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Definition

Every x ∈ R \Q has a unique and infinite regular continued fraction
expansion

x = a0 +
1

a1 +
1

a2 +
.. . +

1

an +
.. .

= [a0; a1, a2, . . . , an, . . . ],

where ai ∈ N. From now on we assume a0 = 0. The partial coefficients ai

can be found from the regular continued fraction map T : [0, 1)→ [0, 1)

T (x) :=
1

x
−
⌊

1

x

⌋
, x 6= 0; T (0) := 0.
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Approximations

Finite truncation yields convergents

pn

qn
= [0; a1, a2, . . . , an].

∣∣∣∣x − pn

qn

∣∣∣∣ < 1

q2
n

, n ≥ 0.
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Approximation quality

The approximation coefficients Θn of x are defined by

Θn = q2
n

∣∣∣∣x − pn

qn

∣∣∣∣ , for n ≥ 0. (1)

Theorem (Borel, 1903)

For all n ≥ 1

min{Θn−1, Θn, Θn+1} <
1√
5
.
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Other approximation measures

Dirichlet ∣∣∣∣x − pn

qn

∣∣∣∣ < 1

qnqn+1
, for n ≥ 0,

Define the sequences of irrationals Cn and Dn, n ≥ 0, by

x − pn

qn
=

(−1)n

Cnqnqn+1
,

Dn = [an+1; an, . . . , a1] · [an+2; an+3, . . . ].

It is not hard to show that Cn = 1 +
1

Dn
.
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Question

Suppose Dn−2 < r and Dn < R for some given reals r , R > 1, what can we
say about Dn−1?
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Theorem (Tong, 2004)

If r > 1 and R > 1 are two real numbers and

MTong = 1
2

(
1

r
+

1

R
+ anan+1

(
1 +

1

r

)(
1 +

1

R

)

+

√[
1

r
+

1

R
+ anan+1

(
1 +

1

r

)(
1 +

1

R

)]2

− 4

rR

 ,

then

1 Dn−2 < r and Dn < R imply Dn−1 > MTong;

2 Dn−2 > r and Dn > R imply Dn−1 < MTong.
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The future and past

Write Tn and Vn for the “future” respectively “past” of pn

qn
,

Tn = [0; an+1, an+2, . . . ] and Vn = [0; an, . . . , a1].

Define Ω = [0, 1)× [0, 1] and T : Ω→ Ω as

T (x , y) =

(
1

x
−
⌊

1

x

⌋
,

1

a1 + y

)
.

We have (Tn, Vn) = T n(x , 0).
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Rewriting Dn−2, Dn−1 and Dn.

We can expres Dn−2, Dn−1 and Dn in terms of an, an+1, Tn and Vn.

Dn−2 =
(an + Tn)Vn

1− anVn
, Dn−1 =

1

TnVn
, and Dn =

(an+1 + Vn)Tn

1− an+1Tn
,

Dn−1 = [an; an−1, . . . , a1] · [an+1; an+2, . . . ]

=

an +
1

an−1 + 1
an−2+···+ 1

a1

 ·(an+1 +
1

an+2 + 1
an+3+...

)

=
1

Vn

1

Tn
.
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With

Dn−2 =
(an + Tn)Vn

1− anVn
and Dn =

(an+1 + Vn)Tn

1− an+1Tn
,

we find

Dn−2 < r if and only if v < fa,r (t),

Dn < R if and only if v < gb,R(t),

with

fa,r (t) =
r

a(r + 1) + t
and gb,R(t) =

R

t
− b(R + 1).
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The position of the graph of fa,r (t) = r
a(r+1)+t in a

horizontal strip with an = a.
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Example with Dn−2 < 2.9 and Dn < 3.6.

Figure: The regions where Dn−2 < 2.9 are red, the regions where Dn < 3.6 are
blue. The intersection where both Dn−2 < 2.9 and Dn < 3.6 is black.
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Three possible configurations of the graphs of f and g
when Dn−2 < r and Dn < R on

[
1

b+1 ,
1
b

)
×
[

1
a+1 ,

1
a

)
.

Figure: The part where both Dn−2 < r and Dn < R is black. Use that
Dn−1 = 1

TV find the minimum for Dn−1.
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Theorem, 2008

Let r , R > 1 be reals. If Dn−2 < r and Dn < R, then there are three
possibilities for the minimum of Dn−1.

1 If r − an ≥ G and
1

an + 1
≤ R − an+1 < F , then

Dn−1 > min

{
an+1 + 1

R − an+1
,

an + 1

G

}
.

2 If
1

an+1 + 1
≤ r − an < G and R − an+1 ≥ F , then

Dn−1 > min

{
an+1 + 1

F
,

an + 1

r − an

}
3 In all other cases

Dn−1 > MTong.

These bounds are sharp.
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Example with Dn−2 < 2.9 and Dn < 3.6.
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Example with Dn−2 < 2.9 and Dn < 3.6 (continued).

The sharp bounds for this example

an = 1 and an+1 = 1 : Dn−1 > MTong ≈ 2.30.

an = 1 and an+1 = 2 : Dn−1 > MTong ≈ 4.04.

an = 2 and an+1 = 1 : Dn−1 > MTong ≈ 4.04.

an = 2 and an+1 = 2 : Dn−1 > MTong ≈ 7.48.

an = 2 and an+1 = 3 : Dn−1 > MTong ≈ 10.92.

If an = 1 and an+1 = 3, then

Dn−1 > min

{
an+1 + 1

R − an+1
,

(an + 1)an+1(R + 1) + 1

R

}
≈ min{6.67, 7.94} = 6.67� MTong ≈ 5.76.

For all other values of an and an+1 either Dn−2 > 2.9 or Dn > 3.6, or both.
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Example Dn−2 > 2.9 and Dn > 3.6

Figure: The regions where Dn−2 > r are red, the regions where Dn > R are blue.
The intersection where both Dn−2 > r and Dn > R is black.
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Example asymptotic frequencies

For almost all x ∈ [0, 1) \Q the asymptotic frequency that simultaneously
Dn−2 > 2.9 and Dn > 3.6 is 0.619.

Given that Dn−2 > 2.9 and Dn > 3.6 the conditional probability that
MTong is the sharp bound is 0.28.
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