A Decision Problem for ultimately periodic Sets in non-standard Numeration Systems

Emilie Charlier Michel Rigo

Department of Mathematics University of Liège

Journées de Numération Prague May 26-30 2008

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Outline of the talk

Preliminaries and Motivation

A Decision Problem

An upper Bound for the Period

An upper Bound for the Preperiod

A Decision Procedure

Abstract Numeration Systems

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Non standard Numeration Systems

Definition

A numeration system is given by a (strictly) increasing sequence $U = (U_i)_{i \ge 0}$ of integers such that $U_0 = 1$ and $C_U := \sup_{i \ge 0} \lceil U_{i+1}/U_i \rceil$ is finite.

The greedy *U*-representation of a positive integer *n* is the unique finite word $\operatorname{rep}_U(n) = w_{\ell} \cdots w_0$ over $A_U := \{0, \ldots, C_U - 1\}$ satisfying $n = \sum_{i=0}^{\ell} w_i U_i$, $w_{\ell} \neq 0$ and $\sum_{i=0}^{t} w_i U_i < U_{t+1}$, $\forall t = 0, \ldots, \ell$. We set $\operatorname{rep}_U(0) = \varepsilon$.

If $x = x_{\ell} \cdots x_0$ is a word over a finite alphabet of integers, then the *U*-numerical value of x is $\operatorname{val}_U(x) = \sum_{i=0}^{\ell} x_i U_i$.

(日) (伊) (日) (日) (日) (0) (0)

A numeration system is given by a (strictly) increasing sequence $U = (U_i)_{i \ge 0}$ of integers such that $U_0 = 1$ and $C_U := \sup_{i \ge 0} \lceil U_{i+1}/U_i \rceil$ is finite.

The greedy U-representation of a positive integer *n* is the unique finite word $\operatorname{rep}_U(n) = w_\ell \cdots w_0$ over $A_U := \{0, \ldots, C_U - 1\}$ satisfying $n = \sum_{i=0}^{\ell} w_i U_i$, $w_\ell \neq 0$ and $\sum_{i=0}^{t} w_i U_i < U_{t+1}$, $\forall t = 0, \ldots, \ell$. We set $\operatorname{rep}_U(0) = \varepsilon$.

If $x = x_{\ell} \cdots x_0$ is a word over a finite alphabet of integers, then the *U*-numerical value of x is $\operatorname{val}_U(x) = \sum_{i=0}^{\ell} x_i U_i$.

Definition

A set $X \subseteq \mathbb{N}$ of integers is *U*-recognizable if the language rep_U(X) over A_U is regular (i.e., accepted by a finite automaton).

A numeration system $U = (U_i)_{i \ge 0}$ is said to be *linear (of order k)*, if the sequence U satisfies a homogenous linear recurrence relation like

$$U_{i+k}=a_1U_{i+k-1}+\cdots+a_kU_i,\ i\geq 0,$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

for some $k \geq 1$, $a_1, \ldots, a_k \in \mathbb{Z}$ and $a_k \neq 0$.

A numeration system $U = (U_i)_{i \ge 0}$ is said to be *linear (of order k)*, if the sequence U satisfies a homogenous linear recurrence relation like

$$U_{i+k}=a_1U_{i+k-1}+\cdots+a_kU_i,\ i\geq 0,$$

for some $k \geq 1$, $a_1, \ldots, a_k \in \mathbb{Z}$ and $a_k \neq 0$.

Example (Fibonacci System)

Consider the sequence defined by $F_0 = 1$, $F_1 = 2$ and $F_{i+2} = F_{i+1} + F_i$, $i \ge 0$. The Fibonacci (linear numeration) system is given by $F = (F_i)_{i\ge 0} = (1, 2, 3, 5, 8, 13, ...)$. For instance, $\operatorname{rep}_F(15) = 100010$ and $\operatorname{val}_F(101001) = 13 + 5 + 1 = 19$.

Motivation

Definition

Two integers $p, q \ge 2$ are multiplicatively independant if $p^k = p^\ell$ and $k, \ell \in \mathbb{N} \Rightarrow k = \ell = 0$.

Notation

If $p \ge 2$ and $U = (p^i)_{i\ge 0}$, a set $X \subseteq \mathbb{N}$ of integers is said *p*-recognizable if the language $\operatorname{rep}_U(X)$ over $A_U = \{0, \ldots, p-1\}$ is regular.

Theorem (Cobham, 1969)

Let $X \subseteq \mathbb{N}$ be a set of integers. If p and q are two multiplicatively independant integers, X is p-recognizable and q-recognizable if and only if X is ultimately periodic.

Theorem (J. Honkala, 1985)

Let $p \ge 2$. It is decidable whether or not a p-recognizable set is ultimately periodic.

Proposition

Let $U = (U_i)_{i \ge 0}$ be a (linear) numeration system such that rep_U(\mathbb{N}) is U-recognizable. If $X \subseteq \mathbb{N}$ is ultimately periodic, then X is U-recognizable, and a DFA accepting rep_U(X) can be effectively obtained.

Problem

Given a linear numeration system U and a U-recognizable set $X \subseteq \mathbb{N}$. Is it decidable whether or not X is ultimately periodic, i.e., whether or not X is a finite union of arithmetic progressions ?

うして ふゆう ふほう ふほう うらう

Ultimately periodic Sets

Definition

Let $X \subseteq \mathbb{N}$ be a set of integers. The *characteristic word of* X is an infinite word $x_0x_1x_2\cdots$ over $\{0,1\}$ defined by $x_i = 1$ if and only if $i \in X$.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Let $X \subseteq \mathbb{N}$ be a set of integers. The *characteristic word of* X is an infinite word $x_0x_1x_2\cdots$ over $\{0,1\}$ defined by $x_i = 1$ if and only if $i \in X$.

If now $X\subseteq\mathbb{N}$ is ultimately periodic, its characteristic word is an infinite word over $\{0,1\}$ of the form

$$x_0x_1x_2\cdots = uv^{\omega}$$

where u and v are chosen of minimal length. We say that |u| (resp. |v|) is the *preperiod* (resp. *period*) of X.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Idea of Honkala's Decision Procedure

The input is a finite automaton accepting $\operatorname{rep}_U(X)$.

First, he gives an upper bound for the possible periods of X, by showing that, if Y is a ultimately periodic set of integers, then the number of states of any deterministic automaton accepting rep_U(Y) grows with the period of Y.

Then, once the period of X is bounded, he gives an upper bound for the possible preperiods of X, in a similar way.

うして ふゆう ふほう ふほう うらう

An upper Bound for the Period

Notation

For a sequence $U = (U_i)_{i \ge 0}$ of integers and an integer $m \ge 2$, $N_U(m) \in \{1, ..., m\}$ denotes the number of values that are taken infinitely often by the sequence $(U_i \mod m)_{i \ge 0}$.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

An upper Bound for the Period

Notation

For a sequence $U = (U_i)_{i \ge 0}$ of integers and an integer $m \ge 2$, $N_U(m) \in \{1, ..., m\}$ denotes the number of values that are taken infinitely often by the sequence $(U_i \mod m)_{i \ge 0}$.

うして ふゆう ふほう ふほう うらう

Example (Fibonacci System, continued)

 $(F_i \mod 4) = (1, 2, 3, 1, 0, 1, 1, 2, 3, ...)$ and $N_F(4) = 4$. $(F_i \mod 11) = (1, 2, 3, 5, 8, 2, 10, 1, 0, 1, 1, 2, 3, ...)$ and $N_F(11) = 7$.

Notation

For a sequence $U = (U_i)_{i \ge 0}$ of integers and an integer $m \ge 2$, $N_U(m) \in \{1, ..., m\}$ denotes the number of values that are taken infinitely often by the sequence $(U_i \mod m)_{i \ge 0}$.

Example (Fibonacci System, continued)

 $(F_i \mod 4) = (1, 2, 3, 1, 0, 1, 1, 2, 3, ...)$ and $N_F(4) = 4$. $(F_i \mod 11) = (1, 2, 3, 5, 8, 2, 10, 1, 0, 1, 1, 2, 3, ...)$ and $N_F(11) = 7$.

Proposition

Let $U = (U_i)_{i \ge 0}$ be a numeration system satisfying $\lim_{i \to +\infty} U_{i+1} - U_i = +\infty$. If $X \subseteq \mathbb{N}$ is an ultimately periodic *U*-recognizable set of period |v|, then any deterministic finite automaton accepting $\operatorname{rep}_U(X)$ has at least $N_U(|v|)$ states.

An upper Bound for the Period

Corollary

Let $U = (U_i)_{i \ge 0}$ be a numeration system satisfying $\lim_{i \to +\infty} U_{i+1} - U_i = +\infty$. Assume that $\lim_{m \to +\infty} N_U(m) = +\infty$. Then the period of an ultimately periodic set $X \subseteq \mathbb{N}$ such that $\operatorname{rep}_U(X)$ is accepted by a DFA with d states is bounded by the smallest integer s_0 such that for all $m \ge s_0$, $N_U(m) > d$, which is effectively computable.

(ロ) (型) (E) (E) (E) (O)

An upper Bound for the Period

Corollary

Let $U = (U_i)_{i \ge 0}$ be a numeration system satisfying $\lim_{i \to +\infty} U_{i+1} - U_i = +\infty$. Assume that $\lim_{m \to +\infty} N_U(m) = +\infty$. Then the period of an ultimately periodic set $X \subseteq \mathbb{N}$ such that $\operatorname{rep}_U(X)$ is accepted by a DFA with d states is bounded by the smallest integer s_0 such that for all $m \ge s_0$, $N_U(m) > d$, which is effectively computable.

Lemma

If $U = (U_i)_{i \ge 0}$ is a linear numeration system satisfying a recurrence relation of order $k \ge 1$ of the kind

$$U_{i+k}=a_1U_{i+k-1}+\cdots+a_kU_i,\ i\geq 0,$$

with $a_k = \pm 1$, then $\lim_{m \to +\infty} N_U(m) = +\infty$.

Proposition

Let $U = (U_i)_{i \ge 0}$ be a numeration system satisfying condition $\lim_{i \to +\infty} U_{i+1} - U_i = +\infty$ and $X \subseteq \mathbb{N}$ be an ultimately periodic U-recognizable set of period |v|. If 1 occurs infinitely many times in $(U_i \mod |v|)_{i \ge 0}$ then any deterministic finite automaton accepting $\operatorname{rep}_U(X)$ has at least |v| states.

うして ふゆう ふほう ふほう うらう

Definition

Let $L \subseteq \Sigma^*$ be a language over a finite alphabet Σ and x be a finite word over Σ . We set $x^{-1}.L = \{z \in \Sigma^* \mid xz \in L\}$. The Myhill-Nerode congruence \sim_L is defined as follows. Let $x, y \in \Sigma^*$. We write $x \sim_L y$ if $x^{-1}.L = y^{-1}.L$.

Proposition

A language L over a finite alphabet Σ is regular if and only if \sim_L has a finite index, being the number of states of the minimal automaton of L.

うして ふゆう ふほう ふほう うらう

Let $L \subseteq \Sigma^*$ be a language over a finite alphabet Σ and x be a finite word over Σ . We set $x^{-1}.L = \{z \in \Sigma^* \mid xz \in L\}$. The Myhill-Nerode congruence \sim_L is defined as follows. Let $x, y \in \Sigma^*$. We write $x \sim_L y$ if $x^{-1}.L = y^{-1}.L$.

Proposition

A language L over a finite alphabet Σ is regular if and only if \sim_L has a finite index, being the number of states of the minimal automaton of L.

Example (Fibonacci System, continued)

For all $m \ge 2$, the sequences $(F_i \mod m)_{i\ge 0}$ is purely periodic. So $F_0 = 1$ appears infinitely often in $(F_i \mod m)_{i\ge 0}$. Let $X \subseteq \mathbb{N}$ be an ultimately periodic *F*-recognizable set of period |v| and preperiod |u|.

Example (Fibonacci System, continued) There exist $n_1, \ldots, n_{|v|}$ such that for all $t = 0, \ldots, |v| - 1$,

$$10^{n_{|v|}} 10^{n_{|v|-1}} \cdots 10^{n_1} 0^{|\operatorname{rep}_U(|v|-1)|-|\operatorname{rep}_U(t)|} \operatorname{rep}_U(t)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

is a greedy *F*-representation.

Example (Fibonacci System, continued) There exist $n_1, \ldots, n_{|v|}$ such that for all $t = 0, \ldots, |v| - 1$,

$$10^{n_{|v|}} 10^{n_{|v|-1}} \cdots 10^{n_1} 0^{|\operatorname{rep}_U(|v|-1)|-|\operatorname{rep}_U(t)|} \operatorname{rep}_U(t)$$

is a greedy F-representation. Moreover $n_1,\ldots,n_{|v|}$ can be chosen such that, for all $j=1,\ldots,|v|$,

$$\mathsf{val}_U(10^{n_j}\cdots 10^{n_1+|\operatorname{rep}_U(|\nu|-1)|}) \equiv j \mod |\nu|$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

and $\operatorname{val}_{U}(10^{n_1+|\operatorname{rep}_{U}(|v|-1)|}) > |u|.$

Example (Fibonacci System, continued) There exist $n_1, \ldots, n_{|v|}$ such that for all $t = 0, \ldots, |v| - 1$,

$$10^{n_{|v|}} 10^{n_{|v|-1}} \cdots 10^{n_1} 0^{|\operatorname{rep}_U(|v|-1)|-|\operatorname{rep}_U(t)|} \operatorname{rep}_U(t)$$

is a greedy F-representation. Moreover $n_1,\ldots,n_{|v|}$ can be chosen such that, for all $j=1,\ldots,|v|$,

$$\mathsf{val}_U(10^{n_j}\cdots 10^{n_1+|\operatorname{rep}_U(|\nu|-1)|}) \equiv j \mod |\nu|$$

and val $_{U}(10^{n_{1}+|\operatorname{rep}_{U}(|v|-1)|}) > |u|$. For $i, j \in \{1, \dots, |v|\}$, $i \neq j$, the words

$$10^{n_i} \cdots 10^{n_1}$$
 and $10^{n_j} \cdots 10^{n_1}$

are nonequivalent for $\sim_{\operatorname{rep}_U(X)}$. This can be shown by concatenating some word of the kind $0^{|\operatorname{rep}_U(|\nu|-1)|-|\operatorname{rep}_U(t)|} \operatorname{rep}_U(t)$ with $t < |\nu|$.

An upper Bound for the Preperiod

Notation

For a sequence $U = (U_i)_{i\geq 0}$ of integers, if $(U_i \mod m)_{i\geq 0}$, $m \geq 2$, is ultimately periodic, we denote its (minimal) preperiod by $\iota_U(m)$ and its (minimal) period by $\pi_U(m)$.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

An upper Bound for the Preperiod

Notation

For a sequence $U = (U_i)_{i \ge 0}$ of integers, if $(U_i \mod m)_{i \ge 0}$, $m \ge 2$, is ultimately periodic, we denote its (minimal) preperiod by $\iota_U(m)$ and its (minimal) period by $\pi_U(m)$.

うして ふゆう ふほう ふほう うらう

Example (Fibonacci System, continued)

 $(F_i \mod 4) = (1, 2, 3, 1, 0, 1, 1, 2, 3, ...) \text{ and } \pi_F(4) = 6.$ $(F_i \mod 11) = (1, 2, 3, 5, 8, 2, 10, 1, 0, 1, 1, 2, 3, ...) \text{ and } \pi_F(11) = 10.$ We have $\iota_F(m) = 0$, for all $m \ge 2$.

Notation

For a sequence $U = (U_i)_{i\geq 0}$ of integers, if $(U_i \mod m)_{i\geq 0}$, $m \geq 2$, is ultimately periodic, we denote its (minimal) preperiod by $\iota_U(m)$ and its (minimal) period by $\pi_U(m)$.

Example (Fibonacci System, continued)

 $(F_i \mod 4) = (1, 2, 3, 1, 0, 1, 1, 2, 3, ...) \text{ and } \pi_F(4) = 6.$ $(F_i \mod 11) = (1, 2, 3, 5, 8, 2, 10, 1, 0, 1, 1, 2, 3, ...) \text{ and } \pi_F(11) = 10.$ We have $\iota_F(m) = 0$, for all $m \ge 2$.

Remark

If $U = (U_i)_{i \ge 0}$ is a linear numeration system of order k, then for all $m \ge 2$, we have $N_U(m) \ge \sqrt[k]{\pi_U(m)}$.

Proposition

Let $U = (U_i)_{i \ge 0}$ be a linear numeration system. Let $X \subseteq \mathbb{N}$ be an ultimately periodic U-recognizable set of period |v| and preperiod |u| such that $|\operatorname{rep}_U(|u|-1)| - \iota_U(|v|) > 0$. Then any deterministic finite automaton accepting $\operatorname{rep}_U(X)$ has at least $|\operatorname{rep}_U(|u|-1)| - \iota_U(|v|)$ states.

うして ふゆう ふほう ふほう うらう

Theorem (E. C., M. Rigo)

Let $U = (U_i)_{i \ge 0}$ be a linear numeration system such that \mathbb{N} is *U*-recognizable and satisfying a recurrence relation of order k of the kind

$$U_{i+k}=a_1U_{i+k-1}+\cdots+a_kU_i,\ i\geq 0,$$

(ロ) (型) (E) (E) (E) (O)

with $a_k = \pm 1$ and such that $\lim_{i \to +\infty} U_{i+1} - U_i = +\infty$. It is decidable whether or not a U-recognizable set is ultimately periodic.

Theorem (E. C., M. Rigo)

Let $U = (U_i)_{i \ge 0}$ be a linear numeration system such that \mathbb{N} is *U*-recognizable and satisfying a recurrence relation of order k of the kind

$$U_{i+k}=a_1U_{i+k-1}+\cdots+a_kU_i,\ i\geq 0,$$

with $a_k = \pm 1$ and such that $\lim_{i \to +\infty} U_{i+1} - U_i = +\infty$. It is decidable whether or not a U-recognizable set is ultimately periodic.

Remark

Whenever $gcd(a_1, \ldots, a_k) = g \ge 2$, for all $n \ge 1$ and for all *i* large enough, we have $U_i \equiv 0 \mod g^n$ and $N_U(m)$ does not tend to infinity.

Theorem (E. C., M. Rigo)

Let $U = (U_i)_{i \ge 0}$ be a linear numeration system such that \mathbb{N} is *U*-recognizable and satisfying a recurrence relation of order k of the kind

$$U_{i+k}=a_1U_{i+k-1}+\cdots+a_kU_i,\ i\geq 0,$$

with $a_k = \pm 1$ and such that $\lim_{i \to +\infty} U_{i+1} - U_i = +\infty$. It is decidable whether or not a U-recognizable set is ultimately periodic.

Remark

Whenever $gcd(a_1, \ldots, a_k) = g \ge 2$, for all $n \ge 1$ and for all *i* large enough, we have $U_i \equiv 0 \mod g^n$ and $N_U(m)$ does not tend to infinity.

Question

What happen whenever $gcd(a_1, \ldots, a_k) = 1$ and $a_k \neq \pm 1$?

An abstract numeration system is a triple $S = (L, \Sigma, <)$ where L is a regular language over a totally ordered alphabet $(\Sigma, <)$. Enumerating the words of L with respect to the genealogical ordering induced by < gives a one-to-one correspondence

$$\operatorname{rep}_{\mathcal{S}} : \mathbb{N} \to \mathcal{L} \qquad \operatorname{val}_{\mathcal{S}} = \operatorname{rep}_{\mathcal{S}}^{-1} : \mathcal{L} \to \mathbb{N}.$$

Example

 $L = a^*, \ \Sigma = \{a\}$ $\underline{n \mid 0 \ 1 \ 2 \ 3 \ 4 \ \cdots}$ $\underline{rep(n) \mid \varepsilon \ a \ aaa \ aaa \ aaaa \ aaaa \ \cdots}$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 二目 - 釣�?

Example

$$L = \{a, b\}^*, \ \Sigma = \{a, b\}, \ a < b$$

$$\frac{n \mid 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad \cdots}{\operatorname{rep}(n) \mid \varepsilon \quad a \quad b \quad aa \quad ab \quad ba \quad bb \quad aaa \quad \cdots}$$
Example

$$L = a^*b^*, \ \Sigma = \{a, b\}, \ a < b$$

$$\frac{n \mid 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad \cdots}{\operatorname{rep}(n) \mid \varepsilon \quad a \quad b \quad aa \quad ab \quad bb \quad aaa \quad \cdots}$$

(ロ)、(型)、(E)、(E)、 E のQで

Remark

This generalizes non-standard numeration systems $U = (U_i)_{i \ge 0}$ for which \mathbb{N} is *U*-recognizable, like integer base *p* systems or Fibonacci system.

$$L = \{\varepsilon\} \cup \{1, \dots, p-1\} \{0, \dots, p-1\}^*$$
 or $L = \{\varepsilon\} \cup 1 \{0, 01\}^*$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Notation

If $S = (L, \Sigma, <)$ is an abstract numeration system and if $\mathcal{M}_L = (Q_L, q_{0,L}, \Sigma, \delta_L, F_L)$ is the minimal automaton of L, we denote by $\mathbf{u}_j(q)$ (resp. $\mathbf{v}_j(q)$) the number of words of length j (resp. $\leq j$) accepted from $q \in Q_L$ in \mathcal{M}_L .

うして ふゆう ふほう ふほう うらう

Notation

If $S = (L, \Sigma, <)$ is an abstract numeration system and if $\mathcal{M}_L = (Q_L, q_{0,L}, \Sigma, \delta_L, F_L)$ is the minimal automaton of L, we denote by $\mathbf{u}_j(q)$ (resp. $\mathbf{v}_j(q)$) the number of words of length j (resp. $\leq j$) accepted from $q \in Q_L$ in \mathcal{M}_L .

Remark

The sequences $(\mathbf{u}_j(q))_{j\geq 0}$ (resp. $(\mathbf{v}_j(q))_{j\geq 0}$) satisfy the same homogenous linear recurrence relation for all $q \in Q_L$.

うして ふゆう ふほう ふほう うらつ

Notation

If $S = (L, \Sigma, <)$ is an abstract numeration system and if $\mathcal{M}_L = (Q_L, q_{0,L}, \Sigma, \delta_L, F_L)$ is the minimal automaton of L, we denote by $\mathbf{u}_j(q)$ (resp. $\mathbf{v}_j(q)$) the number of words of length j (resp. $\leq j$) accepted from $q \in Q_L$ in \mathcal{M}_L .

Remark

The sequences $(\mathbf{u}_j(q))_{j\geq 0}$ (resp. $(\mathbf{v}_j(q))_{j\geq 0}$) satisfy the same homogenous linear recurrence relation for all $q \in Q_L$.

Lemma

Let $w = \sigma_1 \cdots \sigma_n \in L$. We have

$$\mathsf{val}_{\mathcal{S}}(w) = \sum_{q \in Q_L} \sum_{i=1}^{|w|} \beta_{q,i}(w) \, \mathbf{u}_{|w|-i}(q) \tag{1}$$

where $\beta_{q,i}(w) := \#\{\sigma < \sigma_i \mid \delta_L(q_{0,L}, \sigma_1 \cdots \sigma_{i-1}\sigma) = q\} + \mathbf{1}_{q,q_{0,L}},$ for $i = 1, \dots, |w|$.

Definition

A set $X \subseteq \mathbb{N}$ of integers is *S*-recognizable if the language rep_S(X) over Σ is regular (i.e., accepted by a finite automaton).

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Definition

A set $X \subseteq \mathbb{N}$ of integers is *S*-recognizable if the language rep_S(X) over Σ is regular (i.e., accepted by a finite automaton).

Proposition

Let $S = (L, \Sigma, <)$ be an abstract numeration system built over an infinite regular language L. Any ultimately periodic set X is S-recognizable and a DFA accepting rep_S(X) can be effectively obtained.

うして ふゆう ふほう ふほう うらつ

Definition

A set $X \subseteq \mathbb{N}$ of integers is *S*-recognizable if the language rep_S(X) over Σ is regular (i.e., accepted by a finite automaton).

Proposition

Let $S = (L, \Sigma, <)$ be an abstract numeration system built over an infinite regular language L. Any ultimately periodic set X is S-recognizable and a DFA accepting rep_S(X) can be effectively obtained.

Problem

Given an abstract numeration system S and a S-recognizable set $X \subseteq \mathbb{N}$. Is it decidable whether or not X is ultimately periodic ?

Theorem

Let $S = (L, \Sigma, <)$ be an abstract numeration system and let $\mathcal{M}_L = (Q_L, q_{0,L}, \Sigma, \delta_L, F_L)$ the trim minimal automaton of L. Assume that

$$egin{aligned} &orall q \in Q_L \ \lim_{j o \infty} \mathbf{u}_j(q) = +\infty \ & orall j \geq 0 \ \mathbf{u}_j(q_{0,L}) > 0. \end{aligned}$$

Assume moreover that $\mathbf{v} = (\mathbf{v}_i(q_{0,L}))_{i\geq 0}$ satisfies a linear recurrence relation of the form

$$U_{i+k} = a_1 U_{i+k-1} + \cdots + a_k U_i, \ i \ge 0$$

うして ふゆう ふほう ふほう うらつ

with $k \ge 1$, $a_1, \ldots, a_k \in \mathbb{Z}$ and $a_k = \pm 1$. It is decidable whether or not a S-recognizable set is ultimately periodic.