
Crystallographic number systems
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Introduction.

Purpose: dynamical systems associated to fractal tiles
providing crystallographic tilings.

Questions: attractor of the dynamical systems, topology of
the tiles.

Results: correspondances with canonical number systems.
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Crystallographic groups.

Γ ≤ Isom(Rn) is a crystallographic group if

Γ ' Zn n {id , r2, . . . , rd},

where r2, . . . , rd are isometries of finite order.

n = 2: 17 crystallographic groups. Example :

a(x , y) = (x+1, y), b(x , y) = (x , y+1), c(x , y) = (−x ,−y).

A p2-group is isomorphic to the group generated by a, b, c.
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Crystallographic reptiles (Gelbrich, 1994).

Let Γ crystallographic group,

g expanding affine mapping such that gΓg−1 ≤ Γ,

D ⊂ Γ finite complete set of right coset representatives of
Γ/gΓg−1: Γ =

⋃
δ∈D gΓg−1δ (disjoint).

A crystile with respect to (Γ, g ,D) is a compact set
T = T o ⊂ Rn, such that

Rn =
⋃
γ∈Γ

γ(T ) (1)

without overlapping (tiling property)

and
g(T ) =

⋃
δ∈D

δ(T ) (2)

(replication property).



Crystallographic reptiles (Gelbrich, 1994).

Let Γ crystallographic group,

g expanding affine mapping such that gΓg−1 ≤ Γ,

D ⊂ Γ finite complete set of right coset representatives of
Γ/gΓg−1: Γ =

⋃
δ∈D gΓg−1δ (disjoint).

A crystile with respect to (Γ, g ,D) is a compact set
T = T o ⊂ Rn, such that

Rn =
⋃
γ∈Γ

γ(T ) (1)

without overlapping (tiling property)

and
g(T ) =

⋃
δ∈D

δ(T ) (2)

(replication property).



Crystallographic reptiles (Gelbrich, 1994).

Let Γ crystallographic group,

g expanding affine mapping such that gΓg−1 ≤ Γ,

D ⊂ Γ finite complete set of right coset representatives of
Γ/gΓg−1: Γ =

⋃
δ∈D gΓg−1δ (disjoint).

A crystile with respect to (Γ, g ,D) is a compact set
T = T o ⊂ Rn, such that

Rn =
⋃
γ∈Γ

γ(T ) (1)

without overlapping (tiling property)

and
g(T ) =

⋃
δ∈D

δ(T ) (2)

(replication property).



Crystallographic reptiles (Gelbrich, 1994).

Let Γ crystallographic group,

g expanding affine mapping such that gΓg−1 ≤ Γ,

D ⊂ Γ finite complete set of right coset representatives of
Γ/gΓg−1: Γ =

⋃
δ∈D gΓg−1δ (disjoint).

A crystile with respect to (Γ, g ,D) is a compact set
T = T o ⊂ Rn, such that

Rn =
⋃
γ∈Γ

γ(T ) (1)

without overlapping (tiling property)

and
g(T ) =

⋃
δ∈D

δ(T ) (2)

(replication property).



Crystallographic reptiles (Gelbrich, 1994).

Let Γ crystallographic group,

g expanding affine mapping such that gΓg−1 ≤ Γ,

D ⊂ Γ finite complete set of right coset representatives of
Γ/gΓg−1: Γ =

⋃
δ∈D gΓg−1δ (disjoint).

A crystile with respect to (Γ, g ,D) is a compact set
T = T o ⊂ Rn, such that

Rn =
⋃
γ∈Γ

γ(T ) (1)

without overlapping (tiling property)

and
g(T ) =

⋃
δ∈D

δ(T ) (2)

(replication property).



Crystallographic reptiles (Gelbrich, 1994).

Let Γ crystallographic group,

g expanding affine mapping such that gΓg−1 ≤ Γ,

D ⊂ Γ finite complete set of right coset representatives of
Γ/gΓg−1: Γ =

⋃
δ∈D gΓg−1δ (disjoint).

A crystile with respect to (Γ, g ,D) is a compact set
T = T o ⊂ Rn, such that

Rn =
⋃
γ∈Γ

γ(T ) (1)

without overlapping (tiling property)

and
g(T ) =

⋃
δ∈D

δ(T ) (2)

(replication property).



Example of a p2-crystile.

g(x , y) =

(
0 −3
1 −1

)(
x
y

)
+

(
1
0

)
.

Figure: T defined by g(T ) = T ∪ a(T ) ∪ c(T ) and its neighbors.
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Associated dynamical system.

(Γ, g ,D) crystile data with id ∈ D.
Γ = gΓg−1D.

Define

Φ : Γ → Γ
γ 7→ Φ(γ) such that γ = gΦ(γ)g−1δ.

δ ∈ D and Φ(γ) are uniquely defined by γ.

Iterating Φ, one gets

γ = gγ1g−1δ0

= g gγ2g−1δ1g−1 δ0

= . . .
= gmΦm(γ)g−1δm−1 . . . g

−1δ1g−1δ0

with digits δ0, . . . , δm−1 ∈ D.
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Crystallographic number system.

Definition. (Γ, g ,D) is a crystallographic number system if for
every γ ∈ Γ, Φm(γ) = id for some m ∈ N. One then writes
γ = (id∞, δm−1, . . . , δ0)g or just (δm−1, . . . , δ0)g .

Example. Consider Γ ' Zn and g(x) = Mx with M expanding
integer matrix.

Then gΓg−1 ≤ Γ means MZn ≤ Zn.

The digit set has the form

D =

{
x 7→ x +

(
pi

qi

)
; 1 ≤ i ≤ d

}
.

(Γ, g ,D) is a crystallographic number system iff(
M,N :=

{(
pi

qi

)
; 1 ≤ i ≤ d

})
is a number system.
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Characterization of Crystems : counting automaton.

(Γ, g ,D) given.

States: γ ∈ Γ.

Edges: γ
δ|δ′

−−→ γ′ iff δγ = gγ′g−1δ′.

Note that γ
id |δ′−−→ Φ(γ).

(Γ, g ,D) is a crystem iff for every γ there is a finite walk

γ
id |δ0−−−→ γ1

id |δ1−−−→ . . .
id |δm−1−−−−→ id

in the counting automaton.

If
γ = (id∞, δm−1, . . . , δ0)g ,

then
γγ0 = gmγ′g−m(δ′m−1, . . . , δ

′
0)g

where

γ0
δ0|δ′0−−−→ γ1

δ1|δ′1−−−→ . . .
δm−1|δ′m−1−−−−−−→ γ′.
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Example of p2-crystem (Γ =< a, b, c >).

g(x , y) =

(
0 1
−3 0

)(
x
y

)
+

(
0
−1

2

)
.

Figure: T : g(T ) = T ∪ b(T ) ∪ c(T ) and counting subautomaton.
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Characterization by a subautomaton.

(Γ, g ,D) is a crystem iff for every γ there is a finite walk

γ
id |δ0−−−→ γ1

id |δ1−−−→ . . .
id |δm−1−−−−→ id (3)

in the counting automaton.

Suppose Property (3) is fulfilled by the states of a stable
subautomaton that generates Γ. Then (Γ, g ,D) is a crystem.
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Example of p2-non-crystem (Γ =< a, b, c >).

g(x , y) =

(
0 −1
−3 −1

)(
x
y

)
.

Figure: T : g(T ) = T ∪ b(T ) ∪ a−1c(T ) and counting subautomaton.
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Example of p3-crystem
Γ =< a, b, r >, b(x , y) = (x + 1

2 , y +
√

3
2 ), r = rot(0; 2π

3 )).

g(x , y) =

(
0

√
3

−
√

3 0

)(
x
y

)
.

Figure: T : g(T ) = T ∪ ac2(T ) ∪ bc2(T ) and its neighbors.
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Complete sets of right coset representatives.

Let (Γ, g ,D) with Γ crystallographic group,

g(x) = Mx + t

D = {id ,Di (x) + di}.

Then
D is a complete set of right coset representatives of Γ/gΓg−1

iff

N := {MD−1
i M−1di + (In −MD−1

i M−1)t}

is a complete set of coset representatives of Zn/MZn.
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A class of p2-crystems.

Γ = {apbqc r ; p, q ∈ Z, r = 0, 1},

g(x , y) =

(
α β
ε δ

)
︸ ︷︷ ︸

M∈Z2×Z2

(
x
y

)
+

(
B−1

2
0

)
, |det(M)| = B ≥ 2.

and
D = {id , a, . . . , aB−2, c}.

Then D is a complete set of coset rep. iff

N =

{(
0
0

)
, . . . ,

(
B − 2

0

)
,

(
B − 1

0

)}
is a complete

set of coset rep. of Z2/MZ2 (iff ε = ±1).
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A class of p2-crystems : g -basis and M-basis.

Suppose γ = apbq = (id∞, δm−1, . . . , δ0)g with
δ0, . . . , δm−1 ∈ D.

Then

(
p
q

)
= (0∞, δ′p, . . . , δ

′
0)M where the digits

δ′1, . . . , δ
′
p ∈ N are obtained via the two-states automaton:

Figure: Exchange automaton g −M.
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A class of p2-crystems : equivalence to canonical number
systems.

Hence, (g ,D) is a crystem iff (M,N ) is a canonical number
system iff −1 ≤ −Tr(M) ≤ B ≥ 2.

If T satisfies g(T ) =
⋃

δ∈D δ(T ), then

T latt := T ∪ −T + (M− I2)−1

(
B−1

2
0

)
satisfies

MT latt = T latt ∪ T latt +

(
1
0

)
∪ . . . ∪ T latt +

(
B − 1

0

)
(CNS-tile).

T is disk-like implies T latt is disk-like.
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Conclusion.

For the preceding p2-class, conditions on the coefficients of M
for T to be disk-like ?

The results with D = {id , a, . . . , aB−2, c} do not generalize to
the group p3 : symmetries have finite g -representation but
infinite M-representation.

Conjecture : there is still an equivalence between (g ,D) is a
crystem and the corresponding (M,N ) is a number system.
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