0.6892
16 0.0159 | 0.0010 | 0.0162 | 0.0172 | 0.0165 | 0.0132 | 0.0135 | 0.1960 | 0.5549
17 0.0162 | 0.0036 | 0.0166 | 0.0169 | 0.0162 | 0.0145 | 0.0148 | 0.1410 | 0.4241
18 0.0157 | 0.0161 | 0.0169 | 0.0165 | 0.0169 | 0.0201 | 0.0251 | 0.1655 | 0.1653

—_
Ne}

0.0160 | 0.0040 | 0.0170 | 0.0167 | 0.0168 | 0.0178 | 0.0170 | 0.2493 | 0.2573
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Abstract. Algorithms based on proximal operators find their use in many optimization prob-
lems, such as matrix completion in computer vision or reconstruction in image processing. Brief
introduction to proximal algorithms will be presented together with connection to standard
methods like gradient descent or dual formulation. Furthermore, medical image reconstruction
will be formulated as a variational problem using total variation regularization ready to be
solved using presented methods. Finally, we will demonstrate and compare selected methods on
real data acquired from MRI scanner at BTU in Brno and propose further extension of current
model.

Keywords: image reconstruction, TV regularization, proximal algorithms

Abstrakt. Algoritmy zaloZené na proximalnich operatorech jsou ¢asto vyuziviny v mnoha
optimaliza¢nich tlohach, napf. doplnéni dat ve strojovém uceni nebo rekonstrukci obrazu.
Provedeme kratké shrnuti proximalnich operatori a porovname je se standardnimi metodami,
jako metodou gradientniho sestupu nebo dudlni formulaci optimaliza¢nich uloh. Dale formu-
lujeme rekonstrukei zdravotnickych dat jakoZto tlohu variaéniho poctu s regularizaci ve tvaru
totalni variace v takovém tvaru, aby byla FeSitelnd uvedenymi metodami. Nakonec vybrané
algoritmy predvedeme a srovname na datech ze skeneru vyuzivajici magnetickou rezonanci
umisténého na VUT v Brné a navrhneme dalsi rozsifeni modelu.

Klicovd slova: rekonstrukce obrazu, TV regularizace, proximalni algorithmy

1 Introduction

Many inverse imaging problems such as image denoising, image deconvolution or image
signal reconstrucion can be conveniently formulated as a variational problem

min {0 [ 1)+ gl - 01} )

z€eR?
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where 1 C R? is image domain, z € L' () is the desired solution and y € L' () is
the original data to be reconstructed. Parameter A € R] scales the trade-off between
"data" term and regularization term. Data term ensures closeness of solution to input,
whereas regularization represents effort to improve visual features of image. Operator
A represent transformation of output to comparable domain in which y is acquired. In
medical imaging, A typically represents Fourier transformation. If K is assumed to
be gradient of input image, proposed model (1) becames so-called Total Variation (TV)
regularization model (or ROF model) introduced in [1|. Major advantage of incorporating
TV regularization is allowing appearance of sharp discontinuities in the solution. This
fact is often sought after in image processing, since edges represent important features
such as boundaries of objects. However this formulation of cost functional (1) leads to
difficult minimization, given the non-smooth property of the total variation. We will
introduce several algorithms based on proximal operators, which can be successfully used
to tackle such problems with application to MRI data reconstruction.

2 Proximal algorithms

Proximal algorithms can be percieved as a generalization of standard gradient descent.
Let us suppose, that we want to solve

i = h 2

min f(z) = min g(x) + h(z) (2)

where g : R” — R" is convex and differentiable while h : R” — R" is only convex but not
necessarily differentiable. Instead of making quadratic approximation of f around z with
step size t € RT to get gradient descent update for case f both convex and differentiable,
it is possible to approximate only ¢ while h stays in its original form to obtain following

ot —argmin {o(a) + Vo(o)7(: ~ a) + gl ol + hio) |

—argmm{% Iz = ol + 2V9(0)7 (: — ) + £1g(IE) + 0) — ZIVal + 1)}
—argmm{%ﬂz— (x —tVg(x ))H§+h(z)}

=prox, ;,((z — tVyg(2))),

where we denoted minimizing term by symbol prox. Components in prox forces update
to be as close to gradient step of g as possible and keeps values of h small. Using this
intuitive derivation, we can formally define prozimal operator prox,, : R" — R" by

1
prox, ,(r) = argmin {2_15”2 — |3+ h(z)} :

Combining proximal operator with gradient descent, leads to writing minimizing algo-
rithm of (2) as
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Algorithm 1 General proximal operator minimization

1. Initialize 2° € R™.
2. Let o™ = (k=1 —tVg(aF1)).

3. Define 2% = prox,, ,(z").

Last step can we also written in gradient descent manner as

- -tV
2 = 2P - Gy (2F Y, Gilz) = x PTOXt,h(: g(x)),

where G4(x) is so-called generalized gradient. Notice, that evaluation of proximal operator
depends only on gradient of g and h itself, thus it can be conveniently used when proximal
operator of h is known. Algorithms using proximal operators are especially useful, when
evaluating of prox,,(z) is sufficiently quick. Generally speaking, one can achieve rate
of convergence of order O(1/k?), or even O(1/e*) for special cases, whereas subgradient
descent methods converge at O(1/v/k). This is the case of h in form of Total Variation
as presented by (1). In following sections, we will present several algorithms that employ
different approach for evaluating proximal operator.

2.1 FISTA

Standard minimizing procedure based on proximal operator is Iterative Shrinkage Thresh-
olding Algorithm (or ISTA) and its accelerated version Fast ISTA (or FISTA). Let us
consider minimization problem (2) with Total Variation regularization, i.e.

o1
min 2|25 + All:

Respective proximal operator is of form

) 1
pros. (o) = avguin { oz = ol + A<l | )
where solution to this equation can be written as a soft thresholding operator Sy;(x) where

Sa(x) = sgn(z)(|z] = )+

It can be easily shown, that Sy;(z) minimizes term in (3) and is easily numerically com-
puted.

Let us now develop FISTA algorithm with regards to minimizing LASSO (Least Ab-
solute Shrinkage and Selection Operator) problem

!
min = ly — All3 + el

which is simpler version of general model (1). Gradient of ¢ is computed as

Vy(z) = —A(y — Ax).
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and when plugged into Algorithm 1 together with soft thresholding operator, we get easily
computable steps which minimize LASSO problem. Such algorithm is known as ISTA.
For the sake of completeness, we will present its accelerated version, which was actually
implemented. Faster version of ISTA interpolates results from two consecutive steps in
addition to original algorithm.

Algorithm 2 FISTA algorithm

144/1+402_  1—a.

1. Initialize 2°,y' € R™, ap = 0 and let o, = —Y——=, 5 = ot
2. Let ot = (2F 1 +tAT (y — Ax)).

3. Set y*t = Sy, () and 2F = (1 — )y + it

2.2 ADMM

Following algorithm is based on slightly different approach on handling minimization of
variational problems with non-smooth regularization. Such method is called Alternating
Direction Method of Mutlipliers (ADMM) and is built on minimizing each function from

min g(z) + h(z)

separately. This approach is called dual minimization or Douglas-Racheford splitting and
its main advantage is when evaluating proximal operator of f + g is more numerically
demanding, than computing each proximal operator separately.

Derivation of ADMM originates from minimizing augmented Lagrangian. Firstly,
assume LASSO problem once more and rewrite it as a constrain optimization problem

1
min EHA.CL‘ —yll3 + Azl st z—2z2=0.
Furthermore, we write augmented Lagrangian of such problem as
1 P
Ly(w, 2,u) = SllAz = yll3 + Mzl + pu (z — 2) + Sllw = 2I3. (4)

Notice, that additional terms equal to zero at optimal point by definiton of constraint
x — z = 0. Minimizing of augmented Lagrangian (4) is treated separately over its primal
variables x and z.

Finding optimal value * minimizing (4) in its first variable can be easily attained in
closed-form solution

7" = (ATA+ ) ATy + plz — ),

where attaining optimal z* can be percieved via proximal algorithms, namely soft thresh-
olding operator defined in previous section. We define

2= Sy/p(x + u).

Finally, dual variable u is updated by gained value of constrain and we can readily write
ADMM algorithm. Notable feature of ADMM is, that it converges fast at early stage,
but requires fair number of iterations for high precision results.
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Algorithm 3 ADMM algorithm for LASSO problem
1. Initialize 2°,9%, 2% € R", p € RY.

2. Let 2% = (ATA + p) Y (ATyF 4 p(2F~1 — uF 1)),
3. Let 2% = S, (z% + uk1).

4. Update u¥ = u¥ + zF — 2.

2.3 Chambolle—Pock

Finally, following algorithm proposed by [3| can be seen as a generalization of ADMM or
Arrow-Hurwicz model. It is derivated from primal-dual formulation of original problem
(2), which assumes form

x p
where h* is convex conjugate of h. By taking consecutive saddle point of primal-dual
problem, we obtain iterative steps for finding optimal minimizer of (2). Note, that symbol
0 refers to subgradient of a function.

Algorithm 4 General Chambolle-Pock algorithm
1. Initialize z°,p° € R™, 7,0 € RT, § € [0,1] and 2° = 2°.

2. Let ph = (I + 00h) (P + ok 24),
3. Let 2% = (I + 70g)~(z"~! — TK*ph~1).

4. Update 2¥ = 2% 4 0(2F — 2F=1).

For detailed derivation of proposed algorithm see [3]|, we will present its implementa-
tion on ROF model (1). According to (5), primal-dual formulation of ROF is

A
min max — (z, divp) + §||x —yll3 — 0p(p),

T p

where Jp is indicator function of convex set P given by P = {p: ||p|lcc < 1}. Given this
particular form of h*(p), it is possible to express solution to dual maximization as

p

= (I +00h")'(p) =p=——,
p=( ) (p) = max(L17])

i.e. as a pointwise projection onto L? balls. Evaluation of proximal operator with respect
to g is again quadratic problem and is given by

U+ TNy

T+7X\°

Main distinction of Chambolle-Pock algorithm is evaluating convex conjugate of regu-
larization function, rather than its proximal operator. This feature may turn out to be
useful, when evaluating proximal operator is analytically or numerically unfeasible.

r=(I+7109)"(0) &= 2 =
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3 MRI application

Presented algorithms was applied in reconstruction of MRI images. Data originates from
Agilent 9.4T MRI Small Animal Scanner which collects signal in k-space (i.e. Fourier
domain). Although available data was sampled at full rate (resulting in 128 x 128 complex
matrix), implementation of reconstruction algorithms incorporated "degradation" matrix,
which filters out coefficients in signal. This was motivated by preparation to employ
reconstruction when using golden angle (see [4]) subsampling, which allows acquiring
MRI data at faster rate. This leads to ROF model written in following form

zeR?2

) 1
min {3l — MFal3 4 ALl |

where I’ corresponds to 2D Fourier transform, M selects used coefficients and K computes
image gradient.

To complete overall information regarding implementation, FISTA includes small
number of ADMM steps when evaluating proximal operator of total variation. ADMM
itselft was computed in Fourier domain, due to simplified calculations. Chambolle-Pock
was implemented in its stated form.

Evaluation of algorithms proceeded as follows. Firstly, ground truth data was cor-
rupted by Additive Gaussian White Noise, with Signal-to-Noise ratio equals to 30dB.
Secondly, only 90% of Fourier coeffcients were selected by simple rule of ignoring each
10th component. Reconstruction results for various values of regularization parameter
A can be found on Figure 1. As can be seen on resulting images, proximal algorithms
achieve visually very appealing outcomes, given knowledge of degraded process.

In order to compare implemented algorithms by speed of convergence, we firstly per-
formed 10000 iterations of each method (i.e. FISTA, ADMM and Chambolle-Pock) to
get as ideal output as possible. Consequently, distance (in terms of Frobenius matrix
norm) of generated outcomes and this "ground truth" result was measured and can be
seen on Figure 2 and Figure 3.

In general, ADMM converges at fast rate at first, but requires aditional iterations
to achieve more precise results, whereas FISTA slowly improves result through every
iteration. Chambolle-Pock indicates similar behaviour as ADMM but it is even faster
at a early stage. To conclude convergence analysis, we present Table (1) with required
iterations to achieve given precision ¢ =le-4 for distance between current outcome and
"optimal" result. FISTA did not achieve desired stability, as was improving by order of
le-2 at final iteration.

FISTA | ADMM | Chambolle-Pock
6621 9989

Table 1: Number of iterations to reach given stability.
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(a) Ground truth data. (b) Noisy image at SNR = 30 dB.
(c) Degraded noisy image. (d) ADMM with A = 0.001, p = 10.

(e) ADMM with A = 0.001, p = 100. (f) ADMM with A = 0.005, p = 100

Figure 1: Reconstruction of degraded image using ADMM method for various weights on
regularization.
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Figure 2: ADMM and Chambolle-Pock convergence speed comparison.
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Figure 3: FISTA and ADMM convergence speed comparison.

4 Conclusion

We have introduced several algorithms based on proximal operators and demonstrated
its application on recontruction MRI data. Proximal algorithms can be seen as general-
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ization of methods using gradient (or subgradient) descent or dual formulation constraint
optimization and are conveniently used when it is feasible to evaluate proximal operator
of used regularization term in original problem. Total variation has both simple prox-
imal evaluation as well as strong use in image processing. Variational denoising model
was extended to reconstruct subsampled data and was solved numerically using several
presented algorithms. Further extension to this model is to incorporate golden angle sub-
sampling, assume dynamical data and make use of prior knowledge given for used input
data.
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