Sharp bounds for (a)symmetric Diophantine approximation.

Ionica Smeets (Leiden University)

Cor Kraaikamp (Delft University of Technology)

Journées Numération, Prague, May 29 2008

Outline

Continued fractions and their approximation qualities

2 The natural extension of continued fractions

3 Sharp bounds

Definition

Every $x \in \mathbb{R} \setminus \mathbb{Q}$ has a unique and infinite regular continued fraction expansion

$$x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \cdots + \frac{1}{a_n + \cdots}}} = [a_0; a_1, a_2, \dots, a_n, \dots],$$

where $a_i \in \mathbb{N}$. From now on we assume $a_0 = 0$. The partial coefficients a_i can be found from the regular continued fraction map $T : [0,1) \rightarrow [0,1)$

$$T(x) := \frac{1}{x} - \left\lfloor \frac{1}{x} \right\rfloor, x \neq 0; \quad T(0) := 0.$$

Approximations

Finite truncation yields convergents

$$\frac{p_n}{q_n} = [0; a_1, a_2, \ldots, a_n].$$

$$\left|x-\frac{p_n}{q_n}\right|<\frac{1}{q_n^2}, \ n\geq 0.$$

Approximation quality

The approximation coefficients Θ_n of x are defined by

$$\Theta_n = q_n^2 \left| x - \frac{p_n}{q_n} \right|, \quad \text{for } n \ge 0.$$
 (1)

Theorem (Borel, 1903)
For all
$$n \ge 1$$

 $\min\{\Theta_{n-1}, \Theta_n, \Theta_{n+1}\} < \frac{1}{\sqrt{5}}.$

Other approximation measures

Dirichlet

$$\left|x-\frac{p_n}{q_n}\right|<\frac{1}{q_nq_{n+1}}, \quad \text{for } n\geq 0,$$

Define the sequences of irrationals C_n and D_n , $n \ge 0$, by

It is not hard to show that $C_n = 1 + \frac{1}{D_n}$.

Question

Suppose $D_{n-2} < r$ and $D_n < R$ for some given reals r, R > 1, what can we say about D_{n-1} ?

Theorem (Tong, 2004)

If r > 1 and R > 1 are two real numbers and

$$\begin{split} \mathcal{M}_{\rm Tong} &= \frac{1}{2} \quad \left(\frac{1}{r} + \frac{1}{R} + a_n a_{n+1} \left(1 + \frac{1}{r}\right) \left(1 + \frac{1}{R}\right) \\ &+ \sqrt{\left[\frac{1}{r} + \frac{1}{R} + a_n a_{n+1} \left(1 + \frac{1}{r}\right) \left(1 + \frac{1}{R}\right)\right]^2 - \frac{4}{rR}}\right), \end{split}$$

then

The future and past

Write T_n and V_n for the "future" respectively "past" of $\frac{p_n}{q_n}$,

$$T_n = [0; a_{n+1}, a_{n+2}, \dots]$$
 and $V_n = [0; a_n, \dots, a_1].$

Define $\Omega = [0,1) \times [0,1]$ and $\mathcal{T} : \Omega \to \Omega$ as

$$\mathcal{T}(x,y) = \left(\frac{1}{x} - \left\lfloor \frac{1}{x} \right\rfloor, \frac{1}{a_1 + y}\right).$$

The future and past

Write T_n and V_n for the "future" respectively "past" of $\frac{p_n}{q_n}$,

$$T_n = [0; a_{n+1}, a_{n+2}, \dots]$$
 and $V_n = [0; a_n, \dots, a_1].$

Define $\Omega = [0,1) \times [0,1]$ and $\mathcal{T} : \Omega \to \Omega$ as

$$\mathcal{T}(x,y) = \left(\frac{1}{x} - \left\lfloor \frac{1}{x} \right\rfloor, \frac{1}{a_1 + y}\right).$$

We have $(T_n, V_n) = \mathcal{T}^n(x, 0)$.

Rewriting D_{n-2}, D_{n-1} and D_n .

We can expres D_{n-2}, D_{n-1} and D_n in terms of a_n, a_{n+1}, T_n and V_n .

$$D_{n-2} = \frac{(a_n + T_n)V_n}{1 - a_nV_n}, \quad D_{n-1} = \frac{1}{T_nV_n}, \text{ and } D_n = \frac{(a_{n+1} + V_n)T_n}{1 - a_{n+1}T_n},$$

Rewriting D_{n-2}, D_{n-1} and D_n .

We can expres D_{n-2}, D_{n-1} and D_n in terms of a_n, a_{n+1}, T_n and V_n .

$$D_{n-2} = \frac{(a_n + T_n)V_n}{1 - a_nV_n}, \quad D_{n-1} = \frac{1}{T_nV_n}, \text{ and } D_n = \frac{(a_{n+1} + V_n)T_n}{1 - a_{n+1}T_n},$$

$$D_{n-1} = [a_n; a_{n-1}, \dots, a_1] \cdot [a_{n+1}; a_{n+2}, \dots]$$

= $\left(a_n + \frac{1}{a_{n-1} + \frac{1}{a_{n-2} + \dots + \frac{1}{a_1}}}\right) \cdot \left(a_{n+1} + \frac{1}{a_{n+2} + \frac{1}{a_{n+3} + \dots}}\right)$
= $\frac{1}{V_n} \frac{1}{T_n}.$

With

$$D_{n-2} = \frac{(a_n + T_n)V_n}{1 - a_nV_n}$$
 and $D_n = \frac{(a_{n+1} + V_n)T_n}{1 - a_{n+1}T_n}$,

we find

 $egin{array}{lll} D_{n-2} < r & ext{if and only if} & v < f_{a,r}(t), \ D_n < R & ext{if and only if} & v < g_{b,R}(t), \end{array}$

with

$$f_{a,r}(t)=rac{r}{a(r+1)+t} \quad ext{and} \quad g_{b,R}(t)=rac{R}{t}-b(R+1).$$

The position of the graph of $f_{a,r}(t) = \frac{r}{a(r+1)+t}$ in a horizontal strip with $a_n = a$.

Example with $D_{n-2} < 2.9$ and $D_n < 3.6$.

Figure: The regions where $D_{n-2} < 2.9$ are red, the regions where $D_n < 3.6$ are blue. The intersection where both $D_{n-2} < 2.9$ and $D_n < 3.6$ is black.

Three possible configurations of the graphs of f and g when $D_{n-2} < r$ and $D_n < R$ on $\left[\frac{1}{b+1}, \frac{1}{b}\right) \times \left[\frac{1}{a+1}, \frac{1}{a}\right)$.

Figure: The part where both $D_{n-2} < r$ and $D_n < R$ is black. Use that $D_{n-1} = \frac{1}{TV}$ find the minimum for D_{n-1} .

Theorem, 2008

Let r, R > 1 be reals. If $D_{n-2} < r$ and $D_n < R$, then there are three possibilities for the minimum of D_{n-1} .

• If
$$r - a_n \ge G$$
 and $\frac{1}{a_n + 1} \le R - a_{n+1} < F$, then

$$D_{n-1} > \min\left\{\frac{a_{n+1}+1}{R-a_{n+1}}, \frac{a_n+1}{G}\right\}$$

2 If
$$\frac{1}{a_{n+1}+1} \le r - a_n < G$$
 and $R - a_{n+1} \ge F$, then

$$D_{n-1} > \min\left\{\frac{a_{n+1}+1}{F}, \frac{a_n+1}{r-a_n}\right\}$$

In all other cases

$$D_{n-1} > M_{\mathrm{Tong}}.$$

These bounds are sharp.

Ionica Smeets (Leiden University)

Example with $D_{n-2} < 2.9$ and $D_n < 3.6$.

Figure: The regions where $D_{n-2} < 2.9$ are red, the regions where $D_n < 3.6$ are blue. The intersection where both $D_{n-2} < 2.9$ and $D_n < 3.6$ is black.

Example with $D_{n-2} < 2.9$ and $D_n < 3.6$ (continued).

The sharp bounds for this example

$$\begin{array}{lll} a_n = 1 \mbox{ an } a_{n+1} = 1 : D_{n-1} > M_{\text{Tong}} &\approx 2.30. \\ a_n = 1 \mbox{ an } a_{n+1} = 2 : D_{n-1} > M_{\text{Tong}} &\approx 4.04. \\ a_n = 2 \mbox{ an } a_{n+1} = 1 : D_{n-1} > M_{\text{Tong}} &\approx 4.04. \\ a_n = 2 \mbox{ an } a_{n+1} = 2 : D_{n-1} > M_{\text{Tong}} &\approx 7.48. \\ a_n = 2 \mbox{ an } a_{n+1} = 3 : D_{n-1} > M_{\text{Tong}} &\approx 10.92. \end{array}$$

Example with $D_{n-2} < 2.9$ and $D_n < 3.6$ (continued).

The sharp bounds for this example

$$\begin{array}{lll} a_n = 1 \mbox{ an } a_{n+1} = 1 : D_{n-1} > M_{\text{Tong}} &\approx 2.30. \\ a_n = 1 \mbox{ an } a_{n+1} = 2 : D_{n-1} > M_{\text{Tong}} &\approx 4.04. \\ a_n = 2 \mbox{ an } a_{n+1} = 1 : D_{n-1} > M_{\text{Tong}} &\approx 4.04. \\ a_n = 2 \mbox{ an } a_{n+1} = 2 : D_{n-1} > M_{\text{Tong}} &\approx 7.48. \\ a_n = 2 \mbox{ an } a_{n+1} = 3 : D_{n-1} > M_{\text{Tong}} &\approx 10.92. \end{array}$$

If $a_n = 1$ and $a_{n+1} = 3$, then

$$D_{n-1} > \min\left\{\frac{a_{n+1}+1}{R-a_{n+1}}, \frac{(a_n+1)a_{n+1}(R+1)+1}{R}\right\}$$

\$\approx \min\{6.67, 7.94\} = 6.67 \$\approx M_\text{Tong} \$\approx 5.76.

Example with $D_{n-2} < 2.9$ and $D_n < 3.6$ (continued).

The sharp bounds for this example

$$\begin{array}{lll} a_n = 1 \mbox{ an } a_{n+1} = 1 : D_{n-1} > M_{\rm Tong} &\approx 2.30. \\ a_n = 1 \mbox{ an } a_{n+1} = 2 : D_{n-1} > M_{\rm Tong} &\approx 4.04. \\ a_n = 2 \mbox{ an } a_{n+1} = 1 : D_{n-1} > M_{\rm Tong} &\approx 4.04. \\ a_n = 2 \mbox{ an } a_{n+1} = 2 : D_{n-1} > M_{\rm Tong} &\approx 7.48. \\ a_n = 2 \mbox{ an } a_{n+1} = 3 : D_{n-1} > M_{\rm Tong} &\approx 10.92. \end{array}$$

If $a_n = 1$ and $a_{n+1} = 3$, then

For all other values of a_n and a_{n+1} either $D_{n-2} > 2.9$ or $D_n > 3.6$, or both.

Example $D_{n-2} > 2.9$ and $D_n > 3.6$

Figure: The regions where $D_{n-2} > r$ are red, the regions where $D_n > R$ are blue. The intersection where both $D_{n-2} > r$ and $D_n > R$ is black.

Example asymptotic frequencies

For almost all $x \in [0, 1) \setminus \mathbb{Q}$ the asymptotic frequency that simultaneously $D_{n-2} > 2.9$ and $D_n > 3.6$ is 0.619.

Given that $D_{n-2} > 2.9$ and $D_n > 3.6$ the conditional probability that M_{Tong} is the sharp bound is 0.28.