Factor complexity of infinite words associated with β -expansions

Karel Klouda¹,² karel@kloudak.eu

Joint work with E.Pelantová¹

¹FNSPE, CTU in Prague ²LIAFA, Université Paris 7

Journées Numération, Prague 26th May, 2008

Rényi expansion of unity in base $\beta > 1$

$$d_{\beta}(1) = t_1 t_2 t_3 \cdots, \qquad t_i = \lfloor \beta T_{\beta}^{i-1}(1) \rfloor,$$

where

$$T_{\beta}: [0,1] \rightarrow [0,1), \quad T_{\beta}(x):=\beta x-\lfloor \beta x \rfloor = \{\beta x\}.$$

- Parry number: $d_{\beta}(1)$ is eventually periodic,
- simple Parry number: $d_{\beta}(1) = t_1 \cdots t_m$,
- non-simple Parry number: $d_{\beta}(1) = t_1 \cdots t_m (t_{m+1} t_{m+2} \dots t_{m+p})^{\omega}$.

Simple Parry numbers

$$d_{\beta}(1) = t_1 \cdots t_m$$

Canonical substitution φ_{β} over the alphabet $\mathcal{A} = \{0, 1, \dots, m-1\}$

$$\varphi_{\beta}(0) = 0^{t_1} 1
\varphi_{\beta}(1) = 0^{t_2} 2
\vdots
\varphi_{\beta}(m-2) = 0^{t_{m-1}} (m-1)
\varphi_{\beta}(m-1) = 0^{t_m}$$

$$d_{\beta}(1) = t_1 \cdots t_m (t_{m+1} t_{m+2} \dots t_{m+p})^{\omega}$$

Canonical substitution φ_{β} over the alphabet

$$\mathcal{A} = \{0, 1, \dots, m+p-1\}$$

$$\begin{array}{rcl} \varphi_{\beta}(0) & = & 0^{t_{1}}1 \\ \varphi_{\beta}(1) & = & 0^{t_{2}}2 \\ & \vdots & & \\ \varphi_{\beta}(m-1) & = & 0^{t_{m}}m \\ \varphi_{\beta}(m) & = & 0^{t_{m+1}}(m+1) \\ & \vdots & & \\ \varphi_{\beta}(m+p-2) & = & 0^{t_{m+p-1}}(m+p-1) \\ \varphi_{\beta}(m+p-1) & = & 0^{t_{m+p}}m \end{array}$$

Fixed point $\mathbf{u}_{\beta} = \lim_{n \to \infty} \varphi_{\beta}^{n}(0) = 0^{t_1} \mathbf{1} \cdots$

 $\mathcal{C}(n) := \# \mathcal{L}_n(\mathbf{u}).$

$$\mathcal{A} = \{0, 1, \dots, q-1\}$$
 alphabet $\mathbf{u} = (\mathbf{u}_i)_{i \in \mathbb{N}}, \, \mathbf{u}_i \in \mathcal{A}$ infinite word over \mathcal{A} $\mathbf{w} = \mathbf{u}_j \mathbf{u}_{j+1} \cdots \mathbf{u}_{j+n-1}$ factor of \mathbf{u} of length n $\mathcal{L}_n(\mathbf{u})$ the set of factors of \mathbf{u} of length n $\mathcal{L}(\mathbf{u}) = \bigcup_{n \in \mathbb{N}} \mathcal{L}_n(\mathbf{u})$ the language of \mathbf{u} Factor complexity of \mathbf{u} is the function $\mathcal{C} : \mathbb{N} \to \mathbb{N}$, given by

Basic definitions – fixed point of substitution

 $\varphi(0)=0$ v, $v\in\mathcal{A}^+$, then *the fixed point* of φ given by $\mathbf{u}:=\lim_{n\to\infty}\varphi^n(0)=\varphi^\omega(0)$ is an infinite word which is *uniformly recurrent*.

A substitution φ is primitive if for all $a,b\in\mathcal{A}$ there exists $k\in\mathbb{N}$ such that the word $\varphi^k(a)$ contains b. In what follows, we assume that φ is *primitive and injective*.

In general, complexity of a fixed point of any primitive substitution is a sublinear function $C(n) \le an + b$, $a, b \in \mathbb{N}$.

Known results for simple Parry numbers

Simple Parry numbers (Bernat, Frougny, Masáková, Pelantová):

- $t_1 = t_2 = \cdots = t_{m-1}$ or $t_1 > \max\{t_2, \ldots, t_{m-1}\}$ exact value of C(n) is known,
- in particular, $(m-1)n+1 \le C(n) \le mn$, for all $n \ge 1$,
- C(n) is affine \Leftrightarrow
 - 1) $t_m = 1$
 - 2) for all i = 2, 3, ..., m-1 we have

$$t_i t_{i+1} \dots t_{m-1} t_1 \dots t_{i-1} \leq t_1 t_2 \dots t_{m-1}$$
.

Then C(n) = (m-1)n + 1.

Special factors

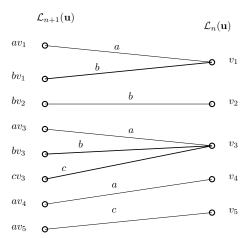
For $v \in \mathcal{L}(\mathbf{u})$ we define the set of *left extensions*

$$\mathsf{Lext}(v) := \{ a \in \mathcal{A} \mid av \in \mathcal{L}(\mathbf{u}) \}.$$

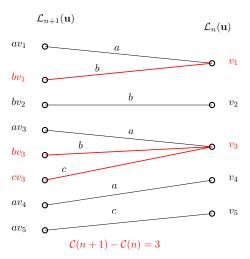
If #Lext(v) > 1, then v is said to be *left special (LS) factor*. Analogously are defined right special (RS) factors.

Parry numbers

LS factors and factor complexity



LS factors and factor complexity



LS factors and factor complexity

For the first difference of the complexity function holds:

$$\triangle C(n) := C(n+1) - C(n) = \sum_{\substack{v \in \mathcal{L}_n(\mathbf{u}) \\ v \text{ is LS}}} (\# \mathsf{Lext}(v) - 1).$$

Complete knowledge of all LS factors along with the number of their left extensions allow us to evaluate C(n).

$$\triangle C(n) > 1$$
 for all $n \in \mathbb{N} \Leftrightarrow \mathbf{u}$ is aperiodic.

Definition

An infinite word w is called infinite LS branch of u if each prefix of w is a LS factor of u.

$$\textit{Lext}(\mathbf{w}) = \bigcap_{\textit{v prefix } \mathbf{w}} \textit{Lext}(\textit{v}).$$

Definition

An infinite word \mathbf{w} is called infinite LS branch of \mathbf{u} if each prefix of \mathbf{w} is a LS factor of u.

$$\textit{Lext}(\mathbf{w}) = \bigcap_{\textit{v prefix } \mathbf{w}} \textit{Lext}(\textit{v}).$$

u periodic ⇒ no infinite LS branches,

Definition

An infinite word \mathbf{w} is called infinite LS branch of \mathbf{u} if each prefix of \mathbf{w} is a LS factor of \mathbf{u} .

$$Lext(\mathbf{w}) = \bigcap_{v \text{ prefix } \mathbf{w}} Lext(v).$$

- **u** periodic ⇒ no infinite LS branches,
- **u** aperiodic ⇒ at least one infinite LS branch,

Definition

An infinite word \mathbf{w} is called infinite LS branch of \mathbf{u} if each prefix of \mathbf{w} is a LS factor of \mathbf{u} .

$$Lext(\mathbf{w}) = \bigcap_{v \text{ prefix } \mathbf{w}} Lext(v).$$

- u periodic ⇒ no infinite LS branches,
- **u** aperiodic ⇒ at least one infinite LS branch,
- u is a fixed point of a primitive substitution ⇒ finite number of infinite LS branches (consequence of the fact that △C(n) is bounded (Mossé, Cassaigne))

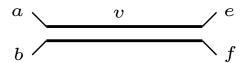
Definition

A LS factor v is called maximal LS factor if for each letter $e \in A$, ve is not a LS factor.

Structure of LS factors – maximal LS factors

Definition

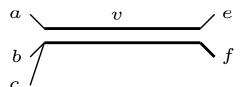
A LS factor v is called maximal LS factor if for each letter $e \in A$, ve is not a LS factor.



Structure of LS factors – maximal LS factors

Definition

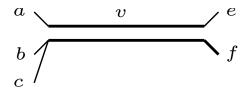
A LS factor v is called maximal LS factor if for each letter $e \in A$, ve is not a LS factor.



Structure of LS factors – maximal LS factors

Definition

A LS factor v is called maximal LS factor if for each letter $e \in A$, ve is not a LS factor.



Definition

A LS factor v having $a, b \in Lext(v)$ is called (a, b)-maximal LS factor if for each letter $e \in A$ we is not a LS factor with left extensions a and b.

Example: $\varphi: 1 \mapsto 1211, 2 \mapsto 311, 3 \mapsto 2412, 4 \mapsto 435, 5 \mapsto 534$

$$\mathbf{u}=arphi^\omega(1)$$

$$\frac{1}{2}$$
 \searrow w ———

•000

Example: $\varphi: 1 \mapsto 1211, 2 \mapsto 311, 3 \mapsto 2412, 4 \mapsto 435, 5 \mapsto 534$

$$\mathbf{u}=arphi^\omega(\mathbf{1})$$

$$\frac{1}{2} \Big\rangle \mathbf{w} \xrightarrow{\varphi\text{-image}} \quad \frac{1211}{311} \Big\rangle \varphi(\mathbf{w})$$

•000

Example: $\varphi: 1 \mapsto 1211, 2 \mapsto 311, 3 \mapsto 2412, 4 \mapsto 435, 5 \mapsto 534$

$$\mathbf{u}=arphi^\omega(\mathbf{1})$$

•000

Example: $\varphi: 1 \mapsto 1211, 2 \mapsto 311, 3 \mapsto 2412, 4 \mapsto 435, 5 \mapsto 534$

$$\mathbf{u}=arphi^\omega(1)$$

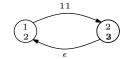
$$\begin{array}{c|c} & & f_L(1,2) = 11 \\ \hline \begin{matrix} 1 \\ 2 \end{matrix} \\ \hline \begin{matrix} 2 \end{matrix} \\ \hline \begin{matrix} \varphi\text{-image} \end{matrix} \\ \hline \begin{matrix} 311 \end{matrix} \\ \hline \begin{matrix} 311 \end{matrix} \\ \hline \begin{matrix} \varphi(\mathbf{w}) \end{matrix} \\ \hline \begin{matrix} f\text{-image} \end{matrix} \\ \hline \begin{matrix} 2 \\ 3 \end{matrix} \\ \hline \begin{matrix} 3 \end{matrix} \\ \hline \begin{matrix} 11\varphi(\mathbf{w}) \end{matrix} \\ g_L(1,2) = \{2,3\} \end{array}$$

$$\begin{array}{c} \text{311} \\ \text{2} \\ \text{3} \end{array} \rangle \mathbf{w} \xrightarrow{\varphi \text{-image}} \begin{array}{c} \text{311} \\ \text{2412} \end{array} \rangle \varphi(\mathbf{w}) \xrightarrow{f \text{-image}} \begin{array}{c} \text{1} \\ \text{2} \\ \text{2} \\ \text{3} \end{array} \rangle \varphi(\mathbf{w})$$

Infinite LS branches •000

Example: $\varphi: 1 \mapsto 1211, 2 \mapsto 311, 3 \mapsto 2412, 4 \mapsto 435, 5 \mapsto 534$

$$\mathbf{u}=arphi^\omega(\mathbf{1})$$



Graph GL

0000

Vertices: unordered couples of distinct letters (a, b).

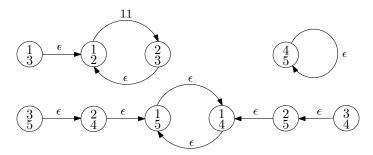
Edges: if $g_l(a,b) = \{c,d\}$, then there is an edge between (a,b)and (c, d) with label $f_l(a, b)$.

Graph GL

Vertices: unordered couples of distinct letters (a, b).

Edges: if $g_L(a, b) = \{c, d\}$, then there is an edge between (a, b)and (c, d) with label $f_l(a, b)$.

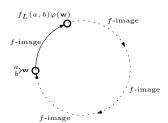
Example: $\varphi: 1 \mapsto 1211, 2 \mapsto 311, 3 \mapsto 2412, 4 \mapsto 435, 5 \mapsto 534$



Structure of infinite branches

Assumption: For each infinite LS branch w it holds that

- a) f-image of w is uniquely given,
- b) there exists exactly one infinite LS branch \mathbf{w}' such that \mathbf{w} is f-image of \mathbf{w}' .



Structure of infinite branches

Assumption: For each infinite LS branch w it holds that

- a) f-image of w is uniquely given,
- b) there exists exactly one infinite LS branch \mathbf{w}' such that \mathbf{w} is f-image of \mathbf{w}' .

Theorem

Let **w** be an infinite LS branch, $a, b \in Lext(\mathbf{w})$. Then there exists l > 0 such that

$$\mathbf{w} = f_L(g_L^{l-1}(a,b)) \cdots \varphi^{l-2}(f_L(g_L(a,b))\varphi^{l-1}(f_L(a,b))\varphi^l(\mathbf{w}).$$

Assumption: For each infinite LS branch w it holds that

- a) f-image of w is uniquely given,
- b) there exists exactly one infinite LS branch \mathbf{w}' such that \mathbf{w} is f-image of \mathbf{w}' .

Theorem

Let **w** be an infinite LS branch, $a, b \in Lext(\mathbf{w})$. Then there exists l > 0 such that

$$\mathbf{w} = f_L(g_L^{l-1}(a,b)) \cdots \varphi^{l-2}(f_L(g_L(a,b))\varphi^{l-1}(f_L(a,b))\varphi^l(\mathbf{w}).$$

• $f_l = \epsilon \Rightarrow \mathbf{w} = \varphi^l(\mathbf{w})$ and (a, b) is a vertex of a cycle labelled by ϵ only,

Assumption: For each infinite LS branch w it holds that

- a) f-image of w is uniquely given,
- b) there exists exactly one infinite LS branch \mathbf{w}' such that \mathbf{w} is f-image of \mathbf{w}' .

Theorem

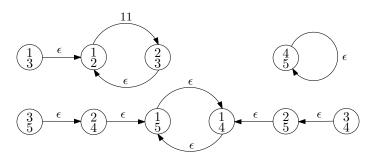
Let \mathbf{w} be an infinite LS branch, $a, b \in Lext(\mathbf{w})$. Then there exists l > 0 such that

$$\mathbf{w} = f_L(g_L^{l-1}(a,b)) \cdots \varphi^{l-2}(f_L(g_L(a,b))\varphi^{l-1}(f_L(a,b))\varphi^l(\mathbf{w}).$$

- $f_L = \epsilon \Rightarrow \mathbf{w} = \varphi^I(\mathbf{w})$ and (a, b) is a vertex of a cycle labelled by ϵ only,
- otherwise, (a, b) is a vertex of a cycle labelled not only by ϵ .

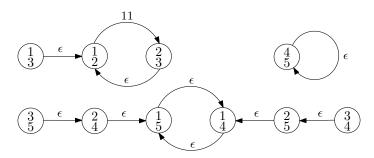
$$\varphi: 1 \mapsto 1211, 2 \mapsto 311, 3 \mapsto 2412, 4 \mapsto 435, 5 \mapsto 534$$

$$\begin{split} \text{Lext(1)} &= \{1,2,3,4,5\}, \text{Lext(2)} = \{1,4,5\}, \text{Lext(3)} = \\ \{1,4,5\}, \text{Lext(4)} &= \{1,2,3\}, \text{Lext(5)} = \{1,2,3\} \end{split}$$



$$\varphi: 1 \mapsto 1211, 2 \mapsto 311, 3 \mapsto 2412, 4 \mapsto 435, 5 \mapsto 534$$

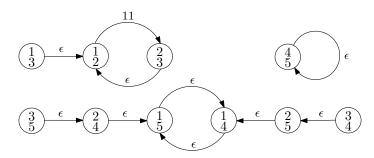
$$\begin{split} \text{Lext(1)} &= \{1,2,3,4,5\}, \text{Lext(2)} = \{1,4,5\}, \text{Lext(3)} = \\ \{1,4,5\}, \text{Lext(4)} &= \{1,2,3\}, \text{Lext(5)} = \{1,2,3\} \end{split}$$



•
$$\mathbf{w} = 11\varphi^2(\mathbf{w}) \rightarrow 11\varphi^2(11)\varphi^4(11)\cdots$$

$$\varphi: 1 \mapsto 1211, 2 \mapsto 311, 3 \mapsto 2412, 4 \mapsto 435, 5 \mapsto 534$$

$$\begin{split} \text{Lext(1)} &= \{1,2,3,4,5\}, \text{Lext(2)} = \{1,4,5\}, \text{Lext(3)} = \\ \{1,4,5\}, \text{Lext(4)} &= \{1,2,3\}, \text{Lext(5)} = \{1,2,3\} \end{split}$$



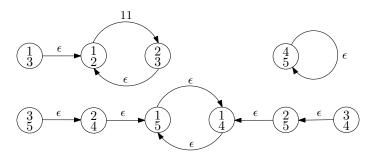
• $\varphi(11)\varphi^3(11)\cdots$, $11\varphi^2(11)\varphi^4(11)\cdots$

Infinite LS branches

Example – how to identify infinite LS branche

$$\varphi: 1 \mapsto 1211, 2 \mapsto 311, 3 \mapsto 2412, 4 \mapsto 435, 5 \mapsto 534$$

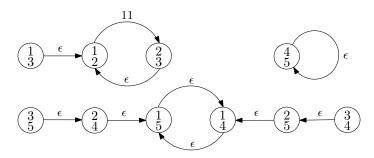
$$\begin{split} \text{Lext(1)} &= \{1,2,3,4,5\}, \text{Lext(2)} = \{1,4,5\}, \text{Lext(3)} = \\ \{1,4,5\}, \text{Lext(4)} &= \{1,2,3\}, \text{Lext(5)} = \{1,2,3\} \end{split}$$



- $\varphi(11)\varphi^3(11)\cdots$, $11\varphi^2(11)\varphi^4(11)\cdots$
- $\varphi^{\omega}(1), \varphi^{\omega}(4), \varphi^{\omega}(5), (\varphi^2)^{\omega}(2), (\varphi^2)^{\omega}(3)$

$$\varphi$$
: 1 \mapsto 1211, 2 \mapsto 311, 3 \mapsto 2412, 4 \mapsto 435, 5 \mapsto 534

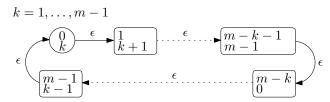
$$\begin{split} \text{Lext(1)} &= \{1,2,3,4,5\}, \text{Lext(2)} = \{1,4,5\}, \text{Lext(3)} = \\ \{1,4,5\}, \text{Lext(4)} &= \{1,2,3\}, \text{Lext(5)} = \{1,2,3\} \end{split}$$



- $\varphi(11)\varphi^3(11)\cdots$, $11\varphi^2(11)\varphi^4(11)\cdots$
- $\varphi^{\omega}(1), (\varphi^2)^{\omega}(2), (\varphi^2)^{\omega}(3)$

$GL_{\varphi_{\beta}}$ for simple Parry numbers

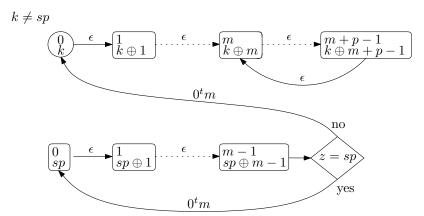
 $f_L(a,b)=\epsilon$ for all $a,b\in\{0,1,\ldots,m-1\}$ and $\mathbf{u}_\beta=\varphi^\omega_\beta(0)$ is the only fixed point



 \Rightarrow **u**_{β} is the only infinite LS branch

$GL_{\varphi_{\beta}}$ for non-simple Parry numbers

$$m-1\mapsto 0^{t_m}m, m+p-1\mapsto 0^{t_{m+p}}m, f_L(m-1,m+p-1)=0^tm, t=\min\{t_m,t_{m+p}\}, \ \text{Lext}(0^tm)=\{0,z\}, \ s\geq 1$$



$$t = \min\{t_m, t_{m+p}\}, \, \text{Lext}(0^t m) = \{0, z\}, \, s \ge 1$$

Definition

$$\beta \in \mathcal{S} \Leftrightarrow \mathbf{z} = \mathbf{sp} \Leftrightarrow$$

a)
$$d_{\beta}(1) = t_1 \dots t_m (0 \dots 0 t_{m+p})^{\omega}$$
 and $t_m > t_{m+p}$

b)
$$d_{\beta}(1) = t_1 \dots \underbrace{t_{m-qp}}_{\neq 0} \underbrace{0 \dots 0}_{qp-1} t_m (t_m + 1 \dots t_{m+p})^{\omega}, \quad q \geq 1, t_m < t_{m+p},$$

$$\beta \in \mathcal{S}_0 \Leftrightarrow d_{\beta}(1) = t_1(0 \cdots 0(t_1-1))^{\omega}.$$

Theorem

• If β is a non-simple Parry and p > 1, then \mathbf{u}_{β} is an infinite LS branch with left extensions $\{m, m+1, \ldots, m+p-1\}$.

- If β is a non-simple Parry and p > 1, then \mathbf{u}_{β} is an infinite LS branch with left extensions $\{m, m+1, \dots, m+p-1\}$.
- If $\beta \notin S$, then \mathbf{u}_{β} is the only one infinite LS branch.

- If β is a non-simple Parry and p > 1, then \mathbf{u}_{β} is an infinite LS branch with left extensions $\{m, m+1, \dots, m+p-1\}$.
- If $\beta \notin S$, then \mathbf{u}_{β} is the only one infinite LS branch.
- If $\beta \in S$, then there are m infinite LS branches

$$0^{t} m \varphi^{m}(0^{t} m) \varphi^{2m}(0^{t} m) \dots$$

$$\vdots$$

$$\varphi^{m-1}(0^{t} m) \varphi^{2m-1}(0^{t} m) \varphi^{3m-1}(0^{t} m) \dots$$

Maximal LS factors

f-image of maximal factors

$$\begin{array}{c} \mathbf{a} \\ \mathbf{b} \\ \end{array} \searrow \mathbf{w} \Big\langle \begin{array}{c} \mathbf{c} \\ \mathbf{d} \\ \end{array} \qquad \qquad \blacktriangleright \quad g_L(a,b) \Big\rangle f_L(a,b) \varphi(\mathbf{w}) f_R(c,d) \Big\langle g_R(c,d) \\ \end{array}$$

Theorem

• If $t_1 > 1$ and $\beta \notin S_0$, then (a, b)-maximal factors are f-images of the (0, p)-maximal factor 0^{t_1-1}

$$\varphi^n(0^{t_1-1}1)(1+n)^{-1}, \quad n=0,1,\ldots,m-1$$

 $0^t m \varphi^m(0^{t_1-1}1)(1+m)^{-1}, \quad \cdots$

Maximal LS factors

f-image of maximal factors

$$\begin{array}{c} \mathbf{a} \\ \mathbf{b} \\ \end{array} \searrow \mathbf{w} \Big\langle \begin{array}{c} \mathbf{c} \\ \mathbf{d} \\ \end{array} \qquad \qquad \blacktriangleright \quad g_L(a,b) \Big\rangle f_L(a,b) \varphi(\mathbf{w}) f_R(c,d) \Big\langle g_R(c,d) \\ \end{array}$$

Theorem

• If $t_1 > 1$ and $\beta \notin S_0$, then (a, b)-maximal factors are f-images of the (0, p)-maximal factor 0^{t_1-1}

$$\varphi^n(0^{t_1-1}1)(1+n)^{-1}, \quad n=0,1,\ldots,m-1$$

 $0^t m \varphi^m(0^{t_1-1}1)(1+m)^{-1}, \quad \cdots$

• If $\beta \in S_0$, there are no (a, b)-maximal factors in \mathbf{u}_{β} .

- The factor complexity of \mathbf{u}_{β} is affine $\Leftrightarrow \mathbf{u}_{\beta}$ does not contain any (a,b)-maximal factor $\Leftrightarrow \beta \in \mathcal{S}_0 \Leftrightarrow d_{\beta}(1) = t_1(0 \cdots 0(t_1-1))^{\omega}$. Then $\mathcal{C}(n) = (m+p-1)n+1$.
 - The first equivalence is not valid in general (Chacon),
 - $\beta \in S_0 \Rightarrow \beta$ is an unitary Pisot number (Frougny).

- The factor complexity of \mathbf{u}_{β} is affine $\Leftrightarrow \mathbf{u}_{\beta}$ does not contain any (a,b)-maximal factor $\Leftrightarrow \beta \in \mathcal{S}_0 \Leftrightarrow d_{\beta}(1) = t_1(0 \cdots 0(t_1-1))^{\omega}$. Then $\mathcal{C}(n) = (m+p-1)n+1$.
 - The first equivalence is not valid in general (Chacon),
 - $\beta \in \mathcal{S}_0 \Rightarrow \beta$ is an unitary Pisot number (Frougny).
- If p > 1 and $\beta \in S_0$, then \mathbf{u}_{β} and $0^{-1}\mathbf{u}_{\beta}$ are the only infinite LS branches.

- The factor complexity of \mathbf{u}_{β} is affine $\Leftrightarrow \mathbf{u}_{\beta}$ does not contain any (a,b)-maximal factor $\Leftrightarrow \beta \in \mathcal{S}_0 \Leftrightarrow d_{\beta}(1) = t_1(0 \cdots 0(t_1-1))^{\omega}$. Then $\mathcal{C}(n) = (m+p-1)n+1$.
 - The first equivalence is not valid in general (Chacon),
 - $\beta \in S_0 \Rightarrow \beta$ is an unitary Pisot number (Frougny).
- If p > 1 and $\beta \in S_0$, then \mathbf{u}_{β} and $0^{-1}\mathbf{u}_{\beta}$ are the only infinite LS branches.
- known result: \mathbf{u}_{β} is Sturmian $\Leftrightarrow p = 1$ and $\beta \in \mathcal{S}_0$, i.e. $d_{\beta}(1) = t_1(t_1 1)^{\omega}$.

Theorem

- The factor complexity of \mathbf{u}_{β} is affine $\Leftrightarrow \mathbf{u}_{\beta}$ does not contain any (a,b)-maximal factor $\Leftrightarrow \beta \in \mathcal{S}_0 \Leftrightarrow d_{\beta}(1) = t_1(0\cdots 0(t_1-1))^{\omega}$. Then $\mathcal{C}(n) = (m+p-1)n+1$.
 - The first equivalence is not valid in general (Chacon),
 - $\beta \in S_0 \Rightarrow \beta$ is an unitary Pisot number (Frougny).
- If p > 1 and $\beta \in S_0$, then \mathbf{u}_{β} and $0^{-1}\mathbf{u}_{\beta}$ are the only infinite LS branches.
- known result: \mathbf{u}_{β} is Sturmian $\Leftrightarrow p = 1$ and $\beta \in \mathcal{S}_0$, i.e. $d_{\beta}(1) = t_1(t_1 1)^{\omega}$.

THE END