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Introduction

Canonical Number Systems

Definition (Pethő, 1991)

Let P(x) = xd + pd−1x
d−1 + · · · + p1x + p0, |p0| ≥ 2, R = Z[x ]/(P), X

the image of x under the canonical epimorphism and N = [0, |p0|) ∩ Z.
(P,N ) is called a Canonical Number System (CNS) if each A ∈ R can be
represented as

A =
k∑

j=0

ajX
j , aj ∈ N .
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ajX
j , aj ∈ N .

Examples of generalisations

Akiyama et al., 3
2
-problem,

Kovács, CNS rings.
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Digit systems

Settings

E a commutative ring with identity,

P(X ) = pdX d + · · · + p1X + p0 ∈ E [X ], d ≥ 1,

pd no zero divisor,

p0 neither a unit nor a zero divisor, E/p0 finite,

R = E [X ]/(P) the residue class ring,

N ⊂ R a set of representatives of R/(X ),

we will identify X ∈ E [X ] with X ∈ R,

mN : R → N such that A ≡ mN (A) mod X ,

TP : R → R, A 7→ A−mN (A)
X

.

Note that R/(X ) ∼= E/p0.
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Digit systems

X -ary representation

Definition

We call the triple (R, X ,N ) a digit system in R.
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Digit systems

X -ary representation

Definition

We call the triple (R, X ,N ) a digit system in R.

Definition

For an A ∈ R we call XP(A) := (mN (T n
P (A)))

n∈N
⊂ N∞ the X -ary

representation. XP(A) is called periodic if it ends up periodically.
(R, X ,N ) has the periodic representation property if XP(A) is periodic for
all A ∈ R.
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Digit systems

X -ary expansion

Definition

Let A ∈ R and XP(A) = (an)n∈N. If there exists an l ∈ N such that

A =
l∑

j=0

ajX
j

we call this sum the finite X -ary expansion of A. (R, X ,N ) is said to have
the finite expansion property if each A ∈ R has a finite X -ary expansion.
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Properties of digit systems

General results

Proposition

A ∈ R has a finite X -ary expansion if and only if T n
P (A) = 0 for some

n ∈ N.
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Properties of digit systems

General results

Proposition

A ∈ R has a finite X -ary expansion if and only if T n
P (A) = 0 for some

n ∈ N.

Proposition

The finite expansion property implies the periodic representation property.
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Properties of digit systems

Denote by P(R, X ,N ) the set of purely periodic points:
P(R, X ,N ) = {A ∈ R| ∃n ≥ 1 : T n

P (A) = A}.
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Properties of digit systems

Denote by P(R, X ,N ) the set of purely periodic points:
P(R, X ,N ) = {A ∈ R| ∃n ≥ 1 : T n

P (A) = A}.

Theorem

(R, X ,N ) has the finite expansion property if and only if (R, X ,N ) has
the periodic representation property, 0 ∈ P(R, X ,N ) and
|P(R, X ,N )/TP | = 1.

Theorem (Composition Theorem)

Let (R1, X ,N1), (R2, X ,N2) induced by the polynomials P1 ∈ E [x ] and
P2 ∈ E [x ] and suppose both of them to have the finite expansion property.
If (|P(R1, X ,N1)|, |P(R2, X ,N2)|) = 1. Then (R, X ,N ) has the finite
expansion property for R = E [X ]/(P1P2) and

N = {d + eP1| d ∈ N1, e ∈ N2}.
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Main theorem and consequences

The P-lattice

Definition

Let w0 = pd , wk = Xwk−1 + pd−k for k = 1, . . . , d − 1. We call the
E-submodule of R generated by the wi the P-lattice of R and denote it by
ΛP(R).

Paul Surer (MU Leoben) Generalised CNS Prague 2008 8 / 13



Main theorem and consequences

The P-lattice

Definition

Let w0 = pd , wk = Xwk−1 + pd−k for k = 1, . . . , d − 1. We call the
E-submodule of R generated by the wi the P-lattice of R and denote it by
ΛP(R).

For pd = ±1 we have ΛP(R) = R. This is definitely NOT true for
pd 6= ±1.

Paul Surer (MU Leoben) Generalised CNS Prague 2008 8 / 13



Main theorem and consequences

The P-lattice

Definition

Let w0 = pd , wk = Xwk−1 + pd−k for k = 1, . . . , d − 1. We call the
E-submodule of R generated by the wi the P-lattice of R and denote it by
ΛP(R).

For pd = ±1 we have ΛP(R) = R. This is definitely NOT true for
pd 6= ±1.

Theorem

Let N ⊂ E . (R, X ,N ) has the periodic representation property (the finite
expansion property, resp.) if and only if each element of ΛP(R) has a
periodic X -ary representation (a finite X -ary expansion, resp.).
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Main theorem and consequences

Euclidean rings

Theorem

Suppose E to be Euclidean with value function g : E → [0,∞) ∪ {−∞}
where g(0) = −∞ and let (R, X ,N ) be a digit system satisfying
g(e) < g(p0) for all e ∈ N . If (R, X ,N ) has the finite expansion property
then g(pd ) < g(p0).
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Main theorem and consequences

Polynomial rings over finite fields

Consider E = F[y ] to be the ring of polynomials (in y) over a finite field F

and N = {e ∈ E| degy (e) < degy (p0)}.
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(R, X ,N ) has the finite expansion property if and only if
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Main theorem and consequences

CNS

Note

If E = Z, P monic and N = [0, p0) ∩ Z then
(P,N ) is s CNS if and only if (R, X ,N ) has the finite expansion property.
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Main theorem and consequences

CNS

Note

If E = Z, P monic and N = [0, p0) ∩ Z then
(P,N ) is s CNS if and only if (R, X ,N ) has the finite expansion property.

Definition

Let E = Z and N = [0, p0) ∩ Z. If (R, X ,N ) has the finite expansion
property we call the pair (P,N ) a generalised canonical number system
(GCNS).
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Main theorem and consequences

Shift radix systems

Definition (Akiyama et al., 2005)

Let r ∈ R
d and define

τr : Z
d → Z

d , x = (x0, . . . , xd−1) 7→ (x1, . . . , xd−1, rx).
τr is called a shift radix system (SRS) if for all x ∈ Z

d there exists an
n ∈ N such that τn

r
(x) = 0.
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Main theorem and consequences

Thanks

Thank you for your attention!
Děkuji!

Obrigado!
Köszönöm!

Merci!
Grazie!

Bedankt!
Saǧol!
Danke!

The research was supported by the FWF, project S9610
The slides are (soon) available : www.palovsky.com
E-mail: me@palovsky.com
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