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Introduction

Let β > 1 and A = {a0, . . . , am} a set of real numbers. Expansions of
the form

x =
∞∑
i=1

bi

βi
,

with bi ∈ A for all i ≥ 1, are called β-expansions with deleted digits.

This gives numbers in the interval

[
a0

β − 1
,

am

β − 1

]
.
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Allowable digit sets

If, for a given β > 1, a set of real numbers A = {a0, . . . , am} satisfies

(i) a0 < . . . < am,

(ii) max1≤j≤m(aj − aj−1) ≤ am−a0
β−1 ,

it is called an allowable digit set. Then

every x ∈
[

a0

β − 1
,

am

β − 1

]
has a β-expansion with deleted digits.

(Pedicini, 2005)

the minimal amount of digits in A is dβe.
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The classical β-expansion

Take β > 1 and A = {0, 1, . . . , bβc}. This gives the classical
β-expansions.

We can use the greedy β-transformation to generate such
expansions by iteration.

The greedy β-transformation has an invariant measure that is
equivalent to the Lebesgue measure on the unit interval [0, 1).
(Rényi, 1957)
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The classical greedy β-transformation

The classical greedy β-transformation is given by

Tx =

 βx − i , if x ∈
[

i
β , i+1

β

)
, i ∈ {0, . . . , bβc − 1},

βx − bβc, if x ∈
[
bβc
β , bβcβ−1

]
.

0

1

3

Β - 1

3

Β - 1

Βx-0
Βx-1

Βx-2
Βx-3
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The classical greedy β-transformation

The transformation T has the following properties.

The support of the invariant measure, absolutely continuous wrt
the Lebesgue measure is the interval [0, 1).

The density function is given by

hc : [0, 1) → [0, 1) : x 7→ 1

F (β)

∞∑
n=0

1

βn
1[0,T n1)(x),

where F (β) =

∫ 1

0

∑
x<T n1

1

βn
dλ is a normalizing constant and λ is

the Lebesgue measure. (Gel’fond, 1959, and Parry, 1960)
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Greedy expansions

There is a recursive algorithm that generates so called greedy
β-expansions with deleted digits. (Pedicini, 2005)

If the first n − 1 digits, b1, . . . , bn−1, of the expansion of x are already
known, then the n-th digit is the largest element of A, such that

n−1∑
i=1

bi

βi
+

bn

βn
+

∞∑
i=n+1

a0

βi
≤ x .
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Preserving the Lexicographical Ordering

Theorem (Pedicini, 2005)

Let <lex denote the lexicographical ordering on the set of sequences. If

x =
∞∑
i=1

bi

βi
and y =

∞∑
i=1

di

βi
are the greedy expansions of x and y in

base β and digits in an allowable digit set A, then

x < y ⇔ (b1, b2, . . .) <lex (d1, d2, . . .).

Charlene Kalle, joint work with Karma Dajani



Dynamical aspects of β-expansions with deleted digits > The greedy transformation

Definition of the greedy β-transformation with deleted
digits

Suppose β > 1 and A = {a0, a1, . . . , am} is an allowable digit set with
a0 = 0. The following transformation generates greedy β-expansions
with digits in the set A.

Tx =



βx − aj , if x ∈
[
aj

β
,
aj+1

β

)
,

for j = 0, . . . ,m − 1,

βx − am, if x ∈
[
am

β
,

am

β − 1

]
.

We can define a similar transformation for digit sets not starting with
0, but that transformation is isomorphic to T .
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β = 1 +
√

2 and A = {0, β − 1, 2, 2β}

0 2 Β

Β - 1

2 Β

Β - 1

Β - 1

Β

2
Β

2 Β

Β
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Defining the digit sequence

The digit sequence {bn}∞n=1 is given by

b1 = b1(x) =



aj , if x ∈
[
aj

β
,
aj+1

β

)
,

for j = 0, . . . ,m − 1,

am, if x ∈
[
am

β
,

am

β − 1

]
,

and bn = bn(x) = b1(T
n−1x). Then

x =
∞∑

n=1

bn

βn

is the greedy β-expansion with deleted digits of x .
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The Invariant Measure

By results from Li and Yorke (1978),

There exists a unique invariant measure for T that is absolutely
continuous with respect to Lebesgue.

This measure is ergodic.

The support of this measure is an interval of the form [0, s) for
some s ≤ am

β−1 .
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The support of the invariant measure

Consider the points of discontinuity of T ,
ai

β
for 1 ≤ i ≤ m. For each

i , let yi denote the limit from the left to the i-th point, i.e.

yi = lim
x↑ ai

β

Tx .

Then the support is the interval [0, yj), where j is the smallest index
such that T [0, yj) ⊆ [0, yj).
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β =
√

7 and A = {0, π − 1, 4, 5
√

2}

y1

y2

y3

0

5 2

7 - 1

5 2

7 - 1
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The support of the invariant measure

y1

y1

y2

y3

0

5 2

7 - 1

5 2

7 - 1
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The support of the invariant measure

y1

y1

y2

y3

0

5 2

7 - 1

5 2

7 - 1
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The support of the invariant measure

y1

y2

y2

y3

0

5 2

7 - 1

5 2

7 - 1
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The support of the invariant measure

y1

y3

y2

y3

0

5 2

7 - 1

5 2

7 - 1
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A formula for the density

In some cases we have an explicit expression for the density function.

If the amount of digits in the digit set is minimal, i.e. if
m < β ≤ m + 1 and A = {0, a1, . . . , am}.
If the digit set contains 3 digits.

If the endpoints yj have ultimately periodic orbits, then the
system can be described by a Markov chain.
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Example of a density function

Let β =
1 +

√
5

2
and A = {0, 2, 3}. The greedy β-transformation with

deleted digits is:

0 3
Β - 1

3
Β - 1

2
Β

3
Β

y1=2

y2=1

The support is [0, 2).
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Example of a density function

The density function contains the orbits of y1 and y2, which are
periodic:

1 → β → 1
β → 1

2 → 1
β3 → 1

β2 → 1
β

The density function is given by

h(x) =
1

16− 7β
[ 1[0,2)(x) + 1[0,1)(x) +

1

β
1[0,T2)(x) +

1

β
1[0,T1)(x)

+
1

β2
1[0,T 22)(x) +

1

β
1[0,T 21)(x) ].
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Choosing the smallest digit possible

We can define another algorithm, the lazy algorithm, recursively as
follows: If c1, . . . , cn−1 are already given, then cn is the smallest
element of A, such that

x ≤
n−1∑
i=1

ci

βi
+

cn

βn
+

∞∑
i=n+1

am

βi
.
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Dynamical definition of the lazy transformation

This recursion leads to the following definition:

Lx =



βx − a0, if x ∈
[

a0

β − 1
,

am

β − 1
− am − a0

β

]
,

βx − aj , if x ∈
(

am

β − 1
−

am − aj−1

β
,

am

β − 1
−

am − aj

β

]
,

for j = 1, . . . ,m.

Charlene Kalle, joint work with Karma Dajani



Dynamical aspects of β-expansions with deleted digits > Other transformations

β = 1 +
√

2 and A = {0, β − 1, 2, 2β}

0 2 Β

Β - 1

2 Β

Β - 1

2
Β - 1

2 4 Β - 2

Β H Β - 1L
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Isomorphic transformations.

There exists an isomorphism between the greedy transformation for
some β and A = {0, a1, . . . , am} and the lazy transformation for the
same β, but with digit set A = {am, . . . , a0}, where ai = am − ai . The
isomorphism is given by

φ(x) =
am

β − 1
− x .
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The isomorphism between the two transformations

0 2 Β

Β - 1

2 Β

Β - 1

0 2 Β

Β - 1

2 Β

Β - 1
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Invariant measure for the lazy transformation

Due to the isomorphism, there also exists a unique invariant measure
for L that is absolutely continuous with respect to the Lebesgue
measure and is ergodic. (By the same results from Li and Yorke, 1978)
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Two extreme cases: β = 1 +
√

2 and A = {0, β − 1, 2, 2β}
The greedy and lazy transformation are not the only transformations
that generate β-expansions with deleted digits, but they are the two
extreme cases.

0 2 Β

Β - 1

2 Β

Β - 1
Βx-0

Β x-H Β-1L

Βx-2

Βx-2Β
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A (β, α)-transformation

One way of defining another transformation that generates
β-expansions with deleted digits is by choosing for each 1 ≤ i ≤ m a
value

αi ∈
[
ai

β
,

am

β(β − 1)
+

ai−1

β

]
as a point of discontinuity in such a way that

α1 < α2 < . . . < αm.
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Choosing α’s

0 2 Β

Β - 1

2 Β

Β - 1

Α1
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Choosing α’s

0 2 Β

Β - 1

2 Β

Β - 1

Α2
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Choosing α’s

0 2 Β

Β - 1

2 Β

Β - 1

Α3
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A (β, α)-transformation

0 2 Β

Β - 1

2 Β

Β - 1

Α1 Α2 Α3
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A (β, α)-transformation

Set α0 = 0 and αm+1 =
am

β − 1
. The (β, α)-transformation, T(β,α), is

defined from the interval

[
0,

am

β − 1

]
to itself by

T(β,α)x =


βx − aj , if x ∈ [αj , αj+1), j ∈ {0, . . . ,m},

am

β − 1
, if x =

am

β − 1
.
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A (β, α)-transformation

For each 1 ≤ j ≤ m, let δj be the limit from the right and γj be the

limits from the left to αj . Put δ0 = 0 and γm+1 =
am

β − 1
.

0 2 Β

Β - 1

Α1 Α2 Α3Α3

∆1

∆2

∆3

Γ1
Γ2

Γ3
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A lexicographical characterization

Let x =
∞∑

n=1

xn

βn
be a β-expansion with deleted digits for x and let

δj =
∞∑

n=1

bn(δj)

βn
and γj =

∞∑
n=1

bn(γj)

βn
be the expansions generated by

the (β, α)-transformation.

Theorem

The expansion of x is the expansion generated by the
(β, α)-transformation iff the following condition holds: For all n ≥ 1,
xn = aj implies

b1(δj)b2(δj) . . . ≤lex xn+1xn+2 . . . <lex b1(γj)b2(γj) . . .
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