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Suppose we are given an infinite strictly increasing sequence of nonnegative
real numbers {xn}n∈N such that x0 = 0, with xn+1 − xn ≥ r > 0 and xn+1 −
xn ≤ R for any n ∈ N (“Delaunay sequence”). To this sequence of numbers
correspond the sequence of “factorials” xn! = x1x2 . . . xn with x0! = 1, the
“exponential”E(t) =

∑+∞
n=0

tn

xn! , the sequence of “moment” integrals, xn!µn =∫ +∞
0

tn

E(t) dt , and the “renormalized” sequence x̃n := µn

µn−1
xn. In the present

study we consider examples of such sequences like non-negative β-integers,
with β a Parry number, for which it is proved, analytically or numerically, that
µn → 1.

Such sequences of numbers allow to implementa a non-commutative reading
of the complex plane based on a probabilistic Bayesian content, like that one
associated with the standard integers and based on the duality between discrete
Poisson distribution and continuous gamma distribution.

aNon-commutative reading of the complex plane through Delaunay sequences S.T. Ali, L. Balková,
E.M.F. Curado, J. P. G, M.A. Rego-Monteiro, Ligia M.C.S. Rodrigues and K. Sekimoto
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Delaunay sequences

Consider a strictly increasing sequence of nonnegative real numbers

X = {xn}n∈N , x0 = 0 ,

with the following two constraints :
(i) X is uniformly discrete on the positive real line R+ : ∃ r > 0 such that
xn+1 − xn ≥ r for all n ∈ N , which means that there exists a minimal non
zero distance between two successive elements of the sequence,

(ii) X is relatively dense on R+ : ∃R > 0 such that for all x ∈ R+ ∃n ∈ N
such that |x − xn| < R, which means that there exists a maximal distance,
say L between two successive elements of the sequence.

These conditions imply that limn→∞ xn = ∞. We will denote by X such a
(non-negative) Delaunay sequence in R+.
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Comments

• A Delaunay sequence X should appear as not very different from the set of
natural numbers.

• In this regard, sequences like xn = nα , α 6= 1, or xn = n log n are not
Delaunay

• Familiar deformations of integers, like q-deformations or (p, q)-
deformations,

[n](p,q) =
p−n − qn

p−1 − q
, [n]q = [n](1,q) ,

are not Delaunay.

• In this sense, these expressions could be viewed as singular deformations of
the set N.
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Factorials, exponentials, moments

To the sequence X there correspond
• the sequence of “factorials” xn! = x1x2 . . . xn with x0!

def
= 1,

• the “exponential”

N (t) =

+∞∑
n=0

tn

xn!
,

• and the sequence of “moment” integrals

xn!µn =

∫ +∞

0

tn

N (t)
dt ,

• The appearance of the “corrective” factors µn’s is needed since there is
no reason that the Stieltjes moment problem be solved for a generic pair
(dt/N (t), xn!) as it would be for (e−t dt, n!).



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

α-Delaunay perturbations of set N

Let N 3 n 7→ α(n) be a bounded function with values in the interval (−1, 1)
and such that its successive jumps α(n + 1) − α(n) have lower bound r − 1
with r ∈ (0, 1). Then the Delaunay sequence

xn = n + α(n) , n ∈ N ,

is defined as an α-Delaunay perturbation of the natural numbers.
Note that this r is a Delaunay lower bound for the sequence {xn}n∈N
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Examples

• For instance, α(n) could be a constant shift, α(n) = ε. In order to fulfill the
Delaunay condition (i), we should have−1 < ε < 1 and 0 < r < 1.

• It is a particular case of the less trivial example

α(n) =
an + b

cn + d
, ad− bc 6= 0, 0 < r < 1 .

• The perturbation function could also be periodic, like

α(n) = ε sinωn , −1 < ε < 1 , 0 < r ≤ 1− 2|ε sinω| .

• The function α(n) could be a random perturbation.
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Beta-integers

• Quite interesting examples are found within the context of numeration sys-
tems like sets Z+

β of non-negative beta-integers bn, i.e. all these positive real
numbers bnwhich are polynomial in powers of a irrational real number β > 1
when they are written in “basis” β with the usual greedy algorithm.

• When β is endowed with specific properties (e.g. Pisot algebraic integers),
these beta-integers then form a quasiperiodic sequence with a finite number
of possible adjacent differences bn+1 − bn.

• The simplest example is afforded by the set Z+
τ of non-negative tau-integers,

where β is equal to the golden mean τ = (1+
√

5)/2. These tau-integers form
a quasiperiodic sequence with two possible adjacent differences bn+1−bn = 1
or 1/τ .

• There exists a scaling factor 0 < cτ < 1 and a bounded function ατ(n)

such that the rescaled sequence of the xn
def
= bn/cτ = n + ατ(n) is an α-

perturbation of N.
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Tau-integers

• Their exact expression is given by

Z+
τ =

{
bn = cτ n−

1

τ 4
+

1

τ 2

{
n + 1

τ 2

}
, n ∈ N

}
, cτ =

1 + τ 2

τ 3
≈ 0.8541 ,

where {x} designates the fractional part of a nonnegative real number x.

• Dividing by cτ gives the “normalized” Delaunay sequence xn = bn/cτ =
n + ατ(n) , with

ατ(n) =
τ

1 + τ 2

{
n + 1

τ 2

}
− 1

τ (1 + τ 2)
.

Due to {x} ∈ [0, 1), we observe that the bounds of the fluctuation :

− 1

τ (1 + τ 2)
≈ −0.1708 < ατ(n) <

1

(1 + τ 2)
≈ 0.2764 .
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Beta-integers : main definitions
• A β-representation on an alphabet of digits D of a number x of [0, 1] is an infinite sequence

(dj)j≥1 of DN such that
∑

j≥1 djβ
−j = x.

• For x ∈ [0, 1] denote x1 = bβxc and let r1 = {βx}. Then iterate for j ≥ 2, xj = bβrj−1c and
rj = {βrj−1}.
• Greedy algorithm : x =

∑
j≥1 xjβ

−j , where the digits xj are elements of the canonical alphabet
Aβ = {0, . . . , bβc} if β /∈ N, Aβ = {0, . . . , β − 1} otherwise. The sequence (xj)j≥1 of AN

β is the
β-expansion of x

• The β-expansion obtained by the greedy algorithm is the greatest one in the lexicographic order.

• Let dβ(1) = (tj)j≥1 be the β-expansion of 1. If dβ(1) is finite, dβ(1) = t1 · · · tN , set d∗β(1) =

(t1 · · · tN−1(tN − 1))ω, otherwise set d∗β(1) = dβ(1).

• An infinite word s = (sj)j≥1 is the β-expansion of a number x of [0, 1[ if and only if for every
p ≥ 1, spsp+1 · · · is smaller in the lexicographic order than d∗β(1).

• A number β such that dβ(1) is eventually periodic is called a Parry number.
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Results (Balková’s talk)

The similarity between sets N and Z+
β = {bn | n ∈ N} for β being a Parry

number is illustrated by the two properties a :

• the limit cβ = limn→∞
bn
n

exists, i.e. Z+
β admits an average structure

• If p(x) is the Parry polynomial of a simple Parry number β. Then

cβ := lim
n→∞

bn
n

=
β − 1

βm − 1
p′(β).

• If p(x) is the Parry polynomial of the non-simple Parry number β. Then

cβ := lim
n→∞

bn
n

=
β − 1

βm(βp − 1)
p′(β).

• For β being moreover a Pisot-Vijayaraghavan number with mutually distinct
roots of its Parry polynomial, it is proven that (bn − cβ n)n∈N is a bounded
sequence, i.e. admits an average structure with bounded modulation.

aL. Balková, JPG, E. Pelantová, Lett. Math. Phys., to appear
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Averaged beta-integers

• Suppose now the limit cβ = limn→∞
bn
n

exists, i.e. Z+
β admits an average

structure. Then define the associated Delaunay sequence Xβ

xn
def
=
bn
cβ
.

• Further, suppose that β is such that the sequence Xβ is a α-Delaunay pertur-
bation of the natural numbers, i.e.,

xn = n + α(n) , n ∈ N ,

with α(n) bounded function with values in the interval (−1, 1) and such that
its successive jumps α(n+1)−α(n) have lower bound r−1 with r ∈ (0, 1)
(these conditions insure preservation of the order by the one-to-one map n 7→
xn).

• Question : for which class of numbers β are those conditions fulfilled ?
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A Poisson-like discrete distribution issued from Xβ
• Consider the discrete probability distribution with parameter t ≥ 0 :

n 7→ pβ(n; t) =
1

N (t)

tn

xn!
,

with xn! = x1x2 · · · xn, x0! = 1, andN (t) =
∑

n≥0
tn

xn!.

• The average of the random variable n 7→ xn is 〈xn〉 = t.

• Contrariwise to the standard case X = N, the continuous (gammalike) dis-
tribution t 7→ 1

N (t)
tn

xn! with parameter n is not a probability distribution with
respect to the Lebesgue measure dt :∫ +∞

0

dt

N (t)

tn

xn!
def
= µn 6= 1 .

Finding the right measure amounts to solve a usually intractable moment pro-
blem.
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The moment problem has no solution or has a solution with unsolved
measure.

• Suppose that the sequence

µn =

∫ +∞

0

dt

N (t)

tn

xn!

has a finite limit at n→∞,

µn → µ∞ <∞ ⇔ lim
n→∞

µn
µn−1

= 1 .

• It is then natural to “renormalize” the sequence Xβ = (xn) as follows.

x̃n
def
=

µn
µn−1

xn , n ∈ N , ⇒ x̃n! = µn (xn!) , n ∈ N .

• Due to limn→∞
µn

µn−1
= 1 this renormalized sequence, say X̃β, is closer and

closer to the original one, and the strictly increasing order is respected beyond
a certain rank n0.

• Question : for which class of numbers β has the sequence of the µn’s a finite
limit at n→∞ ?
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Gammalike probability distribution for the renormalized sequence

• Suppose that the sequenceµn =
∫ +∞

0
dt
N (t)

tn

xn! has a finite limitµ∞ at n→∞.
Introduce the renormalized sequence x̃n = µn

µn−1
xn and the corresponding

“exponential”

Ñ (t)
def
=

∞∑
n=0

tn

x̃n!
.

• Then the map N ∈ n 7→ tn

Ñ (t)x̃n!
is a Poisson-like distribution with average

number of occurrences equal to t,

• and the map 0 ≤ t 7→ tn

Ñ (t)x̃n!
is a (Gamma-like) probability distribution

with x̃n+1 as a shape parameter and with respect to the modified measure

dw(t)
def
=
Ñ (t)

N (t)
dt .

This last measure should be viewed as a perturbation of the Lebesgue mea-
sure.
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The existence of µ∞ for α-Delaunay perturbations of N ?

• For an α-Delaunay perturbation xn = n + α(n) of N one can write

xn! = n!
1

ξ(n)
with

1

ξ(n)
def
=

n∏
k=1

(
1 +

α(k)

k

)
.

• Then the associated “exponential” reads as

N (t) =

∞∑
n=0

tn

n!
ξ(n) ,

• Its ratio to the ordinary exponential reads as the Poisson average of the ran-
dom variable n 7→ ξ(n)

N (t) e−t =

∞∑
n=0

tn

n!
e−tξ(n)

def
= (EPξ)(t) ,

• Thus, the ratio µn/ξ(n) can be rewritten as the gamma average of the random
variable t 7→ et/N (t) :

µn
ξ(n)

=
1

ξ(n)

∫ +∞

0

dt

N (t)

tn

xn!
=

∫ ∞

0

tn

n!
e−t

et

N (t)
dt

def
=

(
EG

1

(EPξ)(t)

)
(n) .
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A general result on asymptotic Poisson and Gamma distributions

• Let N 3 n 7→ ξ(n) ∈ [0, 1) a discrete function which is extendable to a
function R+ 3 x 7→ [0, 1) with ξ(0) = 1 and limx→∞ ξ(x) = 0. Its Poisson
mean value with parameter t is defined by

(EPξ)(t) :=

∞∑
n=0

tn

n!
e−tξ(n) ,

whereas the gamma mean value with parameter n of a random variable Ξ is
given by

(EGΞ)(n) :=

∫ ∞

0

tn

n!
e−tΞ(t) dt .

• Let us examine the asymptotic behavior of the following combination (µn,
precisely) of these two averages :

µn = ξ(n)

(
EG

1

(EPξ)

)
(n) =

∫ ∞

0

tn

n!
ξ(n)∑∞

m=0
tm

m!
ξ(m)

dt .
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A sufficient condition for renormalizing
a α-Delaunay perturbation of N

Let us define the logarithm of 1/ξ by ξ(x) = e−φ(x), and suppose that the
function R+ 3 x 7→ φ(x) has the following properties.

(i) φ(x) is twice derivable almost everywhere (a.e.) on R+,

(ii) |φ′(x)| � 1(a.e.) at large x,

(iii) there exists 0 ≤ δ < 1 such that x|φ′′(x)| ∼ δ(a.e.) at large x.

Then a

µn →
n→∞

1 .

aJPG and K. Sekimoto
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Application to α-Delaunay perturbations of N
• Let xn = n + α(n) , n ∈ N , a α-Delaunay perturbation of N such that the map N 3 n 7→ α(n)

extends to a function R+ 3 x 7→ α(x) that is a.e. derivable.
• Let us extend the discrete domain of the logarithm φ(n)

def
=
∑n

k=1 ln
(
1 + α(k)

k

)
of 1/ξ to a

continuous one by replacing the sum by the integral

φ(x) ≈
∫ x

1
ln

(
1 +

α(y)

y

)
dy .

• Hence,

φ′(x) ≈ ln

(
1 +

α(x)

x

)
≈

at large x
α(x)

x

and so φ′(x)→x→∞ 0 since x 7→ α(x) is bounded.
• For the second derivative, we have

φ′′(x) ≈ xα′(x)− α(x)

x2 + xα(x)
≈

at large x
α′(x)

x
.

• Suppose that |α′(x)| goes a.e. toward δ ∈ [0, 1) at large x. Then we have

µn =

∫ ∞
0

tn

xn!∑∞
m=0

tm

xm!

dt →
n→∞

1 = µ∞ .
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An example of such sequences : “Fibonacci chains”

R+
∗ 3 x 7→ α(x) = λ{µx} + ν ,

with |λ| < r−1
2 , r ∈ (0, 1), |α′(x)| = |λµ| < 1, and

−1 < ν < 1− λ if λ > 0 ,
−λ− 1 < ν < 1 if λ < 0 .
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Question (in order to insure the limit µn → 1)

To which class of numbers β > 1 are the following conditions fulfilled ?

(i) The limit cβ = limn→∞
bn
n

exists, i.e. Z+
β admits an average structure.

(ii) The associated sequence Xβ

Xβ 3 xn
def
=
bn
cβ
.

is a α-Delaunay perturbation of the natural numbers, i.e.,

xn = n + α(n) , n ∈ N ,

with α(n) bounded function with values in the interval (−1, 1) and such that
its successive jumps α(n+1)−α(n) have lower bound r−1 with r ∈ (0, 1)
(these conditions insure preservation of the order by the one-to-one map n 7→
xn).

(iii) The map N 3 n 7→ α(n) extends to a function R+ 3 x 7→ α(x) that is
a.e. derivable.

(iv) Finally |α′(x)| goes a.e. toward δ ∈ [0, 1) at large x.
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Complement

Recall : Poisson distribution as a limit of the binomial distribution

It is well known that the Poisson distribution N 3 k 7→ e−ttk/k! with para-
meter t is the limit at large n of the Bernouilli process of a sequence of n trials
with two possible issues, one (“win” say) with probability p = t/n, the other
one (“loss”) with probability q = 1 − p. The probability to get k wins after n
trials is given by the binomial distribution :

p
(n)
k =

(
n

k

)
pk (1− p)n−k ,

and its Poisson limit

p
(n)
k |p=t/n →

n→∞
e−t

tk

k!
is readily obtained.
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A statistical perturbation of the Bernoulli process
• Imagine a sequence of n trials for which the probability to obtain k wins is given by following

“perturbation” of the binomial distribution :

p
(n)
k =

xn!

xn−k!xk!
pk qn;k(p) ,

n∑
k=0

p
(n)
k (p) = 1 ,

where {xn, n ∈ N} is a Delaunay α-perturbation of natural numbers.

• Here, the sequence of the unknown functions qn;k(p) should be such that, at the limit n → ∞
with p = t/xn, we get our deformation of the Poisson law :

p
(n)
k =

xn!

xn−k!xk!

(
t

xn

)k
qn;k

(
t

xn

)
→

n→∞
1

N (t)

tk

xk!
.

• In order to have this limit, we first observe with p = t/xn that for an α-Delaunay perturbation

xn!

xn−k!xk!
pk qn;k(p) =

xn
xn

xn−1

xn
· · · xn−k+1

xn

tk

xk!
qn;k

(
t

xn

)
→

n→∞
tk

xk!
lim
n→∞

qn;k

(
t

xn

)
,

• So we should have
lim
n→∞

qn;k

(
t

xn

)
=

1

N (t)
.


