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Expansions in alphabets with deleted digits

We consider generic alphabets

A = {a1, . . . , aJ}
of real numbers a1 < · · · < aJ .

Given a real number q > 1, by an expansion of a real number x we mean a
sequence (ci ) of numbers ci ∈ A satisfying the equality

πq(c) :=

∞
∑

i=1

ci

qi
= x .

In order to have an expansion, x must belong to the interval [ a1
q−1

, aJ

q−1
]
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Interval Condition

This result was proved in [Pedicini2005]:

Theorem

Every x ∈ [ a1
q−1

, aJ

q−1
] has at least one expansion in base q if and only if

1 < q ≤ QA := 1 +
aJ − a1

maxj>1{aj − aj−1}
(≤ J). (1)
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Univoque sequences

Definition

A sequence (ci ) ∈ A∞ is called univoque in base q if

x :=
∞
∑

i=1

ci

qi

has no other expansion in this base.

Example

The constant sequences (a1)
∞ and (aJ)

∞ are univoque in every base q:
they are called the trivial unique expansions.
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Characterization theorem

Theorem

Assume the interval condition (1). An expansion (ci ) is unique in base q if

and only if the following conditions are satisfied:

∞
∑

i=1

cn+i − a1

qi
< aj+1 − aj whenever cn = aj < aJ ;

∞
∑

i=1

aJ − cn+i

qi
< aj − aj−1 whenever cn = aj > a1.
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Consequences of the characterization

Corollary

For every given set C ⊂ A∞ there exists a number

1 ≤ qC ≤ QA

such that

q > qC =⇒ every sequence c ∈ C is univoque in base q;

1 < q < qC =⇒ not every sequence c ∈ C is univoque in base q.
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Critical constants

Definition

The number qC is called the critical base of C . If C = {c} is a one-point
set, then qc := qC is also called the critical base of the sequence c .

If C is a nonempty finite set of eventually periodic sequences, then the
supremum sup qα in the above proof is actually a maximum.

In the last case, it is possible that not all sequences c ∈ C are univoque in
base q = qC .
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Generalized Golden number

It is well-known that for the alphabet A = {0, 1} there exist nontrivial

univoque sequences in base q if and only if q > 1+
√

5
2

.
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Generalized Golden number

It is well-known that for the alphabet A = {0, 1} there exist nontrivial

univoque sequences in base q if and only if q > 1+
√

5
2

.There exists a
“generalized Golden number” for every alphabet:

Corollary

There exists a number 1 < GA ≤ QA such that

q > GA =⇒ there exist nontrivial univoque sequences;

1 < q < GA =⇒ there are no nontrivial univoque sequences.

M. Pedicini (IAC-CNR, Rome) Critical constants for unique expansions JN2008 - May 26, 2008 8 / 29



Generalized Golden number

It is well-known that for the alphabet A = {0, 1} there exist nontrivial

univoque sequences in base q if and only if q > 1+
√

5
2

.There exists a
“generalized Golden number” for every alphabet:

Corollary

There exists a number 1 < GA ≤ QA such that

q > GA =⇒ there exist nontrivial univoque sequences;

1 < q < GA =⇒ there are no nontrivial univoque sequences.

Definition

The number GA is called the critical base of the alphabet A.
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Invariance properties

Proposition

The critical base does not change if we replace the alphabet A

by A + b = {aj + b | j = 1, . . . ,m} for some real number b;

by bA = {baj | j = 1, . . . ,m} for some nonzero real number b;

by the dual alphabet defined by D(A) = {am + a1 − aj | j = 1, . . . ,m}.
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Invariance properties

Proposition

The critical base does not change if we replace the alphabet A

by A + b = {aj + b | j = 1, . . . ,m} for some real number b;

by bA = {baj | j = 1, . . . ,m} for some nonzero real number b;

by the dual alphabet defined by D(A) = {am + a1 − aj | j = 1, . . . ,m}.

We wish to establish the critical bases for ternary alphabets

A = {a1, a2, a3}.
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Restriction to ternary alphabets

By the Proposition above we may restrict ourselves without loss of
generality to the case of alphabets

Am = {0, 1,m}

with m ≥ 2.
Interval condition (1) in the ternary case takes the form

1 < q ≤ 2m − 1

m − 1
.
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Lemma

An expansion (ci ) is unique in base q for the alphabet Am if and only if the

following conditions are satisfied:

∞
∑

i=1

cn+i

qi
< 1 whenever cn = 0; (2)

∞
∑

i=1

cn+i

qi
< m − 1 whenever cn = 1; (3)

∞
∑

i=1

cn+i

qi
>

m

q − 1
− 1 whenever cn = 1; (4)

∞
∑

i=1

cn+i

qi
>

m

q − 1
− (m − 1) whenever cn = m. (5)
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Alphabet A3 = {0, 1, 3}

Consider the periodic sequence (ci ) = (31)∞. By the periodicity of (ci ) we
have for each n either cn = 3 and (cn+i ) = (13)∞ or cn = 1 and
(cn+i ) = (31)∞.
In this case Theorem 4 contains only three conditions on q.
For cn = 3 we have the condition

∞
∑

i=1

3 − cn+i

qi
< 2 ⇐⇒ 2q

q2 − 1
< 2,
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while for cn = 1 we have the following two conditions:

∞
∑

i=1

3 − cn+i

qi
< 1 ⇐⇒ 2

q2 − 1
< 1

and
∞
∑

i=1

cn+i

qi
< 2 ⇐⇒ 3

q − 1
− 2

q2 − 1
< 2.

They are equivalent approximatively to the inequalities q > 1.61803,
q > 1.73205 and q > 2.18614 respectively, so that qc ≈ 2.18614.
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Main result

In order to formulate our main result we introduce the quantities
Pm = P(m), p1 = p1(k , h,m), p2 = p2(k , h,m), p = p(k , h,m) for every
real number m > 0 and nonnegative integers k and h by the following
formulae:

P(m) = 1 +

√

m

m − 1
;

πp1

((

mk1(mk−11)h
)∞)

= m − 1;

πp2

((

(mk−11)hmk1
)∞)

=
m

p2 − 1
− 1;

p = max{p1, p2}.

Theorem

If p(k , h,m) ≤ P(m) for some k and h, then GAm
= p(k , h,m).
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Blocks

The blocks Sj ,m := mj−11 (j = 1, 2, . . .) have the following property:

Lemma

If 2k ≤ m ≤ 2k+1 and 1 < q ≤ Pm for some m ≥ 2, then any nontrivial

univoque sequence in base q has either the form

0t1Sε1,mSε2,m . . .

or the form

mt1Sε1,mSε2,m . . .

with some nonnegative integer t and some sequence (εi ) of elements

εi ∈ {k , k + 1}.
Moreover, if m ≥ M ≃ 2.80194, the largest root of the polynomial

m3 − 4m2 + 3m + 1, then it cannot begin with a 0 digit.
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Sketch of proof

Let (ci ) be a univoque sequence in some base 1 < q ≤ Pm. The lemma will
follow from the following six properties:

(ci ) does not contain any block of the form m0;

(ci ) does not contain any block of the form 10;

(ci ) does not contain any block of the form 0m;

if m > M, then (ci ) does not contain any block of the form 01;

each 1 digit is followed by at least k − 1 consecutive m digits;

each 1 digit is followed by at most k consecutive m digits.
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Quasi-greedy and quasi-lazy expansions

The quasi-greedy expansion of a real number x in some base q is its
lexicographically largest infinite expansion, while the quasi-lazy expansion
of x is the conjugate of the quasi-greedy expansion of m

q−1
− x with respect

to the conjugate alphabet {0,m − 1,m}.
The following characterization of special quasi-greedy and quasi-lazy
expansions follows from more general results in [Pedicini2005].

Lemma

Consider a sequence (ci ) with digits in {1,m} ( Am.

Let q > 1 and set x :=

∞
∑

i=1

ci

qi
.

If (ci+n) ≤ (ci ) whenever cn = 1, then (ci ) is the quasi-greedy expansion of

x in base q.

If (ci+n) ≥ (ci ) whenever cn = 1, then (ci ) is the quasi-lazy expansion of x

in base q.
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Our following result explains the introduction of p = p(k , h,m) in Theorem
11.

Lemma

The critical base of the sequence (Sh
k,mSk+1,m)∞ is equal to p(k , h,m).

Lemma

Assume that p(k , h,m) ≤ Pm. If p1 ≥ p2, then

Sk(Sh
k Sk+1)

∞ ≤ (γi ) and (δi ) = Sk+1(S
h
k Sk+1)

∞; (6)

If p2 ≥ p1, then

(Sh
k Sk+1)

∞ = (γi ) and (δi ) ≤ m(Sh
k Sk+1)

∞. (7)
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In view of the preceding lemma this implies that

Sk(Sh
k Sk+1)

∞ < (cn+i ) < Sk+1(S
h
k Sk+1)

∞ whenever cn = 1 (8)

if πp((Sk+1S
h
k )∞) = m − 1, and

(Sh
k Sk+1)

∞ < (cn+i ) < m(Sh
k Sk+1)

∞ whenever cn = 1 (9)

if πp((S
h
k Sk+1)

∞) = m
p−1

− 1.
For any fixed h we can define the following Büchi automata:

Concerning the right gap m − 1:

A1 accepts (ci ) if it satisfies the left-hand side of condition (8);
A2 accepts (ci ) if it satisfies the right-hand side of condition (8);

Concerning the left gap 1:

A′

1
accepts (ci ) if it satisfies the left-hand side of condition (9);

A′

2
accepts (ci ) if it satisfies the right-hand side of condition (9).
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Automata and lexicographic condition (right gap)

In these pictures we replaced Sk+i by Si , so that S0 denotes Sk and S1

denotes Sk+1.
A1 A2

s0

f1

s1S1

Sh
0

S0

S1

S0

t0

f2

t0
0 t1

0 t2
0

... th
0

S0

S0

S0 S0

S1

S1
S1S0 S1

S1

S1
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Automata and lexicographic condition (right gap)

In these pictures we replaced Sk+i by Si , so that S0 denotes Sk and S1

denotes Sk+1.
A1 A2

s0

f1

s1S1

Sh
0

S0

S1

S0

t0

f2

t0
0 t1

0 t2
0

... th
0

S0

S0

S0 S0

S1

S1
S1S0 S1

S1

S1

S0(S
h
0 S1)

∞ < (cn+i ) (cn+i ) < S1(S
h
0 S1)

∞
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Automata and lexicographic condition (left gap)

A′
1 A′

2

s0

f1

s1 sh−1
0

s̄1 s̄h
0

S1

Sh−1
0 S1

S1

S0

S0

Sh
0

S1

S0

S0

f2

t0 t1
0 t2

0
... th

0

S0S0 S0

S1

S1

S0 S1

S1

S1
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Automata and lexicographic condition (left gap)

A′
1 A′

2

s0

f1

s1 sh−1
0

s̄1 s̄h
0

S1

Sh−1
0 S1

S1

S0

S0

Sh
0

S1

S0

S0

f2

t0 t1
0 t2

0
... th

0

S0S0 S0

S1

S1

S0 S1

S1

S1

(Sh
0 S1)

∞ < (cn+i ) (cn+i ) < m(Sh
0 S1)

∞
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The proof of the theorem

Note that by Lemma 12 the choice of the alphabet {Sk ,Sk+1} for these
automata does not imply a loss of generality.
We can reformulate the conditions (8) and (9) as follows. An expansion
(ci ) is unique in base p only if, starting from the smallest n such that in
case πp((Sk+1S

h
k )∞) = m − 1

(cn+i ) ∈ L(A1) ∩ L(A2) whenever cn = 1,

while in case πp((S
h
k Sk+1)

∞) = m
p−1

− 1

(cn+i ) ∈ L(A′
1) ∩ L(A′

2) whenever cn = 1.
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Intersection Automaton

The construction of the intersection automaton in the case of infinite words
can be obtained A standard construction for the intersection automata in
the case of infinite words can be applied:

A = (Ā,S × T × {1, 2}, (s0, t0, 1), τ, f1 × T × {1}).

Denoting by a a generic element of Ā, the transition function τ is defined
for every s ∈ S and for every t ∈ T by the following rules:

τ((s, t, 1), a) = (τ1(s, a), τ(t, a), 1) if s 6= f1;

τ((s, t, 2), a) = (τ1(s, a), τ(t, a), 2) if t 6= f2;

τ((f1, t, 1), a) = (τ1(f1, a), τ(t, a), 2);

τ((s, f2, 2), a) = (τ1(s, a), τ(f2, a), 2).

(10)
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Intersection Automata (right gap)

We build the intersection automaton
and we prove that no sequence is
accepted, so that there are no other
unique sequences in L(A1) ∩ L(A2).

s0t01

f1t
0
01

f1t
1
02

f1t
2
02

. . .

f1t
h−1
0 2

f1t
h
02

s1f21

s1
0 t0

01

s2
0 t1

01

. . .

s0t
h−1
0 1

f1t
h
01

s1t
0
02

s1
0 t1

02

s2
0 t2

02

. . .

sh
0 th

02

S0

S0

S0

S0

S0

S0

S1

S1

S0

S0

S0

S0

S0

S1

S0

S0

S0

S0

S1

S1

S1

S1

S1

S1
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Intersection Automaton (left gap)

The same construction can be done
in order to build the intersection
automaton for A′

1 and A′
2. Also in

this case no sequence is accepted, so
that there are no other unique
sequences in L(A′

1) ∩ L(A′
2).

s0t01

f1t
1
01

f1t
2
02

f1t
3
02

. . .

f1t
h−1
0 2

f1t
h
02

s1t02

s1
0 t1

02

s2
0 t2

02

. . .

sh−1
0 th−1

0 2

s1f22

s̄1f22 s̄1f21

s̄1
0 t1

01

s̄2
0 t2

01

. . .

s̄h−1
0 th−1

0 1

s̄h
0 th

01

s̄1t01

s1f21

s1
0 t1

01

s2
0 t2

01

. . .

sh−1
0 th−1

0 1

f1t
h
01

s̄1t02

s̄1
0 t1

02

s̄2
0 t2

02

. . .

s̄h−1
0 th−1

0 2

s̄h
0 th

02

S0

S0

S0

S0

S0

S0

S1

S0

S0

S0

S0

S0

S1

S1

S1

S1

S1

S0

S1

S0 S0

S0

S0

S0

S0

S1

S0

S1

S0

S0

S0

S0

S0

S1

S0

S0

S0

S0

S0

S1
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Last part of the work

What we have here is the fact that whenever p(h, k ,m) ≤ P(m) then for
any q < p(h, k ,m) we can establish the critical base for such an m.
But when and how it is possible to determine h for a given m ?
The existence proof for such h, k and m is proved in the second part of the
work:

Theorem

The condition p(k , h,m) ≤ P(m) of Theorem 11 is satisfied for some

k , h ≥ 0 and m ≥ 2 if and only if m ∈ [mk,h,Mk,h], where mk,h and Mk,h

are the unique solutions of the equations

πP(m)

(

(Sk+1,mSh
k,m)∞

)

= m − 1

πP(m)

(

(Sh
k,mSk+1,m)∞

)

=
m

P(m)− 1
− 1,

respectively.
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Golden number

Let A = {0, 1} and consider the sequence (ci ) = 1(10)∞. This sequence is
nontrivial and eventually periodic with a nontrivial period, thus there exists
a critical base qc such that q > qc if and only if (ci ) is unique in base q.
By applying the algorithm of the proof of Corollary 5 we obtain that the
sequence {qn} is composed of the following elements:

if n = 1 and cn = 1, then cn+i = (10)∞, so that the equation
∞

∑

i=1

cn+i

qi
1

=
1

q − 1
− 1

is equivalent to q2 − 2 = 0 whence q1 =
√

2.
if n = 2 and cn = 1, then cn+i = (10)∞, so that the same equation is

equivalent to q2 − q − 1 = 0 whence q2 = 1+
√

5
2

.
if n = 3 and cn = 0, then cn+i = (10)∞, and the equation

∞
∑

i=1

cn+i

qi
1

= 1

is equivalent to q2 − q − 1 = 0 whence q = 1+
√

5 again.
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A3

Fix m = 3 and consider the sequence c := (S1)
∞ = (31)∞.

We recall from Example A3 = {0, 1, 3} that the critical base of this
sequence is equal to qc ≈ 2.18614.
Since qc ≤ Pm ≈ 2.224744, applying Theorem 11 we conclude that qc is
the critical base of the alphabet {0, 1, 3}.
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Numerical computation of the intervals of Theorem 16

In the following table we indicate the first five intervals Ik,h := [mk,h,Mk,h]
of Theorem 16,

k h (Sk+1,mSh
k,m) Ik,h

0 0 (1)∞ [1.61803, 2.32471]
1 3 (m1111)∞ [2.34687, 2.37782]
1 2 (m111)∞ [2.37897, 2.46001]
1 1 (m11)∞ [2.46788, 2.72274]
1 0 (m1)∞ [2.80194, 3.56811]
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