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Ostrowski numeration system

Ostrowski numeration system is based on the numeration scale given by the sequence
of denominators in the continued fraction expansion of a given real number.

The Ostrowski representation of the nonnegative integers is a generalisation of the
Zeckendorf representation:

N =" byFp, with by € {0,1}, bybni1 = 0.

One can expand via Ostrowki numeration
e integers

e real numbers in [0, 1]
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Ostrowski expansion of integers

Let « € (0,1) be an irrational number.

Let a« = [0; a1, a2, ..., an,...] be its continued fraction expansion with convergents
pn/qn =[0; a1, az,...,an].

Every integer N can be expanded uniquely in the form

m
N = Z brqk—1,
k=1

where
0<b<a -1
0< by < afork>2
by = 0if b1 = akq1
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Ostrowski expansion of real numbers

Ostrowski's representation of integers can be extended to real numbers.
The base is given by the sequence (6n)n>0, where 6, = (qncax — pn).

Every real number —a < 8 < 1 — « can be expanded uniquely in the form

+oo
B= E ckbk—1,
k=1

where
0<cgg<a -1
0<cx<afork>2
Ck = 0 if Ck+1 = ak+1
cx # ay for infinitely many odd integers.
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Applications

This numeration system can be used to approximate 3 modulo 1 by numbers of the
form Na, with N € N.

Indeed the sequence of integers N, = > ckqk—1 can be used to provide a series of
best approximations to

+o0
B = Z ckbk—1, with 0k = gxa — px.
k=1
Indeed, take
n n
Npa = Z CkQk—100 = ck(qr—10c — px—1) mod 1.
k=1 k=1
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Applications
This numeration system can be used to approximate 3 modulo 1 by numbers of the

form Na, with N € N.

Indeed the sequence of integers N, = > ckqk—1 can be used to provide a series of
best approximations to

+o0
B = Z ckbk—1, with 0k = gxa — px.
k=1
Indeed, take
n n
Npa = Z CkQk—100 = ck(qr—10c — px—1) mod 1.
k=1 k=1

This yields applications in
e word combinatorics for the study of Sturmian words
e Diophantine approximation/equidistribution theory
e discrete geometry: discrete lines

e cryptography via double base numerations
N =" 2%3b
i

with aj, b; > 0 and (a,-, b,‘) #* (aﬁ bj) if i #J.
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Double base numerations

How to expand an integer N as

N=>" 223, with a;; € {0,1} for all i,
i,jJEN

such that the digit sum 3 a; j is unique?
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Double base numerations

How to expand an integer N as

N=>" 223, with a;; € {0,1} for all i,
i,jeEN

such that the digit sum 3 a; j is unique?

o Cryptography: scalar multiplication on elliptic curves on Fj, et Faon, Koblitz
curves, supersingular curves in char. 3; modular exponentiation
[Dimitrov-Jullien-Miller][Ciet-Sica][Dimitrov-Imbert-Mishra]
[Avanzi-Ciet-Sica][Avanzi-Dimitrov-Doche-Sica]...

e Signal processing.

v

Define a greedy algorithm for expanding an integer N as

N=>"22'3, with a;; € {0,1} for all i, j.
i,jeN

\
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Complexity

Representing N in base 2 requires 0(log(/NV)) digits.

Theorem [Dimitrov-Jullien-Miller]

log N )

Every nonnegative integer N can be represented as a sum of at most O( Tog log NV

numbers of the form 223%.

| \

Theorem [Tijdeman]

There exists ¢ > 0 such that for all N € N there exists an integer of the form 223P

such that
N

- <223b < .
(log )<
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Greedy algorithm

Given a nonnegative integer NV, how to find the largest integer of the form 223" that
satisfies 2232 < N, for a, b € N?

We are looking for a, b such that
2730 < N

alog2+ blog3 < log N

~~ Arithmetic discrete line /nonhomogeneous approximation.

[

(021)

1o

1 8 LS
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A nonhomogeneous problem

We are looking for a, b such that
223b < N
alog2+ blog3 < log N
We set
o = log32, B := {logz N}.

Onehas0<a<l agQ 0<p8 <1 Weare looking for a, b in N such that

Q 223° < N

@ —(aa+ b) + [+ [logs N] as small as possible.

~~ Approximation by 3 points of the form aac modulo 1.

Strategy
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Some open questions

e Base 223%: Determination of a reasonable constant in O(IOI;FOQIN) for the
number of nonzero digits in the greedy algorithm. Minimal expansions?

e Base 273P5¢: Same questions. Tjideman's theorem still holds. Greedy algorithm?

e Complex double bases: Expansions in base 721 where 7 and 1 are two complex
quadratic numbers. Same questions. Application to Koblitz curves:

o HI+iVT

R
2 p=r
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Toward a multdimensional Ostrowski numeration

How to define an Ostrowski expansion in higher dimension?

Motivations come from
e word combinatorics for the study of 2D Sturmian words
e Diophantine approximation/equidistribution theory
e discrete geometry: discrete planes
e Rauzy fractals

e cryptography via triple base numerations
N =" 2%3bi55
i

with a;, bj, ¢; > 0 and (aj, bj, ¢;) # (aj, bj, ;) if i # j (Hamming numbers).
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First problems |

There is no canonical generalization of Ostrowski numeration to higher dimensions.

This is first due to the fact that there is no canonical notion of a generalization of
Euclid's algorithm.

To remedy to the lack of a satisfactory tool replacing continued fractions, several
approaches are possible:

e best simultaneous approximations but we then loose unimodularity, and the
sequence of best approximations heavily depends on the chosen norm
e unimodular multidimensional continued fraction algorithms

e Jacobi-Perron algorithm
e Brun algorithm
e Arnoux-Rauzy algorithm, Fine and Wilf algorithm [Tijdeman-Zamboni]

e Lattice reduction approaches (LLL). Ex: computation of the n-th Hamming
number (see E. Dijkstra, and see M. Quersia’s web page.)
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First problems Il

We want to define a generalized Ostrowski numeration system based on some classical
unimodular multidimensional continued fraction algorithms.

Let us consider a multidimensional continued fraction algorithm producing
simultaneous approximations with the same denominator

(a7 6) ~ (pn/qn, rn/Qn)

We thus get two kinds of possible expansions

o Simultaneous approximation in T?

e} o PnC® — Qn
(5)-za(me)
e Minimization of linear form in T?!
x=>"calgha+q B+ p})

How to define the coefficients? How to find a suitable linear form?
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Back to Ostrowski numeration

e A numeration scale and a numeration defined on N
e An odometer Od acting on the set of sequences K, [Grabner, Liardet, Tichy]

e An isomorphism theorem

R/Z Fo Rr/z
Ostr.l lOstr.
Ko — Ko
od

e A numeration system for real numbers

e A skew product of the Gauss map

T(a, 8) = ({1/a},{B/a}).

e An induction process (first return map) and associated substitutions
e An S-adic generation process for Sturmian sequences

e A natural extension and a Lagrange theorem
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Ostrowski odometer

Let « = [0;a1 +1,ap,...] and set
Ko = {(c)i>1l Yk > 1 (ck €N, 0 < ¢ < ax) and (cpq1 = aq1 = ok = 0)}.

One defines on the compact set K, an odometer map Od. The map Od : K, — Kau
is onto and continuous, and (K, Od) is minimal.

Isomorphism theorem

The dynamical systems (Ko, Od) and (R/Z, R.) are topologically conjugate, with
Ra:R/Z — R/Z, x — x + a.




1D case Double bases Multidimensional Ostrowski Strategy

Sturmian words and Ostrowski numeration

Let w be a Sturmian sequence that codes the orbit of x. Let 79 and 71 be the
morphisms on {0, 1}* defined by 79(0) = 0, 71(0) = 10, 70(1) = 01, 71 (1) = 1. Let 7/
for i € {0,1} defined by /(i) = i and 7/(j) = ji, for j # i. We have

w= lim 7% o (1) 0 r? % o (1) 00k o () (1),

where (ay)x>1 is the sequence of partial quotients of the slope (defined as the density
of the symbol 1), while (cx)k>1 is the sequence of digits in the arithmetic Ostrowski
expansion of x.

Theorem [lto-Nakada]

Let

M|

cr1(qre — pi),

x
Il

1

where (ci)k>1 is the sequence of digits in the arithmetic Ostrowski expansion of x.
Suppose « is quadratic. Then (cx)k>1 is eventually periodic if and only if x € Q(«).

| \

Corollary [B., Holton, Zamboni]

A Sturmian sequence w of slope a which codes the orbit of x is primitive substitutive
if and only if a is a quadratic irrational and x € Q(«).
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Ostrowski generalizations

e A numeration scale and a numeration defined on N

e An odometer Od on K

e An isomorphism theorem between (K, Od) and a dynamical system (X, T)
e A numeration system for real numbers

e A skew product of the Gauss map

e An induction process (first return map) and associated substitutions

e An S-adic generation process for sequences coding the dynamical system T.

e A natural extension
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Ostrowski generalizations

e A numeration scale and a numeration defined on N
e An odometer Od on K
e An isomorphism theorem between (K, Od) and a dynamical system (X, T)
e A numeration system for real numbers
e A skew product of the Gauss map
e An induction process (first return map) and associated substitutions
e An S-adic generation process for sequences coding the dynamical system T.
e A natural extension
This program has been realized for instance for
e 3 interval exchange transformations/induction [lto et al.]

e Pisot irreducible substitutions
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Pisot substitution

Let o be an irreducible Pisot substitution over a d-letter alphabet with super
coincidence. We have

e A numeration scale and a numeration defined on N: Dumont-Thomas substitution
e An odometer Od on K

e An isomorphism theorem between (K, Od) and a toral translation (T9~1, T)
whose fundamental domain is given by a Rauzy fractal.

e A numeration system for real numbers: Dumont-Thomas
o A fibered system (Schweiger)

e Induction and substitution

NonPisot case: [Arnoux-Furukadi-Harriss-Ito]
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Nonalgebraic parameters

Let (o, ) € (0,1)%.
Consider for instance Brun algorithm. We are looking for

e A numeration scale and a numeration defined on N OK
e An odometer Od on K OK

e An isomorphism theorem between (K, Od) and a toral translation (T~ T) of
parameters («, 8) with fundamental domain given by an S-adic Rauzy fractal
Problem!

e A numeration system for real numbers OK
o A skew product of Brun algoritm OK
e An induction process and generalized substitutions [Arnoux-B.-Ito] OK

e An S-adic generation process OK

Application to the generation and recognition of arithmetic discrete planes
[B.-Fernique]
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Strategy |: skew product

We consider the following classical skew product of the Gauss map

T:(a,8) — ({1/a},{B/a}) = (1/a — a1, B/a — b1) = (a1, B1).
We have
81 =B/a — by and thus 8 = bia + af.
We deduce that

+00o

400
B= Z braag a1 = Z brlgk—1a — pr—_1]-
k=1 k=1



1D case Double bases ultidimensional Ostrowski

Strategy |: skew product

We consider the following classical skew product of the Gauss map

T:(a,8) = ({1/a},{B/a}) = (1/a — a1, 8/a — b1) = (a1, f1).

We have
ﬂl = /3/01 — by and thus ﬁ = b« +aﬁ1

We deduce that

+o0 +oo
8= Z braay -+ a1 = Z bilgk—1a — pr—1].
k=1 k=1

Indeed we use the fact that

1 1 1 1 1 1 0 1
(O{n):704“.0["_1Ma"~~-Ma1 (a>whereMa = 1 —a )

We deduce that

a---ap_1 = first coordinate of (M, ---M,,) ™! ( 01[ ) = <Ig"), (1, @)).

We conclude by noticing

(1) e (3 21)
n n—

Strategy
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Strategy |: skew product

We consider the following classical skew product of the Gauss map
T: (. 8) = ({1/a}, {B/a}) = (1/a — a1, /a — bi) = (o1, 1)

We have
B1 = 0B/a — by and thus 8 = bia + af.

We deduce that

“+o00 +o0o
8= Z braay g1 = Z brlak—1a — pr—1]-
k=1 k=1

We then consider the following skew product of the Brun map

—_ (B/e,1/a— a1, v/a— b)) ifB<a
T(a’ﬁﬁ)_{ (1/5—31,04/61”7/5—[711) if B>«

or of the Jacobi-Perron map

T(ev, B,7) = ({B/a}, {1/}, {v/a}).
We get

+o0

A= b, (1,0, ).

k=1
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Second strategy: generalized substitutions

We consider the following skew product of the Brun map

_ | B/xlja—ai,vy/a—b) fB<a
T(“’ﬁ’”)‘{ (/8 —a,a/B1/8—b1) #6>a

By applying a so-called generalized substitution, one gets
x1 = T(x) = M1 x— byve, .

a1,€1

One recovers expansions of the form

x = b1Mj, e Ve, + My o1 x1 = § bcMay ey - -+ Mak,skvek

_ Pk — Gk
x_Zbk( i — o )

Strategy



1D case

Double bases Multidimensional Ostrowski Strategy

Systeme fibré [Schweiger]

Un systeme fibré est la donnée d'un ensemble X et d’une transformation T: X — X
pour laquelle il existe un ensemble / fini ou dénombrable, et une partition
X = Lﬂiel X; de X telle que la restriction T; de T sur X; est injective, pour tout i € /.

Cela permet de définir une application £: X — [ qui associe l'index i a x € X tel que
Xx € X; et qui est bien définie.

Représentation g-adique

Soit X =N, I ={0,1,...,9—1}, X; =i+ gN. On a g(n) = n (mod g). On
considére T: X — X définie par T(n) = (n—e(n))/q.
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