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Non standard Numeration Systems

Definition
A numeration system is given by a (strictly) increasing sequence
U = (Ui )i≥0 of integers such that U0 = 1 and
CU := supi≥0dUi+1/Uie is finite.

The greedy U-representation of a positive integer n is the unique
finite word repU(n) = w` · · ·w0 over AU := {0, . . . , CU − 1}
satisfying n =

∑`
i=0 wi Ui , w` 6= 0 and

∑t
i=0 wiUi < Ut+1,

∀t = 0, . . . , `. We set repU(0) = ε.

If x = x` · · · x0 is a word over a finite alphabet of integers, then the
U-numerical value of x is valU(x) =

∑`
i=0 xiUi .

Definition
A set X ⊆ N of integers is U-recognizable if the language repU(X )
over AU is regular (i.e., accepted by a finite automaton).
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Linear Numeration Systems

Definition
A numeration system U = (Ui )i≥0 is said to be linear (of order k) ,
if the sequence U satisfies a homogenous linear recurrence relation
like

Ui+k = a1Ui+k−1 + · · ·+ akUi , i ≥ 0,

for some k ≥ 1, a1, . . . , ak ∈ Z and ak 6= 0.

Example (Fibonacci System)
Consider the sequence defined by F0 = 1, F1 = 2 and
Fi+2 = Fi+1 + Fi , i ≥ 0. The Fibonacci (linear numeration) system
is given by F = (Fi )i≥0 = (1, 2, 3, 5, 8, 13, . . .). For instance,
repF (15) = 100010 and valF (101001) = 13 + 5 + 1 = 19.
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Motivation

Definition
Two integers p, q ≥ 2 are multiplicatively independant if pk = p`

and k , ` ∈ N ⇒ k = ` = 0.

Notation
If p ≥ 2 and U = (pi )i≥0, a set X ⊆ N of integers is said
p-recognizable if the language repU(X ) over AU = {0, . . . , p − 1} is
regular.

Theorem (Cobham, 1969)
Let X ⊆ N be a set of integers. If p and q are two multiplicatively
independant integers, X is p-recognizable and q-recognizable if and
only if X is ultimately periodic.

Theorem (J. Honkala, 1985)
Let p ≥ 2. It is decidable whether or not a p-recognizable set is
ultimately periodic.



A Decision Problem

Proposition
Let U = (Ui )i≥0 be a (linear) numeration system such that
repU(N) is U-recognizable. If X ⊆ N is ultimately periodic, then X
is U-recognizable, and a DFA accepting repU(X ) can be effectively
obtained.

Problem
Given a linear numeration system U and a U-recognizable set
X ⊆ N. Is it decidable whether or not X is ultimately periodic, i.e.,
whether or not X is a finite union of arithmetic progressions ?



Ultimately periodic Sets

Definition
Let X ⊆ N be a set of integers.
The characteristic word of X is an infinite word x0x1x2 · · · over
{0, 1} defined by xi = 1 if and only if i ∈ X .

If now X ⊆ N is ultimately periodic, its characteristic word is an
infinite word over {0, 1} of the form

x0x1x2 · · · = uvω

where u and v are chosen of minimal length. We say that |u| (resp.
|v |) is the preperiod (resp. period) of X .
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Integer Base Case

Idea of Honkala’s Decision Procedure
The input is a finite automaton accepting repU(X ).

First, he gives an upper bound for the possible periods of X , by
showing that, if Y is a ultimately periodic set of integers, then the
number of states of any deterministic automaton accepting
repU(Y ) grows with the period of Y .

Then, once the period of X is bounded, he gives an upper bound
for the possible preperiods of X , in a similar way.



An upper Bound for the Period

Notation
For a sequence U = (Ui )i≥0 of integers and an integer m ≥ 2,
NU(m) ∈ {1, . . . , m} denotes the number of values that are taken
infinitely often by the sequence (Ui mod m)i≥0.

Example (Fibonacci System, continued)
(Fi mod 4) = (1, 2, 3, 1, 0, 1, 1, 2, 3, . . .) and NF (4) = 4.
(Fi mod 11) = (1, 2, 3, 5, 8, 2, 10, 1, 0, 1, 1, 2, 3, . . .) and
NF (11) = 7.

Proposition
Let U = (Ui )i≥0 be a numeration system satisfying
limi→+∞ Ui+1 − Ui = +∞. If X ⊆ N is an ultimately periodic
U-recognizable set of period |v |, then any deterministic finite
automaton accepting repU(X ) has at least NU(|v |) states.
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An upper Bound for the Period

Corollary
Let U = (Ui )i≥0 be a numeration system satisfying
limi→+∞ Ui+1 − Ui = +∞. Assume that limm→+∞ NU(m) = +∞.
Then the period of an ultimately periodic set X ⊆ N such that
repU(X ) is accepted by a DFA with d states is bounded by the
smallest integer s0 such that for all m ≥ s0, NU(m) > d, which is
effectively computable.

Lemma
If U = (Ui )i≥0 is a linear numeration system satisfying a recurrence
relation of order k ≥ 1 of the kind

Ui+k = a1Ui+k−1 + · · ·+ akUi , i ≥ 0,

with ak = ±1, then limm→+∞ NU(m) = +∞.
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An upper Bound for the Period

Proposition
Let U = (Ui )i≥0 be a numeration system satisfying condition
limi→+∞ Ui+1 − Ui = +∞ and X ⊆ N be an ultimately periodic
U-recognizable set of period |v |. If 1 occurs infinitely many times
in (Ui mod |v |)i≥0 then any deterministic finite automaton
accepting repU(X ) has at least |v | states.



Idea of the Proof with the Fibonacci System

Definition
Let L ⊆ Σ∗ be a language over a finite alphabet Σ and x be a finite
word over Σ. We set x−1.L = {z ∈ Σ∗ | xz ∈ L}.
The Myhill-Nerode congruence ∼L is defined as follows. Let
x , y ∈ Σ∗. We write x ∼L y if x−1.L = y−1.L.

Proposition
A language L over a finite alphabet Σ is regular if and only if ∼L
has a finite index, being the number of states of the minimal
automaton of L.

Example (Fibonacci System, continued)
For all m ≥ 2, the sequences (Fi mod m)i≥0 is purely periodic. So
F0 = 1 appears infinitely often in (Fi mod m)i≥0.
Let X ⊆ N be an ultimately periodic F -recognizable set of period
|v | and preperiod |u|.
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Idea of the Proof with the Fibonacci System

Example (Fibonacci System, continued)
There exist n1, . . . , n|v | such that for all t = 0, . . . , |v | − 1,

10n|v|10n|v|−1 · · · 10n10| repU(|v |−1)|−| repU(t)| repU(t)

is a greedy F -representation.

Moreover n1, . . . , n|v | can be chosen
such that, for all j = 1, . . . , |v |,

valU(10nj · · · 10n1+| repU(|v |−1)|) ≡ j mod |v |

and valU(10n1+| repU(|v |−1)|) > |u|. For i , j ∈ {1, . . . , |v |}, i 6= j , the
words

10ni · · · 10n1 and 10nj · · · 10n1

are nonequivalent for ∼repU(X ). This can be shown by
concatenating some word of the kind 0| repU(|v |−1)|−| repU(t)| repU(t)
with t < |v |.
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An upper Bound for the Preperiod

Notation
For a sequence U = (Ui )i≥0 of integers, if (Ui mod m)i≥0, m ≥ 2,
is ultimately periodic, we denote its (minimal) preperiod by ιU(m)
and its (minimal) period by πU(m).

Example (Fibonacci System, continued)
(Fi mod 4) = (1, 2, 3, 1, 0, 1, 1, 2, 3, . . .) and πF (4) = 6.
(Fi mod 11) = (1, 2, 3, 5, 8, 2, 10, 1, 0, 1, 1, 2, 3, . . .) and
πF (11) = 10.
We have ιF (m) = 0, for all m ≥ 2.

Remark
If U = (Ui )i≥0 is a linear numeration system of order k , then for all
m ≥ 2, we have NU(m) ≥ k

√
πU(m).
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An upper Bound for the Preperiod

Proposition
Let U = (Ui )i≥0 be a linear numeration system. Let X ⊆ N be an
ultimately periodic U-recognizable set of period |v | and preperiod
|u| such that | repU(|u| − 1)| − ιU(|v |) > 0.
Then any deterministic finite automaton accepting repU(X ) has at
least | repU(|u| − 1)| − ιU(|v |) states.



A Decision Procedure

Theorem (E. C., M. Rigo)
Let U = (Ui )i≥0 be a linear numeration system such that N is
U-recognizable and satisfying a recurrence relation of order k of the
kind

Ui+k = a1Ui+k−1 + · · ·+ akUi , i ≥ 0,

with ak = ±1 and such that limi→+∞ Ui+1 − Ui = +∞.
It is decidable whether or not a U-recognizable set is ultimately
periodic.

Remark
Whenever gcd(a1, . . . , ak) = g ≥ 2, for all n ≥ 1 and for all i large
enough, we have Ui ≡ 0 mod gn and NU(m) does not tend to
infinity.

Question
What happen whenever gcd(a1, . . . , ak) = 1 and ak 6= ±1 ?
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Abstract Numeration Systems

Definition
An abstract numeration system is a triple S = (L,Σ, <) where L is
a regular language over a totally ordered alphabet (Σ, <).
Enumerating the words of L with respect to the genealogical
ordering induced by < gives a one-to-one correspondence

repS : N → L valS = rep−1
S : L → N.

Example
L = a∗, Σ = {a}

n 0 1 2 3 4 · · ·
rep (n) ε a aa aaa aaaa · · ·



Abstract Numeration Systems

Example
L = {a, b}∗, Σ = {a, b}, a < b

n 0 1 2 3 4 5 6 7 · · ·
rep (n) ε a b aa ab ba bb aaa · · ·

Example
L = a∗b∗, Σ = {a, b}, a < b

n 0 1 2 3 4 5 6 · · ·
rep (n) ε a b aa ab bb aaa · · ·



Abstract Numeration Systems

Remark
This generalizes non-standard numeration systems U = (Ui )i≥0 for
which N is U-recognizable, like integer base p systems or Fibonacci
system.

L = {ε} ∪ {1, . . . , p − 1}{0, . . . , p − 1}∗ or L = {ε} ∪ 1{0, 01}∗



Abstract Numeration Systems

Notation
If S = (L,Σ, <) is an abstract numeration system and if
ML = (QL, q0,L,Σ, δL, FL) is the minimal automaton of L, we
denote by uj(q) (resp. vj(q)) the number of words of length j
(resp. ≤ j) accepted from q ∈ QL in ML.

Remark
The sequences (uj(q))j≥0 (resp. (vj(q))j≥0) satisfy the same
homogenous linear recurrence relation for all q ∈ QL.

Lemma
Let w = σ1 · · ·σn ∈ L. We have

valS(w) =
∑
q∈QL

|w |∑
i=1

βq,i (w)u|w |−i (q) (1)

where βq,i (w) := #{σ < σi | δL(q0,L, σ1 · · ·σi−1σ) = q}+ 1q,q0,L ,
for i = 1, . . . , |w |.
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Abstract Numeration Systems

Definition
A set X ⊆ N of integers is S-recognizable if the language repS(X )
over Σ is regular (i.e., accepted by a finite automaton).

Proposition
Let S = (L,Σ, <) be an abstract numeration system built over an
infinite regular language L. Any ultimately periodic set X is
S-recognizable and a DFA accepting repS(X ) can be effectively
obtained.

Problem
Given an abstract numeration system S and a S-recognizable set
X ⊆ N. Is it decidable whether or not X is ultimately periodic ?
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A Decision Procedure

Theorem
Let S = (L,Σ, <) be an abstract numeration system and let
ML = (QL, q0,L,Σ, δL, FL) the trim minimal automaton of L.
Assume that

∀q ∈ QL lim
j→∞

uj(q) = +∞;

∀j ≥ 0 uj(q0,L) > 0.

Assume moreover that v = (vi (q0,L))i≥0 satisfies a linear recurrence
relation of the form

Ui+k = a1Ui+k−1 + · · ·+ akUi , i ≥ 0

with k ≥ 1, a1, . . . , ak ∈ Z and ak = ±1.
It is decidable whether or not a S-recognizable set is ultimately
periodic.
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