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Suppose we are given an infinite strictly increasing sequence of nonnegative
real numbers {x, } .y such that xq = 0, with x,, ;1 — z,, > r > 0and x,, ., —
x, < Rforany n € N (“Delaunay sequence”). To this sequence of numbers

correspond the sequence of “factorials” z,,! = x,25...x, with ! = 1, the

“exponential” E(t) = > L5, the sequence of “moment” integrals, z.,! 11, =
+00 t" 113 o 29 ~ . Hn,

fo 20 dt , and the “renormalized” sequence x, = s T In the present

study we consider examples of such sequences like non-negative (3-integers,
with 3 a Parry number, for which it is proved, analytically or numerically, that
y, — 1.

Such sequences of numbers allow to implement” a non-commutative reading
of the complex plane based on a probabilistic Bayesian content, like that one
associated with the standard integers and based on the duality between discrete
Poisson distribution and continuous gamma distribution.

“Non-commutative reading of the complex plane through Delaunay sequences S.T. Ali, L. Balkova,
E.M.E. Curado, J. P. G, M.A. Rego-Monteiro, Ligia M.C.S. Rodrigues and K. Sekimoto



Delaunay sequences

Consider a strictly increasing sequence of nonnegative real numbers

X = {xn}neNa Ly = O:

with the following two constraints :

(i) X is uniformly discrete on the positive real line R™ : 37 > 0 such that
Tpe1 — X, > 1 forall n € N, which means that there exists a minimal non
zero distance between two successive elements of the sequence,

(i1) X is relatively dense on RT : 3 R > O such thatforall z € R™ dn € N
such that |a;‘ — xn\ < R, which means that there exists a maximal distance,
say L between two successive elements of the sequence.

These conditions imply that lim,,_.., ,, = 00. We will denote by X such a
(non-negative) Delaunay sequence in R,



Comments
e A Delaunay sequence X should appear as not very different from the set of
natural numbers.

e In this regard, sequences like z, = n*, a # 1, or z, = n logn are not
Delaunay

e Familiar deformations of integers, like ¢-deformations or (p,q)-
deformations,

p"—=q"

g [y = [l »

1] (pq) —

are not Delaunay.

e In this sense, these expressions could be viewed as singular deformations of
the set N.



Factorials, exponentials, moments

To the sequence X there correspond
: : def
e the sequence of “factorials” x,,! = x5 . .. x, with x; =1,

e the “exponential”

e and the sequence of “moment” integrals
+00 tn
!y, = ——dt,
o N()
e The appearance of the “corrective” factors p,’s is needed since there is

no reason that the Stieltjes moment problem be solved for a generic pair
(dt /N (t), x,!) as it would be for (e~ dt,n!).



a-Delaunay perturbations of set N

Let N > n — a(n) be a bounded function with values in the interval (—1, 1)
and such that its successive jumps a(n + 1) — a(n) have lower bound r — 1
with 7 € (0, 1). Then the Delaunay sequence

r,=n+an), neN,

is defined as an cv-Delaunay perturbation of the natural numbers.
Note that this 7 is a Delaunay lower bound for the sequence {x,, } e



Examples

e For instance, a(n) could be a constant shift, «(n) = €. In order to fulfill the
Delaunay condition (i), we should have —1 < e < land 0 < r < 1.

e [t is a particular case of the less trivial example

_an+b
en+d’

a(n) ad—bc#0, 0<r<l.
e The perturbation function could also be periodic, like

a(n) =esinwn, —-1l<e<l, 0<r<1-—2esinw.

e The function c(n) could be a random perturbation.



Beta-integers

e Quite interesting examples are found within the context of numeration sys-
tems like sets ZE of non-negative beta-integers b, i.e. all these positive real
numbers b, which are polynomial in powers of a irrational real number 3 > 1
when they are written in “basis” (3 with the usual greedy algorithm.

e When (3 is endowed with specific properties (e.g. Pisot algebraic integers),
these beta-integers then form a quasiperiodic sequence with a finite number
of possible adjacent differences b, .1 — b,,.

e The simplest example is afforded by the set Z of non-negative tau-integers,

where (3 is equal to the golden mean 7 = (1++/5) /2. These tau-integers form
a quasiperiodic sequence with two possible adjacent differences b, 1 —b, = 1

or1/T.
e There exists a scaling factor 0 < ¢, < 1 and a bounded function o, (n)

def :
such that the rescaled sequence of the z,, = b,/c, = n + a,(n) is an a-
perturbation of N.



Tau-integers

e Their exact expression is given by

1 1 1 1+ 72
Z*-{bn—@n——%——{nJr },nEN}, C, = T ~ (0.8541,

T T4 2 T2 73

where {x} designates the fractional part of a nonnegative real number .

e Dividing by ¢, gives the “normalized” Delaunay sequence z, = b,/c, =
n+ a,(n), with

() T n—+1 1
a(n) = S —
1+ 72 T2 7(1+ 72)

Due to {x} € [0, 1), we observe that the bounds of the fluctuation :

1 1
&~ —0.1708 < a,(n) < ——— ~ 0.2764.
(1 +72) ) (1+72)




Beta-integers : main definitions

e A [(-representation on an alphabet of digits D of a number = of [0, 1] is an infinite sequence
(dj)j>1 of DN such that Y- d; 377 = x.

e For z € [0,1] denote x; = |Sz| and let 1 = {Bz}. Then iterate for j > 2, x; = [frj_1] and
rj =A{0rj-1}.

e Greedy algorithm : z = .-, z; 377, where the digits x; are elements of the canonical alphabet

Ag =H{0,...,|B]}if B ¢ N, Ag = {0,..., 3 — 1} otherwise. The sequence (x;);>1 of Ag is the
(-expansion of x

e The -expansion obtained by the greedy algorithm is the greatest one in the lexicographic order.

o Let ds(1) = (¢j);>1 be the S-expansion of 1. If dg(1) is finite, dg(1) = t1---ty, set dj(1) =
(t1---tn—1(tn — 1)), otherwise set (1) = dg(1).

e An infinite word s = (s;);>1 is the J-expansion of a number z of [0, 1] if and only if for every
p =1, spsp41 -+ 1s smaller in the lexicographic order than dj3(1).

e A number (3 such that dg(1) is eventually periodic is called a Parry number.



Results (Balkova’s talk)

The similarity between sets N and Z; = {b, | n € N} for 3 being a Parry
number is illustrated by the two properties “ :

e the limit cg = lim,, — exists, i.e. Zg admits an average structure
n

e If p(x) is the Parry polynomial of a simple Parry number 3. Then
by B—1

cg = lim — =

P (6)-

e If p(x) is the Parry polynomial of the non-simple Parry number 3. Then

by B—1
_n—>oo n B ﬁm(ﬁp_l

e For 3 being moreover a Pisot-Vijayaraghavan number with mutually distinct
roots of its Parry polynomial, it is proven that (b, — c3n),cy is a bounded
sequence, 1.e. admits an average structure with bounded modulation.

“L. Balkova, JPG, E. Pelantové, Lett. Math. Phys., to appear
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Averaged beta-integers

e Suppose now the limit ¢ 1imn_>oo exists, i.e. Z+ admits an average
PP 8 — 8

structure. Then define the associated Delaunay sequence X

def bn

n
Cs

e Further, suppose that 3 is such that the sequence X is a a-Delaunay pertur-
bation of the natural numbers, i.e.,

r,=n+an), neN,

with a(n) bounded function with values in the interval (—1, 1) and such that
its successive jumps a(n+ 1) — a(n) have lower bound r — 1 with r € (0, 1)
(these conditions insure preservation of the order by the one-to-one map n +—
L)

e Question : for which class of numbers (3 are those conditions fulfilled ?



A Poisson-like discrete distribution issued from X5

e Consider the discrete probability distribution with parameter ¢ > 0 :

1 "
n— ps(n;t) = W;’

with z,! = 2122+ - - @, 29! = Land N (8) = Y, 5.
e The average of the random variable n — x,, is (x,,) = t.
e Contrariwise to the standard case X = N, the continuous (gammalike) dis-

tribution ¢ ﬁi—n, with parameter 7 is not a probability distribution with

respect to the Lebesgue measure dt :
O dt T g
N ] = Hn # 1.

Finding the right measure amounts to solve a usually intractable moment pro-
blem.
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The moment problem has no solution or has a solution with unsolved
measure.

e Suppose that the sequence

T dt
Hn= ), N 2,
0
has a finite limit at n — 00,
M
Hn — fheo < 00 & lim — L

e It is then natural to “renormalize” the sequence X3 = () as follows.

. def _
F, = Hn r,, neN, = z,!=u,(z,)), neN.

fn—1

Hn

e Due to lim,,_, = 1 this renormalized sequence, say Xg, is closer and

closer to the 0r1g1na1 one, and the strictly increasing order is respected beyond
a certain rank 7.

e Question : for which class of numbers (3 has the sequence of the f,,’s a finite
limit at n — o0 ?



Gammalike probability distribution for the renormalized sequence

e Suppose that the sequence 1, = oo Nd(tt) i - has a finite limit p, atn — oo.
Introduce the renormalized sequence Ty, = H“: Z, and the corresponding
“exponential”

71
n=0
e Then the map N € n — ———— is a Poisson-like distribution with average
N(t)z,!
number of occurrences equal to ,
e and the map 0 < ¢ — W is a (Gamma-like) probability distribution
t)x
with Z,, 1 as a shape parameter and with respect to the modified measure
o N (t)
dw(t) & dt .
N(t)

This last measure should be viewed as a perturbation of the Lebesgue mea-
sure.



The existence of 1, for a-Delaunay perturbations of N ?

e For an a-Delaunay perturbation x,, = n + a(n) of N one can write

ol i LTy (1 )
=ty win =TI (1+ 7).

k=1
e Then the associated “exponential” reads as

-3 e

n=0

n

&(n

[

S

e [ts ratio to the ordinary exponential reads as the Poisson average of the ran-
dom variable n — &(n)

o0

Nt e =30 5 eten)  (Bre)(r)

n=0

e Thus, the ratio 1, /&(n) can be rewritten as the gamma average of the random
variable t — e' /N (t) :

po 1 [T dt /O Ze t/\/(t) def (EGm) (n).

) En) Sy N 2!



A general result on asymptotic Poisson and Gamma distributions

eletN > n— £(n) € [0,1) a discrete function which is extendable to a
function R* 3 x — [0, 1) with £(0) = 1 and lim, ., £(x) = 0. Its Poisson
mean value with parameter ¢ is defined by

00 4n »
(Ere)(t) = Y = e 'é(n),
n=0
whereas the gamma mean value with parameter n of a random variable = is
given by
0 tn
(EcZ)(n) = / P et2t) dt.
0o n!
e [ et us examine the asymptotic behavior of the following combination (1,
precisely) of these two averages :

p
o = E(n) (EG(Ei Q) (n) = /0 ) Z;: tin)(m) dt

m!



A sufficient condition for renormalizing
a a-Delaunay perturbation of N

Let us define the logarithm of 1/£ by £(z) = e @, and suppose that the
function R™ > x — ¢(x) has the following properties.

(i) ¢(x) is twice derivable almost everywhere (a.e.) on R,
(ii) |¢'(z)] < 1(a.e.) at large x,
(iii) there exists 0 < ¢ < 1 such that z|¢"(x)| ~ d(a.e.) at large x.

Then
t, — 1.

n—oo

4JPG and K. Sekimoto



Application to a-Delaunay perturbations of N

e Letz, =n+a(n), n € N, aa-Delaunay perturbation of N such that the map N 3 n — «(n)
extends to a function R™ 5 z — «a(x) that is a.e. derivable.

e Let us extend the discrete domain of the logarithm ¢(n) & > kg In (1 + #) of 1/¢ to a
continuous one by replacing the sum by the integral

(b(x)%/lmln (1+#) dy.

¢'(z) ~ In (1 + @) - o)

atlargex %

e Hence,

and so ¢'(z) —4—00 0 since z — «(z) is bounded.
e For the second derivative, we have

¢//($) ~ Z’O/(Q?) _ Oé(.ﬁl?) ~ O/(.CE

2? +za(z) atlargex 7

~—

e Suppose that |o/(x)| goes a.e. toward ¢ € [0, 1) at large x. Then we have

tn

0 ¥ e

m=0 17m!



An example of such sequences : ‘“Fibonacci chains”

Rf 3z~ alz) = Muz} +v,
with [A] < 51, 7 € (0,1), |o/(z)| = |[Ap| < 1, and

—1l<v<l—=—Xift A>0,
—A—1l<v<<lif A<O0.



Question (in order to insure the limit 1, — 1)

To which class of numbers 3 > 1 are the following conditions fulfilled ?

b

(i) The limit ¢ = lim,, — exists, i.e. Zg admits an average structure.

(ii) The associated sequence X3

is a a-Delaunay perturbation of the natural numbers, i.e.,
r,=n+an), neN,

with a(n) bounded function with values in the interval (—1, 1) and such that
its successive jumps a(n+ 1) — a(n) have lower bound r — 1 with r € (0, 1)
(these conditions insure preservation of the order by the one-to-one map n +—
L)

(iii) The map N 5 n +— «(n) extends to a function R* 5 z — «a(z) that is
a.e. derivable.

(iv) Finally |/ ()| goes a.e. toward § € [0, 1) at large x.



Complement

Recall : Poisson distribution as a limit of the binomial distribution

It is well known that the Poisson distribution N 3 %k +— e 't" /k! with para-
meter ¢ 1s the limit at large n of the Bernouilli process of a sequence of n trials
with two possible issues, one (“win” say) with probability p = t/n, the other
one (“loss”) with probability ¢ = 1 — p. The probability to get k wins after n
trials is given by the binomial distribution :

T .
pyY = (k)p’“(l—p) i

and its Poisson limit .
(n) it

p k | p=t/n — € -

n—00 k!

is readily obtained.



A statistical perturbation of the Bernoulli process

e Imagine a sequence of n trials for which the probability to obtain £ wins is given by following
“perturbation” of the binomial distribution :

m) _ Tnl g ()
P —mp Gk (D) kz—()pk (p)=1,

where {z,, n € N} is a Delaunay «a-perturbation of natural numbers.

e Here, the sequence of the unknown functions ¢,.;(p) should be such that, at the limit n — oo
with p = t/x,, we get our deformation of the Poisson law :

(n) o t\" t 1
=— | — g2 | — —_ ==
Pk Tn—k!T! \Zn g Ty ) n—oo N(t) zy!

e In order to have this limit, we first observe with p = ¢/x,, that for an a-Delaunay perturbation

Tp! & | A t L t
—n‘p %L;k(p) === - o nik | — — — lim nik \ — ) »
k- Tl T

Tp—i! T T B T Ty, ) n—oo xpln—oo n

e So we should have

: 3 1
Bk (—) TN@)



