Journées de numération, Prague, May 26th, 2008

On the number of α -power-free binary words for $2 < \alpha \le 7/3$

Julien Cassaigne Institut de mathématiques de Luminy - CNRS, Marseille, France cassaigne@iml.univ-mrs.fr

Raphaël Jungers

CESAME, Université catholique de Louvain, Belgique Raphaël Jungers is an FNRS fellow

On the number of α -power-free binary words for $2 < \alpha \le 7/3$

- Words avoiding fractional powers
- The threshold between polynomial and exponential growth
- Known results on overlap-free binary words
- The number of 7/3-power-free binary words
- General case

Words avoiding fractional powers

Let $w = w_1 \dots w_n \in A^*$ be a non-empty finite word, and n = |w|.

The period of w is the smallest positive integer p such that $w_i = w_{i+p}$ for all i such that $1 \le i \le i + p \le n$. Note that $1 \le p \le n$.

The exponent of w is the rational number e(w) = n/p.

Example: e(abacabacab) = 10/4 = 5/2.

Let $\alpha \in \mathbb{R}$. A word $v \in A^* \cup A^{\omega}$ is α -power-free if every finite factor w of v satisfies $e(w) < \alpha$.

v is α^+ -power-free if every finite factor w of v satisfies $e(w) \leq \alpha$.

Repetition thresholds (1)

It is well known (Thue 1906) that there are only finitely many binary square-free (i.e., 2-power-free) words, and that the infinite Thue-Morse word is overlap-free (i.e., 2^+ -power-free).

More generally, on an alphabet with k letters, there is a threshold RT(k) such that there are only finitely many α -power-free words for $\alpha < RT(k)$, and infinitely many for $\alpha > RT(k)$. The value of RT(k) was conjectured by Dejean in 1972: RT(2) = 2, RT(3) = 7/4, RT(4) = 7/5, RT(k) = k/(k-1) for $k \ge 5$. Currently it is proved for $k \le 14$ (Thue 1906, Dejean 1972, Pansiot 1984, Moulin-Ollagnier 1992, Currie and Mohammad-Noori 2005) and for $k \ge 33$ (Carpi 2007).

Repetition thresholds (2)

How fast does the number $u_{k,\alpha}(n)$ of α -power-free words of length n on a given alphabet with k letters grow as a function of n?

At least two behaviours are possible: the number of overlap-free binary words grows polynomially (Restivo and Salemi 1985), whereas the number of cube-free binary words grows exponentially (Brandenburg 1983).

We can define (Kobayashi 1983) a new threshold RT'(k) such that the growth is polynomial when $\alpha < RT'(k)$, and not polynomial when $\alpha > RT'(k)$ (no example is known with intermediate growth, neither polynomial nor exponential, but this case cannot be a priori excluded).

Karhumäki and Shallit's result

Karhumäki and Shallit computed RT'(2) in 2004: RT'(2) = 7/3.

More precisely, there are polynomially many 7/3-power-free binary words, and exponentially many $7/3^+$ -power-free binary words.

For k > 2, not much is known about RT'(k), only that $RT'(3) \le 2$ (Brandenburg 1983).

Structure lemma

The main ingredient in the proof is the following structure lemma (generalizing a result of Restivo and Salemi 1985 for overlaps):

Lemma. Let $A = \{a, b\}$, $2 < \alpha \leq 7/3$, and $w \in A^*$ be α -power-free. Then there exist $x, y \in \{\varepsilon, a, b, aa, bb\}$ and $v \in A^*$ such that v is α -power-free and $w = x\theta(v)y$, where θ is the Thue-Morse morphism: $a \mapsto ab, b \mapsto ba$. Moreover, (x, v, y) is unique provided that $|w| \geq 7$.

Example: $bbabbaabbaa = bb.\theta(abab).a$ (note that this word contains an overlap, and is a maximal 7/3-power-free word).

This lemma fails for $\alpha > 7/3$, for instance with $w = abbabaabbaabaabbabaab}$.

How to compute the growth exactly ?

Our goal is to compute exactly, or at least asymptotically, the numbers $u_{k,\alpha}(n)$.

Namely, we are interested in:

- if $u_{k,\alpha}(n)$ is polynomial in n, find its degree;
- if $u_{k,\alpha}(n)$ is exponential in n, find its basis;
- find recurrence relations to compute $u_{k,\alpha}(n)$ efficiently.

Iterating the structure lemma

Iterating the structure lemma produces a sequence of words (w_i) , such that $w_n = w$, $w_i = x_i \theta(w_{i-1}) y_i$, and w_0 is short. The short word w_0 and the sequence $(x_1, y_1), \ldots, (x_n, y_n)$ are enough to describe w.

Unfortunately, not all sequences $((x_i, y_i))$ are admissible. For overlapfree words, Carpi proved in 1993 that admissible sequences form a regular language. As a consequence, $u_{2,2+}(n)$ is a 2-regular sequence in the sense of Allouche and Shallit 1992. However it is not easy to compute an automaton explicitely.

An alternative structure lemma for overlap-free words

Computation becomes easier if the additive structure lemma is replaced by a subtractive variant (Cassaigne 1993).

Let U be the set of overlap-free binary words, V the set of minimal overlaps, S a finite set of short words, and $E = \{\kappa, \delta, \iota\}$ a set of transformations acting on either end of a word and defined as follows:

- κ does nothing;
- δ deletes the first (or last) letter;
- ι inverts the first (or last) letter.

Lemma. Let $w \in (U \cup V) \setminus S$. Then there exists a unique pair $(\gamma_1, \gamma_2) \in E \times E$ and $v \in U \cup V$ such that $w = \gamma_1 \cdot \theta(v) \cdot \gamma_2$.

One-sided control for overlap-free words

The prefix type of a word w with $|w| \ge 4$ is $t_1 \in \{aaa, aaba, aabb, aba, abb\}$ such that w starts with t_1 or $\overline{t_1}$.

If $w = \gamma \cdot \theta(v)$ with $v, w \in (U \cup V) \setminus S$, then their types are related like this:

Note that ι is not always permitted, and type <u>aaa</u> is excluded.

Results on overlap-free binary words

Using the subtractive structure lemma, we obtained in 1993:

Theorem. Let (Y_n) be the sequence of vectors in \mathbb{N}^{30} defined by initial terms and $Y_{2n} = F_0Y_n$, $Y_{2n+1} = F_1Y_n$ for n > 6, where F_0 and F_1 are specific matrices. Then $u_{2,2^+}(n) = RY_n$ for some specific row vector R.

This theorem allows to compute $u(n) = u_{2,2+}(n)$ very efficiently, using the binary expansion of n to construct a product of the matrices F_0 and F_1 .

Asymptotic behaviour

A surprising corollary is that, although u(n) grows polynomially, it does not have a fixed degree.

Let $r^- = \liminf \frac{\log u(n)}{\log n}$ and $r^+ = \limsup \frac{\log u(n)}{\log n}$.

Then, considering subsequences $u(2^m)$ and $u(\frac{4^m-1}{3})$, we get

 $r^{-} \leq \log_2 \rho(F_0) < \log_4 \rho(F_0F_1) \leq r^+.$

Using joint spectral radius techniques, Jungers, Blondel and Protasov obtained in 2007:

 $1.2690 < r^{-} < 1.2736 < 1.3322 < r^{+} < 1.3326.$

Asymptotic behaviour of the sum

The function $s(n) = \sum_{m < n} u(m)$ is tamer and easier to compute. It counts the number of overlap-free binary words of length at most n.

We proved in 1993 that $s(n) = \Theta(n^r)$ with

$$r = \log_2\left(\frac{3}{2} + \sqrt{3} + \sqrt{\frac{5}{4}} + \sqrt{3}\right) \simeq 2.3100$$

Actually, $r = 2 \log_2 \rho(M)$ where M is the 4×4 incidence matrix of the one-sided control automaton:

$$M = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 2 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

Subtractive structure lemma for α -power-free words

Let $2 < \alpha \leq 7/3$ (α may also be a "plussed" real). We want to adapt our technique to α -power-free words.

Let U be the set of α -power-free binary words, $V = AUA \setminus U$ the set of almost α -power-free words, S a finite set of short words, and $E = \{\kappa, \delta, \iota, \sigma, \tau\}$ the set of transformations: $\kappa.xw = xw$, $\delta.xw = w$, $\iota.xw = \bar{x}w$, $\sigma.xw = x\bar{x}w$, $\tau.xw = \bar{x}\bar{x}w$, and $w.\gamma$ is the mirror image of $\gamma.\tilde{w}$, for any $\gamma \in E$.

Lemma. Let $w \in (U \cup V) \setminus S$. Then there exists a unique pair $(\gamma_1, \gamma_2) \in E \times E$ and $v \in U \cup V$ such that $w = \gamma_1 \cdot \theta(v) \cdot \gamma_2$.

One-sided control for 7/3-power-free words (1)

Unlike with overlap-free words, V contains words that start or end with 7/3-powers, but are not 7/3-powers themselves.

Let the prefix excess of w be $f_1 \in \{1, 2, 3\}$ if w starts with xxy where $|y| = \frac{|x|+f_1-1}{3}$, $f_1 = 0$ otherwise.

If $w = \gamma.\theta(v)$ with $v, w \in (U \cup V) \setminus S$, then their types and excesses are related by an automaton with 13 states: (*aaba*, 0), (*aabb*, 0), (*aba*, 0), (*aba*, 0), (*abb*, 0), (*aaba*, 1), (*aba*, 1), (*abb*, 1), (*aaba*, 2), (*aabb*, 2), (*aba*, 2), (*aaa*, 3), (*aba*, 3), (*abb*, 3). Only the first four correspond to words in U.

One-sided control for 7/3-power-free words (2)

For instance, starting with (aaba, 0): $\theta(v) = ababbaab...$ so κ and δ lead to (aba, 0) and ι to (aaba, 0) as before; $\sigma.\theta(v) = abbabbaab...$ leads to (abb, 1) because of the initial repetition abbabba, and $\tau.\theta(v) = bbbabbaab...$ leads to (aaa, 3).

Starting with (*aaa*, 3), the only possibility is δ that leads to (*aba*, 2). Other transformations lead to words outside $U \cup V$, for instance $\iota.\theta(v) = bbabab...$ (5/2 \geq 7/3).

Starting with (aba, 2), δ leads back to (aabb, 0) in U, κ leads to (abb, 3) and ι to (aaa, 3). Other transformations are not permitted.

Results on 7/3-power-free binary words

Transforming this automaton to take into account two-sided control and variations in the lengths of words, we finally get a matrix expression for $u_{2,7/3}(n)$, involving two matrices F_0 and F_1 of dimension 548.

For asymptotic study, the matrices can be reduced to dimension 227 (one strongly connected component in the associated automaton). We get: $1.8874 < r_{2,7/3}^- < 2.0035 < 2.0121 < r_{2,7/3}^+ < 2.1050$.

For the sum, we get $s_{2,7/3}(n) = \sum_{m < n} u_{2,7/3}(m) = \Theta(n^{r_{2,7/3}})$ with $r_{2,7/3} = 2\log_2\rho(M) \simeq 3.0053$ where M is the 13×13 incidence matrix of the one-sided control automaton.

Generalization (1)

Let $\alpha = p/q$, $2 < \alpha \le 7/3$. Define the prefix excess of a word w as the maximal value f_1 of $\max(0, q|z| - p|x| + 1)$, where z = xxy is a proper prefix of w of period |x|. Note that $f_1 = 0$ if $w \in U$, $0 \le f_1 \le q$ if $w \in V$. Define the suffix excess f_2 similarly. Define the global excess g as $\max(0, q|w| - p|x| + 1)$, where |x| is a period of |w|. Note that $0 \le g \le \min(f_1, f_2) + q$.

We construct an automaton with states (t_1, f_1, t_2, f_2, g) , that is at most $25.(q+1)^2.(2q+1)$ states, and transitions labelled by $E \times E$. For instance, (κ, δ) maps (aba, f_1, aaa, f_2, g) to: $(abb, \max(0, 2f_1-1), aba, \max(0, 2f_2-1-q), \max(0, 2g-1-q))$, provided these values remain in the allowed range.

Generalization (2)

We first get recurrence relations $X_{2n} = G_{-2}X_{n+1} + G_0X_n + G_2X_{n-1}$ and $X_{2n+1} = G_{-1}X_{n+1} + G_1X_n$, where X_n is the vector that counts the number of words of length n that fall in each state, and the G_j are the matrices corresponding to transitions (γ_1, γ_2) such that $|\gamma_1.\theta(v).\gamma_2| = 2|v| + j$.

Multiplying the dimension by four, we can turn these relations into $Y_{2n} = F_0 Y_n$, $Y_{2n+1} = F_1 Y_n$ where

$$Y_{n} = \begin{pmatrix} X_{n-1} \\ X_{n} \\ X_{n+1} \\ X_{n+2} \end{pmatrix}, F_{0} = \begin{pmatrix} G_{1} & G_{-1} & 0 & 0 \\ G_{2} & G_{0} & G_{-2} & 0 \\ 0 & G_{1} & G_{-1} & 0 \\ 0 & G_{2} & G_{0} & G_{-2} \end{pmatrix}, F_{1} = \begin{pmatrix} G_{2} & G_{0} & G_{-2} & 0 \\ 0 & G_{1} & G_{-1} & 0 \\ 0 & G_{2} & G_{0} & G_{-2} \\ 0 & 0 & G_{1} & G_{-1} \end{pmatrix}.$$

Perspectives

We can now easily compute $r_{2,\alpha}$ and $r_{2,\alpha+}$ when $\alpha \in \mathbb{Q}$. The next step is to study how these depend on α : are they strictly increasing? What are the discontinuities? We expect a devil-staircase-like behaviour.

The study of the limits $r_{2,\alpha}^-$ and $r_{2,\alpha}^+$ seems much more difficult, as even for overlaps only approximations are known.

Also very challenging is to adapt this to a ternary or larger alphabet. To do this, one has to find a replacement for the Thue-Morse morphism and a new structure lemma. It is not obvious that this is at all possible: maybe RT'(k) = RT(k) and there is no more polynomial growth.