Dynamical aspects of β -expansions with deleted digits

Charlene Kalle, joint work with Karma Dajani

May 27, 2008

Introduction

Let $\beta > 1$ and $A = \{a_0, \dots, a_m\}$ a set of real numbers. Expansions of the form

$$x=\sum_{i=1}^{\infty}\frac{b_i}{\beta^i},$$

with $b_i \in A$ for all $i \ge 1$, are called β -expansions with deleted digits. This gives numbers in the interval $\left[\frac{a_0}{\beta-1}, \frac{a_m}{\beta-1}\right]$.

Allowable digit sets

- If, for a given $\beta > 1$, a set of real numbers $A = \{a_0, \dots, a_m\}$ satisfies (i) $a_0 < \dots < a_m$, (ii) $\max_{1 \le j \le m} (a_j - a_{j-1}) \le \frac{a_m - a_0}{\beta - 1}$, it is called an *allowable digit set*. Then • every $x \in \left[\frac{a_0}{\beta - 1}, \frac{a_m}{\beta - 1}\right]$ has a β -expansion with deleted digits. (Pedicini, 2005)
 - the minimal amount of digits in A is $\lceil \beta \rceil$.

Allowable digit sets

If, for a given
$$\beta > 1$$
, a set of real numbers $A = \{a_0, \dots, a_m\}$ satisfies
(i) $a_0 < \dots < a_m$,
(ii) $\max_{1 \le j \le m} (a_j - a_{j-1}) \le \frac{a_m - a_0}{\beta - 1}$,
it is called an *allowable digit set*. Then
• every $x \in \left[\frac{a_0}{\beta - 1}, \frac{a_m}{\beta - 1}\right]$ has a β -expansion with deleted digits.
(Pedicini, 2005)

• the minimal amount of digits in A is $\lceil \beta \rceil$.

Allowable digit sets

If, for a given
$$\beta > 1$$
, a set of real numbers $A = \{a_0, \dots, a_m\}$ satisfies
(i) $a_0 < \dots < a_m$,
(ii) $\max_{1 \le j \le m} (a_j - a_{j-1}) \le \frac{a_m - a_0}{\beta - 1}$,
it is called an *allowable digit set*. Then
• every $x \in \left[\frac{a_0}{\beta - 1}, \frac{a_m}{\beta - 1}\right]$ has a β -expansion with deleted digits.
(Pedicini, 2005)

• the minimal amount of digits in A is $\lceil \beta \rceil$.

The classical β -expansion

Take $\beta > 1$ and $A = \{0, 1, \dots, \lfloor \beta \rfloor\}$. This gives the classical β -expansions.

- We can use the greedy β -transformation to generate such expansions by iteration.
- The greedy β-transformation has an invariant measure that is equivalent to the Lebesgue measure on the unit interval [0, 1). (Rényi, 1957)

The classical β -expansion

Take $\beta > 1$ and $A = \{0, 1, \dots, \lfloor \beta \rfloor\}$. This gives the classical β -expansions.

- We can use the greedy β -transformation to generate such expansions by iteration.
- The greedy β-transformation has an invariant measure that is equivalent to the Lebesgue measure on the unit interval [0, 1). (Rényi, 1957)

Dynamical aspects of β -expansions with deleted digits > Introduction

The classical greedy β -transformation

The classical greedy β -transformation is given by

$$Tx = \begin{cases} \beta x - i, & \text{if } x \in \left[\frac{i}{\beta}, \frac{i+1}{\beta}\right), \ i \in \{0, \dots, \lfloor \beta \rfloor - 1\}, \\ \beta x - \lfloor \beta \rfloor, & \text{if } x \in \left[\frac{\lfloor \beta \rfloor}{\beta}, \frac{\lfloor \beta \rfloor}{\beta - 1}\right]. \end{cases}$$

The classical greedy β -transformation

The transformation T has the following properties.

- The support of the invariant measure, absolutely continuous wrt the Lebesgue measure is the interval [0, 1).
- The density function is given by

$$h_c: [0,1) \to [0,1): x \mapsto \frac{1}{F(\beta)} \sum_{n=0}^{\infty} \frac{1}{\beta^n} \mathbb{1}_{[0,T^n]}(x),$$

where $F(\beta) = \int_0^1 \sum_{x < T^{n_1}} \frac{1}{\beta^n} d\lambda$ is a normalizing constant and λ is the Lebesgue measure. (Gel'fond, 1959, and Parry, 1960)

The classical greedy β -transformation

The transformation T has the following properties.

- The support of the invariant measure, absolutely continuous wrt the Lebesgue measure is the interval [0, 1).
- The density function is given by

$$h_c: [0,1) \to [0,1): x \mapsto \frac{1}{F(\beta)} \sum_{n=0}^{\infty} \frac{1}{\beta^n} \mathbb{1}_{[0,T^n]}(x),$$

where $F(\beta) = \int_0^1 \sum_{x < T^{n_1}} \frac{1}{\beta^n} d\lambda$ is a normalizing constant and λ is the Lebesgue measure. (Gel'fond, 1959, and Parry, 1960)

Greedy expansions

There is a recursive algorithm that generates so called *greedy* β -expansions with deleted digits. (Pedicini, 2005)

If the first n-1 digits, b_1, \ldots, b_{n-1} , of the expansion of x are already known, then the *n*-th digit is the largest element of A, such that

$$\sum_{i=1}^{n-1} \frac{b_i}{\beta^i} + \frac{b_n}{\beta^n} + \sum_{i=n+1}^{\infty} \frac{a_0}{\beta^i} \le x.$$

Preserving the Lexicographical Ordering

Theorem (Pedicini, 2005)

Let $<_{lex}$ denote the lexicographical ordering on the set of sequences. If $x = \sum_{i=1}^{\infty} \frac{b_i}{\beta^i}$ and $y = \sum_{i=1}^{\infty} \frac{d_i}{\beta^i}$ are the greedy expansions of x and y in base β and digits in an allowable digit set A, then $x < y \Leftrightarrow (b_1, b_2, \ldots) <_{lex} (d_1, d_2, \ldots).$

Definition of the greedy β -transformation with deleted digits

Suppose $\beta > 1$ and $A = \{a_0, a_1, \dots, a_m\}$ is an allowable digit set with $a_0 = 0$. The following transformation generates greedy β -expansions with digits in the set A.

$$Tx = \begin{cases} \beta x - a_j, & \text{if } x \in \left[\frac{a_j}{\beta}, \frac{a_{j+1}}{\beta}\right), \\ & \text{for } j = 0, \dots, m-1, \\ \beta x - a_m, & \text{if } x \in \left[\frac{a_m}{\beta}, \frac{a_m}{\beta-1}\right]. \end{cases}$$

We can define a similar transformation for digit sets not starting with 0, but that transformation is isomorphic to T.

 $\beta = 1 + \sqrt{2}$ and $A = \{0, \beta - 1, 2, 2\beta\}$

Defining the digit sequence

The digit sequence $\{b_n\}_{n=1}^{\infty}$ is given by

$$b_1 = b_1(x) = \begin{cases} a_j, & \text{if } x \in \left[\frac{a_j}{\beta}, \frac{a_{j+1}}{\beta}\right), \\ & \text{for } j = 0, \dots, m-1, \\ \\ a_m, & \text{if } x \in \left[\frac{a_m}{\beta}, \frac{a_m}{\beta-1}\right], \end{cases}$$

and $b_n = b_n(x) = b_1(T^{n-1}x)$. Then

$$x = \sum_{n=1}^{\infty} \frac{b_n}{\beta^n}$$

is the greedy β -expansion with deleted digits of x.

The Invariant Measure

By results from Li and Yorke (1978),

- There exists a unique invariant measure for *T* that is absolutely continuous with respect to Lebesgue.
- This measure is ergodic.
- The support of this measure is an interval of the form [0, s) for some s ≤ ^{am}/_{β-1}.

The Invariant Measure

By results from Li and Yorke (1978),

- There exists a unique invariant measure for *T* that is absolutely continuous with respect to Lebesgue.
- This measure is ergodic.
- The support of this measure is an interval of the form [0, s) for some s ≤ ^{am}/_{β-1}.

The Invariant Measure

By results from Li and Yorke (1978),

- There exists a unique invariant measure for *T* that is absolutely continuous with respect to Lebesgue.
- This measure is ergodic.
- The support of this measure is an interval of the form [0, s) for some $s \leq \frac{a_m}{\beta 1}$.

The support of the invariant measure

Consider the points of discontinuity of *T*, $\frac{a_i}{\beta}$ for $1 \le i \le m$. For each *i*, let y_i denote the limit from the left to the *i*-th point, i.e.

$$y_i = \lim_{x \uparrow \frac{a_i}{\beta}} Tx.$$

Then the support is the interval $[0, y_j)$, where j is the smallest index such that $T[0, y_j) \subseteq [0, y_j)$.

 $eta = \sqrt{7}$ and $A = \{0, \pi - 1, 4, 5\sqrt{2}\}$

In some cases we have an explicit expression for the density function.

- If the amount of digits in the digit set is minimal, i.e. if m < β ≤ m + 1 and A = {0, a₁,..., a_m}.
- If the digit set contains 3 digits.
- If the endpoints y_j have ultimately periodic orbits, then the system can be described by a Markov chain.

In some cases we have an explicit expression for the density function.

• If the amount of digits in the digit set is minimal, i.e. if $m < \beta \le m + 1$ and $A = \{0, a_1, \dots, a_m\}$.

• If the digit set contains 3 digits.

• If the endpoints y_j have ultimately periodic orbits, then the system can be described by a Markov chain.

In some cases we have an explicit expression for the density function.

- If the amount of digits in the digit set is minimal, i.e. if $m < \beta \le m + 1$ and $A = \{0, a_1, \dots, a_m\}$.
- If the digit set contains 3 digits.
- If the endpoints y_j have ultimately periodic orbits, then the system can be described by a Markov chain.

In some cases we have an explicit expression for the density function.

- If the amount of digits in the digit set is minimal, i.e. if $m < \beta \le m + 1$ and $A = \{0, a_1, \dots, a_m\}$.
- If the digit set contains 3 digits.
- If the endpoints y_j have ultimately periodic orbits, then the system can be described by a Markov chain.

Example of a density function

Let $\beta = \frac{1+\sqrt{5}}{2}$ and $A = \{0, 2, 3\}$. The greedy β -transformation with deleted digits is:

The support is [0, 2).

Example of a density function

The density function contains the orbits of y_1 and y_2 , which are periodic:

The density function is given by

$$h(x) = \frac{1}{16 - 7\beta} \left[1_{[0,2)}(x) + 1_{[0,1)}(x) + \frac{1}{\beta} 1_{[0,T2)}(x) + \frac{1}{\beta} 1_{[0,T1)}(x) + \frac{1}{\beta^2} 1_{[0,T^22)}(x) + \frac{1}{\beta} 1_{[0,T^21)}(x) \right].$$

Choosing the smallest digit possible

We can define another algorithm, the *lazy algorithm*, recursively as follows: If c_1, \ldots, c_{n-1} are already given, then c_n is the smallest element of A, such that

$$x \leq \sum_{i=1}^{n-1} \frac{c_i}{\beta^i} + \frac{c_n}{\beta^n} + \sum_{i=n+1}^{\infty} \frac{a_m}{\beta^i}.$$

Dynamical definition of the lazy transformation

This recursion leads to the following definition:

$$Lx = \begin{cases} \beta x - a_0, & \text{if } x \in \left[\frac{a_0}{\beta - 1}, \frac{a_m}{\beta - 1} - \frac{a_m - a_0}{\beta}\right], \\ \beta x - a_j, & \text{if } x \in \left(\frac{a_m}{\beta - 1} - \frac{a_m - a_{j-1}}{\beta}, \frac{a_m}{\beta - 1} - \frac{a_m - a_j}{\beta}\right], \\ & \text{for } j = 1, \dots, m. \end{cases}$$

 $\beta = 1 + \sqrt{2}$ and $A = \{0, \beta - 1, 2, 2\beta\}$

Isomorphic transformations.

There exists an isomorphism between the greedy transformation for some β and $A = \{0, a_1, \ldots, a_m\}$ and the lazy transformation for the same β , but with digit set $\overline{A} = \{\overline{a}_m, \ldots, \overline{a}_0\}$, where $\overline{a}_i = a_m - a_i$. The isomorphism is given by

$$\phi(x)=\frac{a_m}{\beta-1}-x.$$

The isomorphism between the two transformations

The isomorphism between the two transformations

Invariant measure for the lazy transformation

Due to the isomorphism, there also exists a unique invariant measure for L that is absolutely continuous with respect to the Lebesgue measure and is ergodic. (By the same results from Li and Yorke, 1978)

Two extreme cases: $\beta = 1 + \sqrt{2}$ and $A = \{0, \beta - 1, 2, 2\beta\}$

The greedy and lazy transformation are not the only transformations that generate β -expansions with deleted digits, but they are the two extreme cases.

Two extreme cases: $\beta = 1 + \sqrt{2}$ and $A = \{0, \beta - 1, 2, 2\beta\}$

The greedy and lazy transformation are not the only transformations that generate β -expansions with deleted digits, but they are the two extreme cases.

Two extreme cases: $\beta = 1 + \sqrt{2}$ and $A = \{0, \beta - 1, 2, 2\beta\}$

The greedy and lazy transformation are not the only transformations that generate β -expansions with deleted digits, but they are the two extreme cases.

Two extreme cases: $\beta = 1 + \sqrt{2}$ and $A = \{0, \beta - 1, 2, 2\beta\}$

The greedy and lazy transformation are not the only transformations that generate β -expansions with deleted digits, but they are the two extreme cases.

A (β, α) -transformation

One way of defining another transformation that generates β -expansions with deleted digits is by choosing for each $1 \le i \le m$ a value

$$lpha_i \in \left[rac{\pmb{a}_i}{eta}, rac{\pmb{a}_m}{eta(eta-1)} + rac{\pmb{a}_{i-1}}{eta}
ight]$$

as a point of discontinuity in such a way that

$$\alpha_1 < \alpha_2 < \ldots < \alpha_m.$$

Choosing α 's

Choosing α 's

Choosing α 's

A (β, α) -transformation

A (β, α) -transformation

Set
$$\alpha_0 = 0$$
 and $\alpha_{m+1} = \frac{a_m}{\beta - 1}$. The (β, α) -transformation, $T_{(\beta, \alpha)}$, is defined from the interval $\left[0, \frac{a_m}{\beta - 1}\right]$ to itself by

$$T_{(\beta,\alpha)}x = \begin{cases} \beta x - a_j, & \text{if } x \in [\alpha_j, \alpha_{j+1}), \ j \in \{0, \dots, m\}, \\\\ \frac{a_m}{\beta - 1}, & \text{if } x = \frac{a_m}{\beta - 1}. \end{cases}$$

A (β, α) -transformation

For each $1 \le j \le m$, let δ_j be the limit from the right and γ_j be the limits from the left to α_j . Put $\delta_0 = 0$ and $\gamma_{m+1} = \frac{a_m}{\beta - 1}$.

A lexicographical characterization

Let $x = \sum_{n=1}^{\infty} \frac{x_n}{\beta^n}$ be a β -expansion with deleted digits for x and let $\delta_j = \sum_{n=1}^{\infty} \frac{b_n(\delta_j)}{\beta^n}$ and $\gamma_j = \sum_{n=1}^{\infty} \frac{b_n(\gamma_j)}{\beta^n}$ be the expansions generated by the (β, α) -transformation.

Theorem

The expansion of x is the expansion generated by the (β, α) -transformation iff the following condition holds: For all $n \ge 1$, $x_n = a_j$ implies

$$b_1(\delta_j)b_2(\delta_j)\ldots \leq_{\mathsf{lex}} x_{n+1}x_{n+2}\ldots <_{\mathsf{lex}} b_1(\gamma_j)b_2(\gamma_j)\ldots$$

