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Number systems over Z

I Let q ≥ 2 be an integer. Then every positive integer n can
be represented in the form

n =
∑
`≥0

d`q
`.

I We call a function f strictly q-additive if it acts on the
q-ary digits of a number. E.g. the sum of digits function

sq(n) =
∑
`≥0

d`.

M.G. Madritsch Properties of sets with digital restrictions JN 2008

3 / 31



Department for Analysis and Computational Number Theory

Number systems over Z

I Let q ≥ 2 be an integer. Then every positive integer n can
be represented in the form

n =
∑
`≥0

d`q
`.

I We call a function f strictly q-additive if it acts on the
q-ary digits of a number. E.g. the sum of digits function

sq(n) =
∑
`≥0

d`.

M.G. Madritsch Properties of sets with digital restrictions JN 2008

3 / 31



Department for Analysis and Computational Number Theory

The digitally restricted set

Let q1, . . . , qr be coprime positive integers, j1, . . . , jr and
m1, . . . ,mr be positive integers. Then we define the set

S := {n ∈ N : f1(n) ≡ j1 (mod m1), . . . , fr(n) ≡ jr (mod mr)} ,

where fi is a qi -additive function.
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The distribution within the set S

Let H the subgroup generated by the digital restrictions, i.e.

H := {(sq1(n) ≡ j1 (m1), . . . , sqr (n) ≡ jr (mr)) : n ≥ 1} .

Then Kim could show the distribution into these classes.

Theorem Kim (1999)

1

N
(S ∩ [1,N]) =

1

#H
+O

(
N−δ

)
where δ > 0.
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Waring’s problem and uniform distribution

I We look for an asymptotic formula for the number of
solutions of

n = xk
1 + · · ·+ xk

s , x1, . . . , xs ∈ S.

I We order the elements of S by the sequence (si)i≥0. Is the
sequence

(h(si))i≥0

uniformly distributed modulo 1 for h a polynomial with at
least one irrational coefficient?
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An idea of Geĺfond

The main rôle in the proof is played by the following exponential
sum, which can be rewriten in the following way.

∑
n≤N
n∈S

e (h(n)) =
1

m1 · · ·mr

m1−1∑
ri=0

· · ·
m1−1∑
ri=0

e

(
−

r∑
i=1

ri ji
mi

)

×
∑
n≤N

e

(
h(n) +

r∑
i=1

ri
mi

fi(n)

)

where e(x) := exp(2πi x).
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Higher correlation

In order to estimate the exponential sum one has to apply the
method of Weyl differences and thus consider correlations of the
form

∑
h1≤H1

· · ·
∑

hk≤Hk

∣∣∣∣∣∑
n≤N

e

(
ri
mi

∆k(sqi
(n); h1, . . . , hk)

)∣∣∣∣∣
2

.

The main problem here is the carry propagation within the
higher correlation sums.
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Waring’s Problem with digital restrictions

Theorem Thuswaldner,Tichy (2005)

The equation

n = xk
1 + · · ·+ xk

s , sq(x1) ≡ j1 (mr), . . . , sq(xs) ≡ js (ms),

has always a solution for sufficiently large n provided that s is
large in terms of k.

Theorem Wagner (2007)

The same holds for the equation

n = xk
1 + · · ·+ xk

s , x1, . . . , xs ∈ S.
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Overview

Z Fq[X ] Fq[X ,Y ]
q-additive
functions

Kim

Uniform
Distribution

Waring’s
Problem

Thuswaldner
Tichy

Wagner
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Definitions of the ”integers” and the ”reals”

I Finite field: Fq with q = pn elements.

I Valuation at infinity: For A = P/Q ∈ Fq(X )

ν∞(A) := deg Q − deg P , |A|∞ = q−ν∞(A).

I Completition of Fq: Fq((X−1)) the set of formal Laurent
series.

I Elements: For α ∈ Fq((X−1)) we get that

α =
∞∑

k=ν∞(α)

akX−k (ak ∈ Fq).
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Haar measure and character E

I Haar measure: For all β ∈ Fq((X−1))∫
ν∞(α−β)<−n

1 · dα = q−n.

I Character: Res(α) is the coefficient of X−1 of α.

E (α) := exp (2πi tr(Resα)/p) ,

where tr : Fq → Fp is the usual trace of an element of Fq in
Fp.
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Q-ary digital expansion

I Q-ary digital expansion: Fix Q ∈ Fq[X ], then for A ∈ Fq[X ]

A =
∑
i≥0

DiQ
i (deg Di < deg Q).

I Strongly Q-additive:
A function f : Fq[X ]→ Fq[X ] is called strongly Q-additive
if

f (A) :=
∑
i≥0

f (Di).
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The general setting

I Fix Qi -additive functions fi (1 ≤ i ≤ r) and consider the set

S := {A ∈ Fq[X ] : f1(A) ≡ J1 (M1), . . . , fr(A) ≡ Jr (Mr)}.

I By (S`)`≥0 we denote a sequence through all elements of S
such that m ≤ n⇒ deg Sm ≤ deg Sn.
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The distribution into the different residue classes

As in the case of number systems over Z we could consider the
distribution into residue classes. Therefore let H denote the
subgroup generated by the set S, i.e.,

H := {(f1(A) ≡ J1 (M1), . . . , fr(A) ≡ Jr (Mr)) : A ∈ Fq[X ]}.

Then M and Thuswaldner (2008) could show by the methods of
Drmota and Gutenbrunner (2005) that

1

N
# {Z` ∈ S : 0 ≤ ` < N} =

1

#H
+O

(
N−δ

)
with δ > 0.
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The exponential sum

In this number field the exponential sum looks similar to that in
Z. Thus we have to consider

N−1∑
`=0

E

(
h(Z`) +

r∑
i=1

Ri

Mi
fi(Z`)

)

where (Z`)`≥0 is a sequence of all elements of Fq[X ] such that

m ≤ n⇒ deg Zm ≤ deg Zn

for all m, n ∈ N.
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Higher correlation

In order to estimate the exponential sum on the slide before we
have again to consider higher correlation of the following form

∑
deg H1<h1

· · ·
∑

deg Hk<hk

∣∣∣∣∣
N−1∑
`=0

E

(
r∑

i=1

Ri

Mi
∆k(fi(Z`); H1, . . . ,Hk)

)∣∣∣∣∣ .
Here we do not have to cope with carry propagation therefore
we could get the effect of cancelation.
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Uniform distribution

Theorem M,Thuswaldner (2008)

Let h be a polynomial of degree 0 < k < p = char Fq. Then

the sequence h(Si) is uniformly distributed in Fq((X−1))
if and only if

at least one coefficient of h(Y )− h(0) is irrational.
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Corresponding problem of Waring

Theorem M (200?)

For N ∈ Fq[X ] the equation

N = Pk
1 + · · ·+ Pk

s ,
(
Pi ∈ S, deg Pi <

⌈
deg N

k

⌉)
always has a solution provided N has sufficiently large degree
and s > k2k .
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Number systems over function fields

Number systems in these fields have been investigated by
Scheicher and Thuswaldner. In a more recent paper these
considerations were extended to arbitrary fields by Beck,
Brunotte, Scheicher and Thuswaldner.
We get the following characterization.

Theorem Scheicher, Thuswaldner

If p(X ,Y ) is monic in X and Y then every A ∈ Fq[X ,Y ] has an
unique and finite expansion by

A =
∑
i≥0

DiY
i (Di ∈ Fq[X ], deg Di < degX p).
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Y -additive functions

Strongly Q-additive: A function f : Fq[X ,Y ]→ Fq[X ,Y ] is
called strongly Y -additive if it acts on the Di only. E.g. the sum
of digits function, which is defined by

sY (A) :=
∑
i≥0

Di .

M.G. Madritsch Properties of sets with digital restrictions JN 2008

24 / 31



Department for Analysis and Computational Number Theory

The general setting

I We fix only one Y -additive f and consider the set

S := {A ∈ Fq[X ,Y ] : f (A) ≡ J (M)}
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The function field

I In order to apply Hardy and Littlewood’s circle method we
need to consider extensions of the valuation ν defined
above to ω for the function field.

I We can represent Y as a Laurent-series with rational
exponents and thus deduce the value of Y according to the
valuation ω.

I Finally we can look at the function field as an algebraic
curve and apply Riemann-Roch. Thus we restrict ourselves
to sufficiently large spaces according to the valuation.
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The exponential sum

The exponential sum in this area looks like the following∑
A∈B(n)

E

(
h(A) +

R

M
f (A)

)
,

where B is the set of integers in Fq(X ,Y )/p(X ,Y )Fq(X ,Y )
over Fq[X ].
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Waring’s Problem

Theorem M,Thuswaldner (200?)

If s > k2k then there always exists a solution for

N = Pk
1 + · · ·+ Pk

s (Pi ∈ (B(m) ∩ S))

provided that N is sufficiently large, where B(m) denotes the set
of all integers with valuation ω less than m.
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Extensions

I For Goldbach’s Problem one has to consider sums of the
form ∑

p≤P

e

(
h(p) +

r∑
i=1

ri
mi

fi(p)

)
where the sum is extended over the primes.

I A possible extension of these considerations of exponential
sums could be to estimate the following∑

n≤N

e
(
θnk + αsq(n)

)
for θ, α ∈ [0, 1).
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