
Some application of rational based
number system

Shigeki Akiyama, Niigata University, Japan

Prague, 27 May 2008

– Typeset by FoilTEX –



(i) Delone perturbed lattice with rational scaling constants.

(ii) Review of rational based number system (with Ch.Frougny

and J.Sakarovitch).

(iii) Distribution of fractional parts of ⟨x(p/q)n⟩.

(iv) How to construct such a Delone set.

(v) Generalization to non-integral algebraic number base.
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Delone set and Meyer set

A set X ∈ R is relatively dense if the distance between

two adjacent points are bounded from above by a constant

R > 0, and is uniformly discrete if the distance is bounded

from below by a constant r > 0. X is called a Delone set if

X is relatively dense and uniformly discrete.

If X is a Delone set and there is a finite set F with

X − X ⊂ X + F , then X is called Meyer set.

F = ∅ then X forms a lattice. If F = {a} then X is a

translated lattice.
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Lagarias [4] showed that X is Meyer iff X and X − X is

Delone. Later he also proved in [5] that if a Meyer set X

satisfies βX ⊂ X with β > 1, then β is a Pisot number or a

Salem number.

X is a perturbed lattice if there is a bounded real function

from Z to R such that X = {n + f(n) | n ∈ Z}.

Theorem For coprime integers p, q with p > q > 1 there

exists a Delone perturbed lattice X with p
qX ⊂ X.

X − X is not contained in a finitely generated module over

Z. This implies that X has infinite local configurations, i.e.,

(X − X) ∩ B(0, R) is an infinite set for some R.
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The statement seems not so easy. (I hope...)

You might imagine that this fact is connected to β-

expansion. In fact, the set Y of 3
2-integers is closed, discrete

and relatively dense in R>0 and satisfies 3
2Y ⊂ Y . However we

do not know whether Y is uniformly discrete in R>0.

We do not know much on the beta expansion of 1 for

β = 3/2. If 3/2 ∈ C3 in the sense of Bertrand-Blanchard [3]

(i.e., run length of 0 in dβ(1 − 0) is bounded), then Y is a

Delone set in R>0. One can take X = Y ∪ −Y .

Further Zβ must be a perturbed lattice. This approach

seems difficult. We use rational based number system instead.
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Rational based number system

Fix coprime integers p, q with 1 < q < p and A =
{0, 1, . . . , p − 1}, the set of alphabets. Then each positive

integer has a following expression:

n =
m∑

i=0

ai

q

(
p

q

)i

ai ∈ A (1)

i.e., we consider an analogy of decimal system and substitute

10i by 1
q(

p
q)

i (i = 0, 1, . . . ).

In other words, for a given positive integer n, start with
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n0 = n and define inductively ni and ai through

ni+1 =
qni − ai

p
ai ∈ A = {0, 1, . . . , p − 1}.

The sequence ni is strictly decreasing ni and reach 0 in finite

steps. Let us try the case p = 3, q = 2.

1 = 2 (3/2)

2 = 21 (3/2)
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3 = 210 (3/2)

4 = 212 (3/2)

5 = 2101 (3/2)

6 = 2120 (3/2)

7 = 2122 (3/2)

8 = 21011 (3/2)

9 = 21200 (3/2)
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Introduce a labeled tree T (p/q) of p/q number system:

N ∋ z
a−→ pz + a

q
∈ N.

Edges are not drawn when (pz+a)/q is not an integer. The set

L(p/q) of words which represent integers is given as all labels

starting from the origin 0.
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From this we can show several properties.

• L(p/q) is prefix closed.

• Any word ω ∈ A∗ appears as subword of some element in

L(p/q).

• Let ω1, ω2 ∈ A∗. If ω1ω
n
2 ∈ L(p/q) for each n = 1, 2, . . .

then ω1, ω2 ∈ 0∗.

The last one implies a strong aperiodicity of L(p/q). For

short, infinite repetition is not allowed except 0∞. By

pumping lemma, L(p/q) is not even context free.
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Compactify this p/q number system by extending to the right.

∞∑
i=1

a−i

q

(
p

q

)−i

=
a−1

p
+

a−2

p

q

p
+

a−3

p

(
q

p

)2

+ . . . .

where each prefix of this word in L(p/q). This is written as

by .a−1a−2a−3 . . . . Multiplying p/q power, every positive real

number is expanded in this system.
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In [2], we showed:

• Every positive real number has an aperiodic expansion in

base p/q.

• The expression is unique but for countable exceptions.

• Exceptions are number theoretically characterized (Mahler’s

problem) when p ≥ 2q − 1.

The inequality p ≥ 2q − 1 is a technical condition and we

expect it should be erased.
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Theorem.(Frougny-Sakarovitch-A.) Let kc ∈ {0, 1, . . . , p−
1} be defined by qkc ≡ c (mod p) and assume that p ≥ 2q−1.

Then ⟨
ξ

q

(
p

q

)n⟩
∈

q−1∪
c=0

[
kc

p
,
kc + 1

p

)
holds for n ≥ n0 if and only if ξ has two different p/q

expressions. Especially such numbers are countable and infinite.

If p/q = 3/2, then there exists ξ with⟨
ξ

2

(
3
2

)n⟩
∈ [0, 1/3) ∪ [2/3, 1). (n = 1, 2, . . . )
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The assumption p ≥ 2q − 1 guarantees that there are no

positive number with three different expressions. We believe

there is no number with three different expressions in all cases.

A refinement of [2] was shown in [1]. It deals with the case

when p is large.

Theorem

Let p > q > 1 with p ≥ 2q−1. Then a positive real number

x has two p/q-representations if and only if there exist n0 so

that ⟨
x

q

(
p

q

)n⟩
∈

∪
0≤c≤q−1

]
kc

p
,
kc

p
+

q − 1
p(p − q)

[
(2)

holds for all n ≥ n0.
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When p is larger, we can even prove:

Theorem

If p > q2, the there exist ξ such that
⟨

ξ
q

(
p
q

)n⟩
n = 1, 2, . . .

always stays in a fixed Cantor space. Such ξ’s correspond to

double points of p/q number system.
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Why is this expansion good ?

Let x = .a−1a−2 . . . and multiply some power of p/q:(
p

q

)m

x = a−1a−2 . . . a−m.a−m−1a−m−2 . . .

As a−1 . . . a−m ∈ L(p/q), this integer part of p/q number

system is in fact a rational integer. Therefore⟨(
p

q

)m

x

⟩
= ⟨.a−m−1a−m−2 . . . ⟩ !
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How to construct the Delone set

Realize each node z ∈ Z of the graph T (p/q) into R, by the

map

ϕ : Z ∋ z = akak−1 . . . a0 → z +
∞∑

i=1

a−i

q

(
p

q

)−i

where a−1a−2 . . . is the minimal path starting from z. Then

it is obvious that p
qϕ(Z) ⊂ ϕ(Z), ϕ(Z) is relatively dense in R.

It is also uniformly discrete if p > 2q − 1. The last condition

assures that ϕ(z) and ϕ(z + 1) are far.
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In the case p ≤ 2q − 1 then some technical discussion is

required. Two points ϕ(z) and ϕ(z + 1) could be close if the

minimal paths starting from z and z + 1 are adjacent for some

large length K, i.e., z is minimally followed by a1a2 . . . aK and

z +1 is minimally followed by (a1−p+ q)(a2−p+ q) . . . (aK −
p + q) for some large K.

In this case, we delete all the nodes z + 1 having this

property. One see that this removal does not destroy the

relatively denseness and the resulting set is uniformly discrete.
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Geometric construction.

One can construct our Delone set by an amusing algorithm.

Let p/q = 3/2. Consider the initial set Z =
∪∞

k=0[k + 0, k +
1/3) ∪ [k + 2/3, k + 1) in R. Then we define

Y = ∩∞
i=0

(
2
3

)i

Z

We get a relatively dense set Y in R and 3
2Y ⊂ Y . If two

points are closer than a given small constant, then delete the

larger one. What we get is the desired Delone set X.
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Non-integral algebraic number systems

One can generalize this story to non-integral expanding

algebraic numbers.

A parameter vector (r0, r1, . . . , rd−1) ∈ Rd gives a Shift
Radix System, if the integer sequence generated by a

recurrence:

0 ≤ r0zn + r1zn+1 + · · · + rd−1zn+d−1 + zn+d < 1

is always eventually falls into (0, 0, . . . , 0) for any initial vectors

(z0, . . . zd−1) ∈ Zd. The set of such parameters are denoted by

D0
d.
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Let P (x) = pdx
d + pd−1x

d−1 + · · · + p0 ∈ Z[x] with

pd > 0 and put A = {0, 1, . . . , |p0| − 1}. An analogy

to the usual CNS we can prove that each element of

R = Z[x]/P (x) has a representative in A[x] if and only if

(pd/p0, pd−1/p0, . . . , p1/p0) ∈ D0
d.

Note that R is not finitely generated over Z if pd > 1. One

can define a suitable Z-submodule M of rank d in R so that

• Each element of M has a unique expansion.

• The language generated by M is right extensible.
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Under this setting we can prove the analogy to p/q number

system.

• L(M) is prefix closed.

• Any word ω ∈ A∗ appears as subword of some element in

L(M).

• Let ω1, ω2 ∈ A∗. If ω1ω
n
2 ∈ L(M) for each n = 1, 2, . . .

then ω1, ω2 ∈ 0∗.

• Every element of Rd has an aperiodic expansion.
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