Probabilistic aspects of beta-integers viewed as perturbations of integers

Jean-Pierre Gazeau

Laboratoire Astroparticules et Cosmologie CNRS–Université Paris Diderot Paris 7 gazeau@apc.univ-paris7.fr

A work in progress with L. Balková (Paris-Prague), and K. Sekimoto (Paris)

Journées de numération

Prague, May 26-30, 2008

Suppose we are given an infinite strictly increasing sequence of nonnegative real numbers $\{x_n\}_{n\in\mathbb{N}}$ such that $x_0 = 0$, with $x_{n+1} - x_n \ge r > 0$ and $x_{n+1} - x_n \le R$ for any $n \in \mathbb{N}$ ("Delaunay sequence"). To this sequence of numbers correspond the sequence of "factorials" $x_n! = x_1 x_2 \dots x_n$ with $x_0! = 1$, the "exponential" $E(t) = \sum_{n=0}^{+\infty} \frac{t^n}{x_n!}$, the sequence of "moment" integrals, $x_n!\mu_n = \int_0^{+\infty} \frac{t^n}{E(t)} dt$, and the "renormalized" sequence $\tilde{x}_n := \frac{\mu_n}{\mu_{n-1}} x_n$. In the present study we consider examples of such sequences like non-negative β -integers, with β a Parry number, for which it is proved, analytically or numerically, that $\mu_n \to 1$.

Such sequences of numbers allow to implement^a a non-commutative reading of the complex plane based on a probabilistic Bayesian content, like that one associated with the standard integers and based on the duality between discrete Poisson distribution and continuous gamma distribution.

^aNon-commutative reading of the complex plane through Delaunay sequences S.T. Ali, L. Balková, E.M.F. Curado, J. P. G, M.A. Rego-Monteiro, Ligia M.C.S. Rodrigues and K. Sekimoto

Delaunay sequences

Consider a strictly increasing sequence of nonnegative real numbers

$$\mathcal{X} = \{x_n\}_{n \in \mathbb{N}}, \qquad x_0 = 0,$$

with the following two constraints :

- (i) \mathcal{X} is *uniformly discrete* on the positive real line \mathbb{R}^+ : $\exists r > 0$ such that $x_{n+1} x_n \ge r$ for all $n \in N$, which means that there exists a minimal non zero distance between two successive elements of the sequence,
- (ii) \mathcal{X} is *relatively dense* on \mathbb{R}^+ : $\exists R > 0$ such that for all $x \in \mathbb{R}^+ \exists n \in \mathbb{N}$ such that $|x x_n| < R$, which means that there exists a maximal distance, say L between two successive elements of the sequence.

These conditions imply that $\lim_{n\to\infty} x_n = \infty$. We will denote by \mathcal{X} such a (non-negative) *Delaunay* sequence in \mathbb{R}^+ .

Comments

- A Delaunay sequence \mathcal{X} should appear as not very different from the set of natural numbers.
- In this regard, sequences like $x_n = n^{\alpha}$, $\alpha \neq 1$, or $x_n = n \log n$ are not Delaunay
- \bullet Familiar deformations of integers, like $q\mbox{-}deformations$ or $(p,q)\mbox{-}deformations,$

$$[n]_{(p,q)} = \frac{p^{-n} - q^n}{p^{-1} - q}, \qquad [n]_q = [n]_{(1,q)},$$

are not Delaunay.

• In this sense, these expressions could be viewed as *singular* deformations of the set \mathbb{N} .

Factorials, exponentials, moments

To the sequence \mathcal{X} there correspond

- the sequence of "factorials" $x_n! = x_1 x_2 \dots x_n$ with $x_0! \stackrel{\text{def}}{=} 1$,
- the "exponential"

$$\mathcal{N}(t) = \sum_{n=0}^{+\infty} \frac{t^n}{x_n!} \,,$$

• and the sequence of "moment" integrals

$$x_n! \, \mu_n = \int_0^{+\infty} \frac{t^n}{\mathcal{N}(t)} \, dt \,,$$

• The appearance of the "corrective" factors μ_n 's is needed since there is no reason that the Stieltjes moment problem be solved for a generic pair $(dt/\mathcal{N}(t), x_n!)$ as it would be for $(e^{-t} dt, n!)$.

α -Delaunay perturbations of set $\mathbb N$

Let $\mathbb{N} \ni n \mapsto \alpha(n)$ be a bounded function with values in the interval (-1, 1)and such that its successive jumps $\alpha(n+1) - \alpha(n)$ have lower bound r-1with $r \in (0, 1)$. Then the Delaunay sequence

$$x_n = n + \alpha(n), \quad n \in \mathbb{N},$$

is defined as an α -Delaunay perturbation of the natural numbers. Note that this r is a Delaunay lower bound for the sequence $\{x_n\}_{n \in \mathbb{N}}$

Examples

- For instance, $\alpha(n)$ could be a constant shift, $\alpha(n) = \epsilon$. In order to fulfill the Delaunay condition (i), we should have $-1 < \epsilon < 1$ and 0 < r < 1.
- It is a particular case of the less trivial example

$$\alpha(n) = \frac{an+b}{cn+d}, \quad ad-bc \neq 0, \quad 0 < r < 1.$$

• The perturbation function could also be periodic, like

$$\alpha(n) = \epsilon \sin \omega n , \quad -1 < \epsilon < 1 , \quad 0 < r \le 1 - 2|\epsilon \sin \omega| .$$

• The function $\alpha(n)$ could be a random perturbation.

Beta-integers

- Quite interesting examples are found within the context of numeration systems like sets \mathbb{Z}_{β}^+ of non-negative beta-integers b_n , i.e. all these positive real numbers b_n which are polynomial in powers of a irrational real number $\beta > 1$ when they are written in "basis" β with the usual greedy algorithm.
- When β is endowed with specific properties (e.g. Pisot algebraic integers), these beta-integers then form a quasiperiodic sequence with a finite number of possible adjacent differences $b_{n+1} b_n$.
- The simplest example is afforded by the set \mathbb{Z}_{τ}^+ of non-negative tau-integers, where β is equal to the golden mean $\tau = (1+\sqrt{5})/2$. These tau-integers form a quasiperiodic sequence with two possible adjacent differences $b_{n+1}-b_n = 1$ or $1/\tau$.
- There exists a scaling factor $0 < c_{\tau} < 1$ and a bounded function $\alpha_{\tau}(n)$ such that the rescaled sequence of the $x_n \stackrel{\text{def}}{=} b_n/c_{\tau} = n + \alpha_{\tau}(n)$ is an α -perturbation of \mathbb{N} .

Tau-integers

• Their exact expression is given by

$$\mathbb{Z}_{\tau}^{+} = \left\{ b_n = c_{\tau} \, n - \frac{1}{\tau^4} + \frac{1}{\tau^2} \left\{ \frac{n+1}{\tau^2} \right\}, \ n \in \mathbb{N} \right\}, \quad c_{\tau} = \frac{1+\tau^2}{\tau^3} \approx 0.8541 \, ,$$

where $\{x\}$ designates the fractional part of a nonnegative real number x.

• Dividing by c_{τ} gives the "normalized" Delaunay sequence $x_n = b_n/c_{\tau} = n + \alpha_{\tau}(n)$, with

$$\alpha_{\tau}(n) = \frac{\tau}{1+\tau^2} \left\{ \frac{n+1}{\tau^2} \right\} - \frac{1}{\tau(1+\tau^2)}$$

Due to $\{x\} \in [0, 1)$, we observe that the bounds of the fluctuation :

$$-\frac{1}{\tau(1+\tau^2)} \approx -0.1708 < \alpha_{\tau}(n) < \frac{1}{(1+\tau^2)} \approx 0.2764$$

Beta-integers : main definitions

- A β -representation on an alphabet of digits D of a number x of [0,1] is an infinite sequence $(d_j)_{j\geq 1}$ of $D^{\mathbb{N}}$ such that $\sum_{j>1} d_j \beta^{-j} = x$.
- For $x \in [0,1]$ denote $x_1 = \lfloor \beta x \rfloor$ and let $r_1 = \{\beta x\}$. Then iterate for $j \ge 2$, $x_j = \lfloor \beta r_{j-1} \rfloor$ and $r_j = \{\beta r_{j-1}\}$.
- Greedy algorithm : $x = \sum_{j \ge 1} x_j \beta^{-j}$, where the digits x_j are elements of the *canonical* alphabet $A_{\beta} = \{0, \ldots, \lfloor\beta \rfloor\}$ if $\beta \notin \mathbb{N}$, $A_{\beta} = \{0, \ldots, \beta 1\}$ otherwise. The sequence $(x_j)_{j \ge 1}$ of $A_{\beta}^{\mathbb{N}}$ is the β -expansion of x
- The β -expansion obtained by the greedy algorithm is the greatest one in the lexicographic order.
- Let $d_{\beta}(1) = (t_j)_{j\geq 1}$ be the β -expansion of 1. If $d_{\beta}(1)$ is finite, $d_{\beta}(1) = t_1 \cdots t_N$, set $d_{\beta}^*(1) = (t_1 \cdots t_{N-1}(t_N-1))^{\omega}$, otherwise set $d_{\beta}^*(1) = d_{\beta}(1)$.
- An infinite word $s = (s_j)_{j\geq 1}$ is the β -expansion of a number x of [0, 1] if and only if for every $p \geq 1$, $s_p s_{p+1} \cdots$ is smaller in the lexicographic order than $d^*_{\beta}(1)$.
- A number β such that $d_{\beta}(1)$ is eventually periodic is called a *Parry number*.

Results (Balková's talk)

The similarity between sets \mathbb{N} and $\mathbb{Z}_{\beta}^{+} = \{b_n \mid n \in \mathbb{N}\}$ for β being a Parry number is illustrated by the two properties ^{*a*}:

- the limit $c_{\beta} = \lim_{n \to \infty} \frac{b_n}{n}$ exists, i.e. \mathbb{Z}_{β}^+ admits an average structure
- If p(x) is the Parry polynomial of a simple Parry number β . Then

$$c_{\beta} := \lim_{n \to \infty} \frac{b_n}{n} = \frac{\beta - 1}{\beta^m - 1} p'(\beta).$$

• If p(x) is the Parry polynomial of the non-simple Parry number β . Then

$$c_{\beta} := \lim_{n \to \infty} \frac{b_n}{n} = \frac{\beta - 1}{\beta^m (\beta^p - 1)} p'(\beta).$$

• For β being moreover a Pisot-Vijayaraghavan number with mutually distinct roots of its Parry polynomial, it is proven that $(b_n - c_\beta n)_{n \in \mathbb{N}}$ is a bounded sequence, i.e. admits an *average structure with bounded modulation*.

^aL. Balková, JPG, E. Pelantová, Lett. Math. Phys., to appear

Averaged beta-integers

• Suppose now the limit $c_{\beta} = \lim_{n \to \infty} \frac{b_n}{n}$ exists, i.e. \mathbb{Z}_{β}^+ admits an average structure. Then define the associated Delaunay sequence \mathcal{X}_{β}

$$x_n \stackrel{\text{def}}{=} \frac{b_n}{c_\beta}$$

• Further, suppose that β is such that the sequence \mathcal{X}_{β} is a α -Delaunay perturbation of the natural numbers, i.e.,

$$x_n = n + \alpha(n), \quad n \in \mathbb{N},$$

with $\alpha(n)$ bounded function with values in the interval (-1, 1) and such that its successive jumps $\alpha(n+1) - \alpha(n)$ have lower bound r-1 with $r \in (0, 1)$ (these conditions insure preservation of the order by the one-to-one map $n \mapsto x_n$).

• Question : for which class of numbers β are those conditions fulfilled ?

A Poisson-like discrete distribution issued from \mathcal{X}_{β}

• Consider the discrete probability distribution with parameter $t \ge 0$:

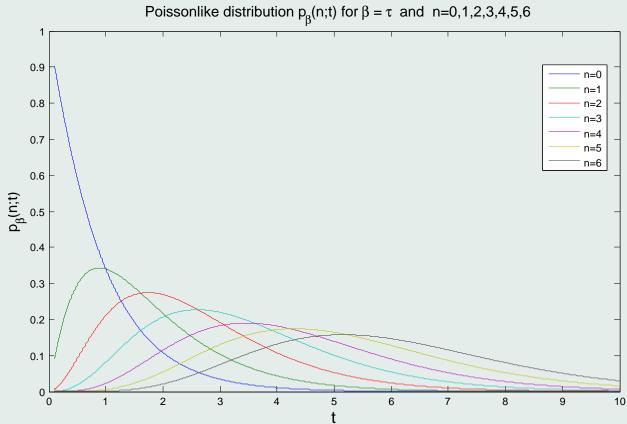
$$n \mapsto p_{\beta}(n;t) = \frac{1}{\mathcal{N}(t)} \frac{t^n}{x_n!},$$

with $x_n! = x_1 x_2 \cdots x_n$, $x_0! = 1$, and $\mathcal{N}(t) = \sum_{n \ge 0} \frac{t^n}{x_n!}$.

- The average of the random variable $n \mapsto x_n$ is $\langle x_n \rangle = t$.
- Contrariwise to the standard case $\mathcal{X} = \mathbb{N}$, the continuous (gammalike) distribution $t \mapsto \frac{1}{\mathcal{N}(t)} \frac{t^n}{x_n!}$ with parameter n is not a probability distribution with respect to the Lebesgue measure dt:

$$\int_0^{+\infty} \frac{dt}{\mathcal{N}(t)} \frac{t^n}{x_n!} \stackrel{\text{def}}{=} \mu_n \neq 1.$$

Finding the right measure amounts to solve a usually intractable moment problem.



The moment problem has no solution or has a solution with unsolved measure.

• Suppose that the sequence

$$\mu_n = \int_0^{+\infty} \frac{dt}{\mathcal{N}(t)} \, \frac{t^n}{x_n!}$$

has a finite limit at $n \to \infty$,

$$\mu_n \to \mu_\infty < \infty \iff \lim_{n \to \infty} \frac{\mu_n}{\mu_{n-1}} = 1.$$

• It is then natural to "renormalize" the sequence $\mathcal{X}_{\beta} = (x_n)$ as follows.

$$\tilde{x}_n \stackrel{\text{def}}{=} \frac{\mu_n}{\mu_{n-1}} x_n, \quad n \in \mathbb{N}, \quad \Rightarrow \tilde{x}_n! = \mu_n (x_n!), \quad n \in \mathbb{N}.$$

- Due to $\lim_{n\to\infty} \frac{\mu_n}{\mu_{n-1}} = 1$ this renormalized sequence, say $\widetilde{\mathcal{X}}_{\beta}$, is closer and closer to the original one, and the strictly increasing order is respected beyond a certain rank n_0 .
- Question : for which class of numbers β has the sequence of the μ_n 's a finite limit at $n \to \infty$?

Gammalike probability distribution for the renormalized sequence

• Suppose that the sequence $\mu_n = \int_0^{+\infty} \frac{dt}{\mathcal{N}(t)} \frac{t^n}{x_n!}$ has a finite limit μ_∞ at $n \to \infty$. Introduce the renormalized sequence $\tilde{x}_n = \frac{\mu_n}{\mu_{n-1}} x_n$ and the corresponding "exponential"

$$\widetilde{\mathcal{N}}(t) \stackrel{\text{def}}{=} \sum_{n=0}^{\infty} \frac{t^n}{\widetilde{x}_n!} \,.$$

- Then the map $\mathbb{N} \in n \mapsto \frac{t^n}{\widetilde{\mathcal{N}}(t)\widetilde{x}_n!}$ is a Poisson-like distribution with average number of occurrences equal to t,
- and the map $0 \le t \mapsto \frac{t^n}{\widetilde{\mathcal{N}}(t)\widetilde{x}_n!}$ is a (Gamma-like) probability distribution

with \tilde{x}_{n+1} as a shape parameter and with respect to the modified measure

$$dw(t) \stackrel{\text{def}}{=} rac{\widetilde{\mathcal{N}}(t)}{\mathcal{N}(t)} dt$$
 .

This last measure should be viewed as a perturbation of the Lebesgue measure.

The existence of μ_{∞} for α -Delaunay perturbations of \mathbb{N} ?

• For an α -Delaunay perturbation $x_n = n + \alpha(n)$ of \mathbb{N} one can write

$$x_n! = n! \frac{1}{\xi(n)}$$
 with $\frac{1}{\xi(n)} \stackrel{\text{def}}{=} \prod_{k=1}^n \left(1 + \frac{\alpha(k)}{k}\right)$

• Then the associated "exponential" reads as

$$\mathcal{N}(t) = \sum_{n=0}^{\infty} \frac{t^n}{n!} \xi(n) \,,$$

• Its ratio to the ordinary exponential reads as the Poisson average of the random variable $n \mapsto \xi(n)$

$$\mathcal{N}(t) e^{-t} = \sum_{n=0}^{\infty} \frac{t^n}{n!} e^{-t} \xi(n) \stackrel{\text{def}}{=} (\mathbf{E}_P \xi)(t) ,$$

• Thus, the ratio $\mu_n/\xi(n)$ can be rewritten as the gamma average of the random variable $t \mapsto e^t/\mathcal{N}(t)$:

$$\frac{\mu_n}{\xi(n)} = \frac{1}{\xi(n)} \int_0^{+\infty} \frac{dt}{\mathcal{N}(t)} \frac{t^n}{x_n!} = \int_0^\infty \frac{t^n}{n!} e^{-t} \frac{e^t}{\mathcal{N}(t)} dt \stackrel{\text{def}}{=} \left(\mathbb{E}_G \frac{1}{(\mathbb{E}_P \xi)(t)} \right) (n) \,.$$

● First ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

A general result on asymptotic Poisson and Gamma distributions

• Let $\mathbb{N} \ni n \mapsto \xi(n) \in [0, 1)$ a discrete function which is extendable to a function $\mathbb{R}^+ \ni x \mapsto [0, 1)$ with $\xi(0) = 1$ and $\lim_{x \to \infty} \xi(x) = 0$. Its Poisson mean value with parameter t is defined by

$$(\mathbf{E}_P \xi)(t) := \sum_{n=0}^{\infty} \frac{t^n}{n!} e^{-t} \xi(n) ,$$

whereas the gamma mean value with parameter n of a random variable Ξ is given by

$$(\mathcal{E}_G \Xi)(n) := \int_0^\infty \frac{t^n}{n!} e^{-t} \Xi(t) dt \,.$$

• Let us examine the asymptotic behavior of the following combination (μ_n , precisely) of these two averages :

$$\mu_n = \xi(n) \left(\mathbb{E}_G \frac{1}{(\mathbb{E}_P \xi)} \right)(n) = \int_0^\infty \frac{\frac{t^n}{n!} \xi(n)}{\sum_{m=0}^\infty \frac{t^m}{m!} \xi(m)} dt.$$

A sufficient condition for renormalizing a α -Delaunay perturbation of \mathbb{N}

Let us define the logarithm of $1/\xi$ by $\xi(x) = e^{-\phi(x)}$, and suppose that the function $\mathbb{R}^+ \ni x \mapsto \phi(x)$ has the following properties.

(i) $\phi(x)$ is twice derivable almost everywhere (a.e.) on \mathbb{R}^+ ,

(ii) $|\phi'(x)| \ll 1$ (a.e.) at large x,

(iii) there exists $0 \le \delta < 1$ such that $x|\phi''(x)| \sim \delta$ (a.e.) at large x.

Then^{*a*}

$$\mu_n \xrightarrow[n \to \infty]{} 1$$

^aJPG and K. Sekimoto

Application to α -Delaunay perturbations of \mathbb{N}

- Let $x_n = n + \alpha(n)$, $n \in \mathbb{N}$, a α -Delaunay perturbation of \mathbb{N} such that the map $\mathbb{N} \ni n \mapsto \alpha(n)$ extends to a function $\mathbb{R}^+ \ni x \mapsto \alpha(x)$ that is a.e. derivable.
- Let us extend the discrete domain of the logarithm $\phi(n) \stackrel{\text{def}}{=} \sum_{k=1}^{n} \ln\left(1 + \frac{\alpha(k)}{k}\right)$ of $1/\xi$ to a continuous one by replacing the sum by the integral

$$\phi(x) \approx \int_{1}^{x} \ln\left(1 + \frac{\alpha(y)}{y}\right) dy$$

• Hence,

$$\phi'(x) \approx \ln\left(1 + \frac{\alpha(x)}{x}\right) \approx \frac{\alpha(x)}{x}$$
 at large $x = \frac{\alpha(x)}{x}$

and so $\phi'(x) \to_{x \to \infty} 0$ since $x \mapsto \alpha(x)$ is bounded.

• For the second derivative, we have

$$\phi''(x) \approx \frac{x\alpha'(x) - \alpha(x)}{x^2 + x\alpha(x)} \approx \frac{\alpha'(x)}{\text{at large } x} \frac{\alpha'(x)}{x}$$

• Suppose that $|\alpha'(x)|$ goes a.e. toward $\delta \in [0, 1)$ at large x. Then we have

$$\mu_n = \int_0^\infty \frac{\frac{t^n}{x_n!}}{\sum_{m=0}^\infty \frac{t^m}{x_m!}} dt \xrightarrow[n \to \infty]{} 1 = \mu_\infty \,.$$

An example of such sequences : "Fibonacci chains"

$$\begin{split} \mathbb{R}^+_* \ni x \mapsto \alpha(x) &= \lambda \{\mu x\} + \nu \,, \\ \text{with } |\lambda| < \frac{r-1}{2} \,, \, r \in (0,1), \, |\alpha'(x)| = |\lambda \mu| < 1, \, \text{and} \\ &-1 < \nu < 1 - \lambda \, \text{ if } \, \lambda > 0 \,, \\ &-\lambda - 1 < \nu < 1 \, \text{ if } \, \lambda < 0 \,. \end{split}$$

Question (in order to insure the limit $\mu_n \rightarrow 1$)

To which class of numbers $\beta > 1$ are the following conditions fulfilled ?

(i) The limit $c_{\beta} = \lim_{n \to \infty} \frac{b_n}{n}$ exists, i.e. \mathbb{Z}_{β}^+ admits an average structure. (ii) The associated sequence \mathcal{X}_{β}

$$\mathcal{X}_{\beta} \ni x_n \stackrel{\text{def}}{=} \frac{b_n}{c_{\beta}}$$

is a α -Delaunay perturbation of the natural numbers, i.e.,

$$x_n = n + \alpha(n), \quad n \in \mathbb{N},$$

with $\alpha(n)$ bounded function with values in the interval (-1, 1) and such that its successive jumps $\alpha(n+1) - \alpha(n)$ have lower bound r-1 with $r \in (0, 1)$ (these conditions insure preservation of the order by the one-to-one map $n \mapsto x_n$).

(iii) The map $\mathbb{N} \ni n \mapsto \alpha(n)$ extends to a function $\mathbb{R}^+ \ni x \mapsto \alpha(x)$ that is a.e. derivable.

(iv) Finally $|\alpha'(x)|$ goes a.e. toward $\delta \in [0, 1)$ at large x.

Complement

Recall : Poisson distribution as a limit of the binomial distribution

It is well known that the Poisson distribution $\mathbb{N} \ni k \mapsto e^{-t}t^k/k!$ with parameter t is the limit at large n of the Bernouilli process of a sequence of n trials with two possible issues, one ("win" say) with probability p = t/n, the other one ("loss") with probability q = 1 - p. The probability to get k wins after n trials is given by the binomial distribution :

$$p_k^{(n)} = \binom{n}{k} p^k \left(1 - p\right)^{n-k},$$

and its Poisson limit

$$p_k^{(n)}|_{p=t/n} \xrightarrow[n \to \infty]{} e^{-t} \frac{t^k}{k!}$$

is readily obtained.

A statistical perturbation of the Bernoulli process

• Imagine a sequence of n trials for which the probability to obtain k wins is given by following "perturbation" of the binomial distribution :

$$\mathfrak{p}_k^{(n)} = \frac{x_n!}{x_{n-k}! \, x_k!} \, p^k \, q_{n;k}(p) \,, \quad \sum_{k=0}^n \mathfrak{p}_k^{(n)}(p) = 1 \,,$$

where $\{x_n, n \in \mathbb{N}\}$ is a Delaunay α -perturbation of natural numbers.

• Here, the sequence of the unknown functions $q_{n;k}(p)$ should be such that, at the limit $n \to \infty$ with $p = t/x_n$, we get our deformation of the Poisson law :

$$\mathbf{p}_k^{(n)} = \frac{x_n!}{x_{n-k}! x_k!} \left(\frac{t}{x_n}\right)^k q_{n;k} \left(\frac{t}{x_n}\right) \xrightarrow[n \to \infty]{} \frac{1}{\mathcal{N}(t)} \frac{t^k}{x_k!}$$

• In order to have this limit, we first observe with $p = t/x_n$ that for an α -Delaunay perturbation

$$\frac{x_n!}{x_{n-k}! x_k!} p^k q_{n;k}(p) = \frac{x_n}{x_n} \frac{x_{n-1}}{x_n} \cdots \frac{x_{n-k+1}}{x_n} \frac{t^k}{x_k!} q_{n;k}\left(\frac{t}{x_n}\right) \xrightarrow[n \to \infty]{} \frac{t^k}{x_k!} \lim_{n \to \infty} q_{n;k}\left(\frac{t}{x_n}\right) ,$$

• So we should have

$$\lim_{n \to \infty} q_{n;k} \left(\frac{t}{x_n}\right) = \frac{1}{\mathcal{N}(t)}$$