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() =tibts---, =[BTy (1)],

where
Tz :[0,1] = [0,1), Tp(x) :=pBx — [Bx] = {Bx}.

 Parry number: ds(1) is eventually periodic,
e simple Parry number: dg(1) = t; - - - tm,
e non-simple Parry number: dg(1) =t - - - tm(Ems1tmiz - - - tmgp)”-
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Simple Parry numbers

ds(1) =t tm

Canonical substitution ¢ 5 over the alphabet A = {0,1,.
(,05(0) = 041
ws(1) = 022

os(m=2) = -1 (m—1)
pa(m—1) = 0O

,m—1}

Results
00000
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Canonical substitution ¢35 over the alphabet
A={0,1,....m+p—1}

©5(0) = 0f1
vp(1) = 022
es(m—1) = 0'"m
©p(m) = 0fm1(m+1)

ps(m+p—2) = Ofreo-1(m+p—1)
pa(m+p—1) = 0fmem

Fixed point uz = limy_.oc ¢3(0) = oft]....
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Basic definitions — factor complexity

A=1{0,1,...,g—1} alphabet

u=(Uj)jen, u; € A infinite word over A

W =uljq---Uyp_q factor of u of length n

Ln(u) the set of factors of u of length n
L(u) = Upen £n(u) the language of u

Factor complexity of u is the function C : N — N, given by
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Basic definitions — fixed point of substitution

©(0) = 0v, v € AT, then the fixed point of ¢ given by

u = limp_ ¢"(0) = ¢*(0) is an infinite word which is uniformly
recurrent.

A substitution ¢ is primitive if for all a, b € A there exists k € N such

that the word *(a) contains b. In what follows, we assume that
p is primitive and injective.

In general, complexity of a fixed point of any primitive substitution is
a sublinear function C(n) < an+ b,a,b € N.
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Known results for simple Parry numbers

Simple Parry numbers (Bernat, Frougny, Masakova, Pelantova):
elh=b=---=ty1 or t >max{b,...,ty 1} exactvalue
of C(n) is known,
e in particular, (m—1)n+1 <C(n) <mn, forall n>1,
e C(n)is affine
D th=1
2) foralli=2,3,..., m—1 we have
t,'t,'+1 ...tm_1t1 ...t,'_1 j t1 tg...tm_1.

ThenC(n)=(m—1)n+1.
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Special factors

For v € L(u) we define the set of left extensions
Lext(v) :={ac A|ave L(u)}.

If #Lext(v) > 1, then v is said to be left special (LS) factor.
Analogously are defined right special (RS) factors.
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LS factors and factor complexity

avy

buy
avs
b’U3
CU3
avy

avs

Infinite LS branches

Ly11(u) Ln(u)
a
b "
(e b o U2
a
b V3
c

V4

Results
00000
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LS factors and factor complexity

Lny1(u) Lo(u)
avy a
b "
bUl
b’UQ e b ’s) V2
avs a
U
bus b 3
c

cvs vy
a
avy
c Us
avs O//o

Cn+1)—C(n)=3
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LS factors and factor complexity

For the first difference of the complexity function holds:

aC(n):=C(n+1)—C(n) = > (s#Lext(v)—1).
veLn(u)
vis LS

Complete knowledge of all LS factors along with the number of
their left extensions allow us to evaluate C(n).

AC(n) > 1forall n e N < uis aperiodic.
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Structure of LS factors — infinite LS branches

Definition
An infinite word w is called infinite LS branch of u if each prefix of w
is a LS factor of u.

Lext(w) = (1) Lext(v).

v prefix w
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Structure of LS factors — infinite LS branches

Definition
An infinite word w is called infinite LS branch of u if each prefix of w
is a LS factor of u.

Lext(w) = (1) Lext(v).

v prefix w

e u periodic = no infinite LS branches,



Definition
An infinite word w is called infinite LS branch of u if each prefix of w
is a LS factor of u.

Lext(w) = (1) Lext(v).

v prefix w

e u periodic = no infinite LS branches,
e u aperiodic = at least one infinite LS branch,
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Structure of LS factors — infinite LS branches

Definition
An infinite word w is called infinite LS branch of u if each prefix of w
is a LS factor of u.

Lext(w) = (1) Lext(v).

v prefix w

e u periodic = no infinite LS branches,

e u aperiodic = at least one infinite LS branch,

e u is a fixed point of a primitive substitution = finite number of
infinite LS branches
(consequence of the fact that AC(n) is bounded (Mossé,
Cassaigne))
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Structure of LS factors — maximal LS factors

Definition
A LS factor v is called maximal LS factor if for each letter e ¢ A, ve
is not a LS factor.
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Structure of LS factors — maximal LS factors

Definition
A LS factor v is called maximal LS factor if for each letter e ¢ A, ve
is not a LS factor.

a\ v /e
b7~ N f
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Structure of LS factors — maximal LS factors

Definition
A LS factor v is called maximal LS factor if for each letter e ¢ A, ve
is not a LS factor.

b7 N f
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Structure of LS factors — maximal LS factors

Definition
A LS factor v is called maximal LS factor if for each letter e ¢ A, ve
is not a LS factor.

b 7 N f
c
Definition

A LS factor v having a, b € Lext(v) is called (a, b)-maximal LS
factor if for each letter e € A we is not a LS factor with left
extensions a and b.
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Images of LS factors
Example: ¢ : 1 — 1211,2 — 311,3 — 2412, 4 — 435 5 — 534

u=¢e“(1)
w is a LS factor of u with left extensions 1 and 2

1

2 2™
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Images of LS factors
Example: ¢ : 1 — 1211,2 — 311,3 — 2412, 4 — 435 5 — 534

u=¢e“(1)
w is a LS factor of u with left extensions 1 and 2

1 p-image 1211
wW—m @ (w
2> 311> (w)
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Images of LS factors
Example: ¢ : 1+ 1211,2+— 311,3 — 2412, 4 +— 435,5 — 534
u=¢e“(1)
w is a LS factor of u with left extensions 1 and 2

fr(1,2) =11

1 p-image 1211 f-image 2
_—-———— —_—
S OW e (w) o ew)

g (1,2) = {2,3}

Results
00000
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Images of LS factors
Example: ¢ : 1 — 1211,2 — 311,3 — 2412, 4 — 435 5 — 534

u=¢e“(1)
w is a LS factor of u with left extensions 1 and 2

fr(1,2) =11

1 p-image 1211 f-image 2
_—— —_—
S OW e (w) o ew)

g (1,2) = {2,3}

fp(2,3) =e€

2 p-image 311 f-image 1
wW——» (W) —— ——————» w
3 > 2412 > 2 > elw)

9r,(2,3) ={1,2}
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Images of LS factors
Example: ¢ : 1+ 1211,2+— 311,3 — 2412, 4 +— 435,5 — 534
u=¢e“(1)
w is a LS factor of u with left extensions 1 and 2
fr(1,2) =11
;>w p-image 1211>w(w) f-image §>11¢(w)
gr(1,2) = {2,3}
fr(2,3) =€

2 p-image 311 f-image 1
w— » (W) —— » w
3 > 2412 > 2 > elw)

9r,(2,3) ={1,2}

€

Results
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Graph GL,

Vertices: unordered couples of distinct letters (a, b).

Edges: if g/(a, b) = {c, d}, then there is an edge between (a, b)
and (c, d) with label f,(a, b).
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Graph GL,

Vertices: unordered couples of distinct letters (a, b).

Edges: if g/(a, b) = {c, d}, then there is an edge between (a, b)
and (c, d) with label f (a, b).

Example: ¢ : 1 — 1211,2— 311,3 +— 2412,4 — 435,5 — 534

11
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Structure of infinite branches
Assumption: For each infinite LS branch w it holds that
a) f-image of w is uniquely given,
b) there exists exactly one infinite LS branch w’ such that w is
f-image of w'.

fr(a, b)e(w) .
SR f-image

f-image .
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Structure of infinite branches

Assumption: For each infinite LS branch w it holds that
a) f-image of w is uniquely given,
b) there exists exactly one infinite LS branch w’ such that w is
f-image of w'.

Theorem
Letw be an infinite LS branch, a, b € Lext(w). Then there exists
I > 0 such that

w = fi(g; (@ b)) 2(fulgu(a b)) (fu(a b)p! (w).
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Structure of infinite branches

Assumption: For each infinite LS branch w it holds that
a) f-image of w is uniquely given,
b) there exists exactly one infinite LS branch w’ such that w is
f-image of w'.

Theorem
Letw be an infinite LS branch, a, b € Lext(w). Then there exists
I > 0 such that

w = fi(g; (@ b)) 2(fulgu(a b)) (fu(a b)p! (w).

o fi == w=y/(w)and (a, b) is a vertex of a cycle labelled by
e only,
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Structure of infinite branches

Assumption: For each infinite LS branch w it holds that
a) f-image of w is uniquely given,
b) there exists exactly one infinite LS branch w’ such that w is
f-image of w'.

Theorem
Letw be an infinite LS branch, a, b € Lext(w). Then there exists
I > 0 such that

w = fi(g; (@ b)) 2(fulgu(a b)) (fu(a b)p! (w).

o fi == w=y/(w)and (a, b) is a vertex of a cycle labelled by
e only,

e otherwise, (a, b) is a vertex of a cycle labelled not only by e.
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Example — how to identify infinite LS branche
@:1—1211,2+— 311,3 — 2412, 4 — 435,5 — 534

Lext(1) = {1,2,3,4,5}, Lext(2) = {1,4,5}, Lext(3) =
{1,4,5},Lext(4) = {1,2,3},Lext(5) = {1,2,3}

11
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Example — how to identify infinite LS branche
@:1—1211,2+— 311,3 — 2412, 4 — 435,5 — 534

Lext(1) = {1,2,3,4,5}, Lext(2) = {1,4,5}, Lext(3) =
{1,4,5},Lext(4) = {1,2,3},Lext(5) = {1,2,3}
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Example — how to identify infinite LS branche
@:1—1211,2+— 311,3 — 2412, 4 — 435,5 — 534

Lext(1) = {1,2,3,4,5}, Lext(2) = {1,4,5}, Lext(3) =
{1,4,5},Lext(4) = {1,2,3},Lext(5) = {1,2,3}
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Example — how to identify infinite LS branche
@:1—1211,2— 311,38 - 2412, 4+ 435,5 — 534

Lext(1) = {1,2,3,4,5}, Lext(2) = {1,4,5}, Lext(3) =
{1,4,5}, Lext(4) = {1,2,3}, Lext(5) = {1,2,3}

11
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Example — how to identify infinite LS branche
@:1—1211,2— 311,38 - 2412, 4+ 435,5 — 534

Lext(1) = {1,2,3,4,5}, Lext(2) = {1,4,5}, Lext(3) =
{1,4,5}, Lext(4) = {1,2,3}, Lext(5) = {1,2,3}

11
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GL,, for simple Parry numbers

fi(a,b) = eforalla,b e {0,1,....m—1} and ug = ¢©3(0) is the
only fixed point

= Ug is the only infinite LS branch

Results
@0000
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GL,, for non-simple Parry numbers

m—1—0mmm+p—1—0mem i(m—1,m+p—1)=0mt=
min{tm, tm+p}, Lext(0'm) = {0, z}, s > 1
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Infinite LS factors

t = min{tm, tmip}, Lext(0'm) = {0, z}, s > 1
Definition
feESez=ps

a) dﬁ(1) =t. tm(o Otm+p)w and ty, > tm+p
v
#£0 qp—1

/BGSQ@dB(‘I) =H4(0---0(ty —1))~.
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Infinite LS factors

Theorem

e If 3 is a non-simple Parry and p > 1, then ug is an infinite LS
branch with left extensions {m,m+1,... . m+p—1}.
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Theorem

e If 3 is a non-simple Parry and p > 1, then ug is an infinite LS
branch with left extensions {m,m+1,... . m+p—1}.

e If3 ¢S, thenug is the only one infinite LS branch.
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Infinite LS factors

Theorem

e If 3 is a non-simple Parry and p > 1, then ug is an infinite LS
branch with left extensions {m,m+1,.... m+p—1}.

e If3 ¢S, thenug is the only one infinite LS branch.
e If3 € S, then there are m infinite LS branches

0'me™(0'm)®™(0'm) ...

S0m—1 (Otm)¢2m_1 (Oim)@Sm—1 (Otm) o
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Maximal LS factors
f-image of maximal factors
a c f-image
b>W<d £ > gL(aab)>fL(a7b)LP(w)fR(C9 d)<gR(crd)

Theorem
e Ifty >1 and p ¢ Sy, then (a, b)-maximal factors are f-images
of the (0, p)-maximal factor 0% —?
"0 "Y1 +n)"", n=0,1,...,m—1
Otmgom(oﬁ—‘l 1 )(1 + m)—1 ’
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Maximal LS factors

f-image of maximal factors

f-image

la;>w<z > gL(a,b)>fL(a,b)Lp(W)fR(C, d)<gR(crd)

Theorem

e Ifty >1 and p ¢ Sy, then (a, b)-maximal factors are f-images
of the (0, p)-maximal factor 0% —?

"0 "Y1 +n)"", n=0,1,...,m—1
Otmgom(0t1_11)(1 + m)—‘l’

e If 3 € Sy, there are no (a, b)-maximal factors in ug.
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Affine complexity

Theorem

e The factor complexity of us is affine < ug does not contain any
(a, b)-maximal factor < 3 € So < dg(1) = t(0---0(ty — 1))“.
ThenC(n)=(m+p—1)n+1.

e The first equivalence is not valid in general (Chacon),
e 3 € Sy = (isan unitary Pisot number (Frougny).
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Affine complexity

Theorem

e The factor complexity of us is affine < ug does not contain any
(a, b)-maximal factor < 3 € So < dg(1) = t(0---0(ty — 1))“.
ThenC(n)=(m+p—1)n+1.

e The first equivalence is not valid in general (Chacon),
e 3 € Sy = (isan unitary Pisot number (Frougny).

e Ifp>1andpc Sy, thenug and 0~'ug are the only infinite LS

branches.
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Affine complexity

Theorem
e The factor complexity of us is affine < ug does not contain any
(a, b)-maximal factor < 3 € So < dg(1) = t(0---0(ty — 1))“.
ThenC(n)=(m+p—1)n+1.
e The first equivalence is not valid in general (Chacon),
e 3 € Sy = (isan unitary Pisot number (Frougny).
e Ifp>1andpc Sy, thenug and 0~'ug are the only infinite LS
branches.

e known result: ug is Sturmian < p =1 and 8 € Sy, i.e.
ds(1) = (4 —1)~.



Results
0000e

Affine complexity

Theorem

e The factor complexity of ug is affine < ug does not contain any
(a, b)-maximal factor < 3 € Sp < dg(1) = #(0---0(ty — 1))~.
ThenC(n)=(m+p—1)n+1.

e The first equivalence is not valid in general (Chacon),
e (5 € Sy = [ is an unitary Pisot number (Frougny).

e Ifp>1andpc Sy, thenug and (e ug are the only infinite LS

branches.

e known result: ug is Sturmian < p =1 and g € Sy, i.e.
ds(1) = t(ty — 1)~.

THE END
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