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Many shapes for Rauzy fractals...
Several properties on examples [Rauzy, Akiyama, Canterini, Messaoudi,
Feng-Furukado-Ito-Wu, Sirvent, Thus.]

0 inner point? Hausdorff dimension of the boundary?

Connectivity? Homeomorphic to a disk? Fundamental group?
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Definitions

@ Substitution. o endomorphism of the free monoid {0, ..., n}*.
c: 1—12 2—13 3 —1. B =p+p+1)
@ Primitivity The abelianized matrix M is primitive.
9 Periodic points If o is primitive, there exists a periodic point w
o’ (w) = w.
@ Pisot unit hypothesis The dominant eigenvalue 8 of M is a unit Pisot number.

c: 1—-12 2—3 351 4—-5 51 B:=p+1)
@ (Ir)reducibility We denote by d < n the algebraic degree of 3 and Ming its
minimal polynomial.
If d # n, the substitution is said to be reducible.
@ Decomposition of R":
Expanding line He.
B-contracting space Hc (generated by the eigenvectors
of B Galois conjugates).
Supplementary space H, (generated by other eigenvectors)
9@ Beta-projection h: projection onto the contracting space, parallel to the other
spaces.

The beta-projection h retains the part of a vector lying on eigendirections for
contracting conjugates of 8

vw € A*, w(I(o(w))) = hr(I(w)).

Projecting o Abelianizing o Substituting <= Projecting o Contracting by h o Abelianizing
o = = = = 9Dace



Rauzy Fractal / Central Tile

@ Compute a periodic point. o(1) =12, ¢(2) =13, 0(3) =1
12131211213121213121131312131211213121211211213...
@ Draw a stair.

9 Project it on the contracting space H.
9 Closure

\ =

Definition

To = {m((uo - --uj—1)); i € N}.
Subtile: 7(a) = {m (l(uo -~ uj-1)); i €N, u; = a}.
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T(1) = h[Z(1) U (7(1) + i(er))
T(2) = h(

T(4) = h(

Topology
@ 7 is compact in He. He is a (d — 1)-Euclidean space, where d is the algebraic
degree of (.

Its interior is non empty. It has a non-zero measure in Hc [Sirvent-Wang].
@ Each subtile is the closure of its interior [Sirvent-Wang].

@ Subtiles are measurably disjoint if the substitution satisfies the strong coincidence
condition [Arnoux-Ito].

Self-similarity[Arnoux-Ito]

The subtiles of 7 satisfy a Graph Iterated Function System:
T(2) = Upe . o(6)—pas N(Z(5)) + (1(p))

UT(2) U (7 (2) + wl(e1)) U T (4)],

T (1) + 27l(er)),
7(3) = h(T(2) + 27l(er)),
7(3)

o(1) =112, 0(2) =113, 0(3) = 4, 0(4) =1
(Rauzy, Arnoux-Ito, Akiyama, Sirvent-Wang, Canterini-Siegel, Berthé-Siegel)

=] = = =
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Covering the contracting space

@ We consider the projection of points of Z" that are nearby the contracting space

along the expanding [-direction.
Fos = {[m(x), ] € m(Z") x A, 0 < (x,vg) < (e;,vg)}.

The distance of x to the contracting space along the expanding direction is
smaller than the lenghth of the projection of the i-th canonical vector on the
expanding direction.

@ This set is self-similar, aperiodic and locally finite.

@ For each pair [7(x), /] we draw a copy of 7 (i) in 7(x).

eh

NANANBAENE

Covering [lto-Rao,Barge-Kwapisz]

The set of tiles 7 (i) + v with (v, i) € ss covers the contracting space Hc with a
constant cover degree.
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Boundary graph

@ Consider the intersection of two tiles in the covering Z = 7 (a) N (w(x) + 7 (b)).
@ Decompose each tile and re-order the intersection

o= U T +Ae () U T+ ()] + ().

o(a1)=p1as1 o (b1)=p2bsy

Uhml(p1) +h | 7 (a1) N (7 (br) + 7l(p2) — 7l(p1) + h ™ 7 (x))

=m(x1)

The nodes are denoted by (a, 7(x), b) and correspond to intersections
7T (a) N (w(x) + 7 (b)).
There is an edge between two nodes if the target intersection appears in the

decomposition of the origin intersection.
(377T(x)7 b) = (317 ﬂ'(Xl), bl)

@ The graph is finite.

@ The intersection 7 (a) N (7(x) + 7 (b)) is non-empty iff the graph contains an
infinite walk issued from (a, w(x), b).

Proof (a) If Z is non-empty, at least one of the target is non-empty.
(b) There are only a finite number of non-empty intersections since the covering has a

finite degree and7 is bounded. o e - =
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Example

[2;pi(0,0,0,0);31

[2;pi(1,-1,1,0);2]

[2;pi(1,-1,1,0);1]

[ =zpia,-1,0,0:11 | [ r2ipica,-1,0,00:41
[4;pi(0,1,-1,0);1] ] ( [2;pi(0,1,-1,0);:1] ] [3:pi(0,1,-1,0);1]

[3:pi(1,-1,0,0);4]
[3:pi(0,1,-1,0);2]

There are 8 nodes with the shape [1, 7(x), b]:
hence 7(1) has 8 neighbors m(x) + 7(b) in the
covering.




Derived graphs

@ Triple points graph We consider intersections between three tiles in the covering.

@ Quadruple points graph Intersections between four tiles: only 5 quadruples points
in the example .

[
I [1,pi[0,0,0,0],2,pi[0,0,0,0],3,pi[0,1,-1,0],1] l
[ ! Bl

I[2,p\[l.»l,0.0],l.pi[l,-l,l,Ol,l.pi[l,-l,l,Ol,Z]l I [1,pi[0,0,1,0],1,pi[0,0,1,0],2,pi[0,1,0,0],1] I

A

[pit12-1.012p00.1 101151001 0011

— |
[3,pil1,-1,0,01,4,pi[0,1,-1,0],2,pi[1,0,-1,0],1] I

@ The connectivity graph describe adjacencies of pieces of the boundary of a subtile
T(i).

[T n T(W)+pil0,1,-1,0] }——] T(1) n T(4) ]
(E]

T(1) n T(2)

T(1) n T(M)+pi[0,1,0,0]

[T n T@)+pil1,-1,1,00]— T@) n T@)+pi[0,0,1,01 |




Applications

@ Checking tiling and Box/Haussdorf dimension of the boundary:
compute the dominant eigenvalue of the boundary graph

(for 0(1) = 112,0(2) = 123, o(3) = 4, o(4) = 1. the dimension is 1.1965).

@ Connectivity (d = 3): stated in terms of connectivity graphs

(non-connected for o(1) = 3,0(2) = 23, o(3) = 31223)
@ 0 inner point: related to a zero-surrounding graph

(0 is not an inner point for o(1) = 123,0(2) =1, o(3) = 31)
@ Homeomorphic to a disc (d = 3)

(yes for o(1) = 112,06(2) =123, 0(3) =4, o(4) =1,

no for o(1) = 1112,0(2) = 1113, (3) = 1.)

@ All connectivity graphs are loops

@ All connectivity graphs of the decomposition of tiles are lines.
@ Three-tiles intersections are single points.

TR/
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Non trivial fundamental group?

Theorem

Assume that d = 3. The fundamental group of each 7 (/) is non-trivial as soon as
9 The tiling property is satisfied;
@ All 7(i)’s are connected;

@ There are a finite number of quadruple points;

@ There exists a triple point node [i, 1,71, 7 (i2) + 2] leading away an infinity of
walks.

9@ There exists three translations vectors such that the patterns
(v, 1, [va + v, ], [v2 + v, 2]), (v, i], [y + V5 a1, [v2 + v/, i2]) and

(v, ], [y 4+ v, iu], [v2 + v", i2]) lie at the boundary of a finite inflation of E1(c).
v

With additional properties, the fundamental group is not free and uncountable.

=] = = =
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Example

@ Finite number of quadruple points;

LCLLD.LELLD2,0,-L1.3]
111
1,00,0.0.2.(1,-2.003.(
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Example

9 A node [i,i1,71,7 (i2) + 72] in the triple points graph issues in an infinite
number of walks.

Consider the node [2,0,3,7(1,0,—1),1].
It corresponds to the intersection 7(2) N 7(3) N (7w(1,0,—1) + 7(1))

[ IS0 EENETEEE
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Example

9@ There exists three translations vectors such that the three patterns
E1(2)*0,].

([Vv i]v [71 + v, i1]7 [72 +v, i2])v ([V,7 i], ['—Yl +v/, i1]7 [72 +v/, ’2]) et

(v, i1, [y + v, i), [v2 + v”, ia]) lie at the boundary of a finite inflation
Consider the node [2,0,3,7(1,0,—1),1

It corresponds to the intersection 7(2) N7 (3) N (w(1,0,—1) + 7(1))

¢ >

Pattern

[0,2][0, 3]
[7(1,0,-1),1]

E1(c)*[0,2]
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Proof of the theorem |

Lemma [Luo, Thus.]

Let By, B1, B> C R? be locally connected continuum such that
(i) Interiors are disjoints int(B;) Nint(B;) = 0, i # j.
(if) Each B; is the closure of its interior (0 < i < 2).
(iii) R2\ int(B;) is locally connected (0 < i < 2).
(iv) There exist x1,x2 € Bp N By N By with x; € int(Bo uUB U Bg).

Then there exists i € {0, 1,2} such that B; U Bj;1 has a bounded connected
component U with U N int(Bji2) # 0.

In other words: if we consider three “suitable” sets that intersect simultaneously at
least twice and one triple point is in the interior of the union, then a part of one set is
surrounded by the two others.

@ Apply this lemma to the three-tiles intersections given by the assumption. The
infinite number of walks and the finite number of quadruple points ensures that a
triple point is an inner point of the union.

@ We use the last condition to ensure that the part of the third tile inside the hole
is actually outside 7 (/).

n}
L)
1
w
i
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Proof of the theorem Il

@ Since an infinite number of walks is issued from [i, i1,v1,7 (i2) + 72] and

quadruple points are finite, the intersection 7 (i) N (7 (i1) + 1) N (7 (i2) + ¥2)

contains at least two distinct points and one lies in the interior of
T()U(T () + ) U (T (i2) +72)-

@ The lemma can be used. There exists a bounded connected component Uy such

that:

z€int(7 (i) +ve)NUo  Uo C CU(T (igs1) + ver1) U (T (ie42) + vet2)

@ T (ig) + ¢ + vy does not appear in the decomposition of h=N7T (i) since

VTG = | (TR ).

[v.kl€EY[0,1]

By the tiling property, int(7 (iy) + v, + v¢) is disjoint from h=NT (/).
z+v, g h NT(i). = z+v, € UcCChNT(i)
where U is a bounded connected component.

(T (ies1) + vesr + Vo) U (T (ig2) + ver2 +ve) Ch™NT (i) = U CUp
@ Therefore U is bounded.

@ Then the complementary set to 7 (i) has at least a bounded connected
component.
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To be continued

@ Changing the dimension: no more Jordan theorem available?

@ Which properties are invariant by invertible substitution?

@ Application to beta-numeration or diophantine approximation?
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