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Many shapes for Rauzy fractals...
Several properties on examples [Rauzy, Akiyama, Canterini, Messaoudi,
Feng-Furukado-Ito-Wu, Sirvent, Thus.]
0 inner point? Hausdorff dimension of the boundary?
Connectivity? Homeomorphic to a disk? Fundamental group?



Definitions

Substitution. σ endomorphism of the free monoid {0, . . . , n}∗.
σ : 1 → 12 2 → 13 3 → 1. (β3 = β2 + β + 1)

Primitivity The abelianized matrix M is primitive.

Periodic points If σ is primitive, there exists a periodic point w

σν (w) = w .

Pisot unit hypothesis The dominant eigenvalue β of M is a unit Pisot number.

σ : 1 → 12 2 → 3 3 → 1 4 → 5 5 → 1 (β3 = β + 1)

(Ir)reducibility We denote by d ≤ n the algebraic degree of β and Minβ its
minimal polynomial.
If d 6= n, the substitution is said to be reducible.

Decomposition of Rn:
Expanding line He .
β-contracting space Hc (generated by the eigenvectors
of β Galois conjugates).
Supplementary space Ho (generated by other eigenvectors)

Beta-projection h: projection onto the contracting space, parallel to the other
spaces.

The beta-projection h retains the part of a vector lying on eigendirections for
contracting conjugates of β

∀w ∈ A∗, π(l(σ(w))) = hπ(l(w)).

Projecting ◦ Abelianizing ◦ Substituting ⇐⇒ Projecting ◦ Contracting by h ◦ Abelianizing



Rauzy Fractal / Central Tile

Compute a periodic point. σ(1) = 12, σ(2) = 13, σ(3) = 1
12131211213121213121131312131211213121211211213...

Draw a stair.

Project it on the contracting space Hc .

Closure

Definition

Tσ = {π(l(u0 · · · ui−1)); i ∈ N}.

Subtile: T (a) = {π (l(u0 · · · ui−1)) ; i ∈ N, ui = a}.



Topology

T is compact in Hc . Hc is a (d − 1)-Euclidean space, where d is the algebraic
degree of β.
Its interior is non empty. It has a non-zero measure in Hc [Sirvent-Wang].

Each subtile is the closure of its interior [Sirvent-Wang].

Subtiles are measurably disjoint if the substitution satisfies the strong coincidence
condition [Arnoux-Ito].

Self-similarity[Arnoux-Ito]

The subtiles of T satisfy a Graph Iterated Function System:
T (a) =

S

b∈A, σ(b)=pas h(T (b)) + π(l(p))

T (1) = h[T (1) ∪ (T (1) + πl(e1))
∪T (2) ∪ (T (2) + πl(e1)) ∪ T (4)],

T (2) = h(T (1) + 2πl(e1)),
T (3) = h(T (2) + 2πl(e1)),
T (4) = h(T (3)

σ(1) = 112, σ(2) = 113, σ(3) = 4, σ(4) = 1

(Rauzy, Arnoux-Ito, Akiyama, Sirvent-Wang, Canterini-Siegel, Berthé-Siegel)



Covering the contracting space
We consider the projection of points of Zn that are nearby the contracting space
along the expanding β-direction.

Γsrs = {[π(x), i ] ∈ π(Zn) ×A, 0 ≤ 〈x, vβ〉 < 〈ei , vβ〉}.

The distance of x to the contracting space along the expanding direction is
smaller than the lenghth of the projection of the i -th canonical vector on the
expanding direction.
This set is self-similar, aperiodic and locally finite.
For each pair [π(x), i ] we draw a copy of T (i) in π(x).

Covering [Ito-Rao,Barge-Kwapisz]

The set of tiles T (i) + γ with (γ, i) ∈ Γsrs covers the contracting space Hc with a
constant cover degree.

The covering is a tiling iff the substitution satisfies the super-coincidences



Boundary graph
Consider the intersection of two tiles in the covering I = T (a) ∩ (π(x) + T (b)).

Decompose each tile and re-order the intersection

I =
[

σ(a1)=p1as1

h[T (a1) + πl(p1)]
\ [

σ(b1)=p2bs2

h[T (b1) + πl(p2)] + π(x).

=
[

hπl(p1) + h

2

6
6
4
T (a1) ∩ (T (b1) + πl(p2) − πl(p1) + h

−1π(x)
| {z }

=π(x1)

)

3

7
7
5

Graph

The nodes are denoted by (a, π(x), b) and correspond to intersections
T (a) ∩ (π(x) + T (b)).
There is an edge between two nodes if the target intersection appears in the
decomposition of the origin intersection.

(a, π(x), b) → (a1, π(x1), b1)

The graph is finite.

The intersection T (a) ∩ (π(x) + T (b)) is non-empty iff the graph contains an
infinite walk issued from (a, π(x), b).

Proof (a) If I is non-empty, at least one of the target is non-empty.
(b) There are only a finite number of non-empty intersections since the covering has a
finite degree andT is bounded.



Example

There are 8 nodes with the shape [1, π(x), b]:
hence T (1) has 8 neighbors π(x) + T (b) in the
covering.



Derived graphs

Triple points graph We consider intersections between three tiles in the covering.

Quadruple points graph Intersections between four tiles: only 5 quadruples points
in the example .

The connectivity graph describe adjacencies of pieces of the boundary of a subtile
T (i).



Applications

Checking tiling and Box/Haussdorf dimension of the boundary:
compute the dominant eigenvalue of the boundary graph
(for σ(1) = 112,σ(2) = 123, σ(3) = 4, σ(4) = 1. the dimension is 1.1965).

Connectivity (d = 3): stated in terms of connectivity graphs
(non-connected for σ(1) = 3,σ(2) = 23, σ(3) = 31223)

0 inner point: related to a zero-surrounding graph
(0 is not an inner point for σ(1) = 123,σ(2) = 1, σ(3) = 31)

Homeomorphic to a disc (d = 3)
(yes for σ(1) = 112,σ(2) = 123, σ(3) = 4, σ(4) = 1,
no for σ(1) = 1112,σ(2) = 1113, σ(3) = 1.)

All connectivity graphs are loops
All connectivity graphs of the decomposition of tiles are lines.
Three-tiles intersections are single points.



Non trivial fundamental group?

Theorem

Assume that d = 3. The fundamental group of each T (i) is non-trivial as soon as

The tiling property is satisfied;

All T (i)’s are connected;

There are a finite number of quadruple points;

There exists a triple point node [i , i1, γ1, T (i2) + γ2] leading away an infinity of
walks.

There exists three translations vectors such that the patterns

([v, i ], [γ1 + v, i1], [γ2 + v, i2]), ([v
′

, i ], [γ1 + v′, i1], [γ2 + v′, i2]) and

([v
′′

, i ], [γ1 + v′′, i1], [γ2 + v′′, i2]) lie at the boundary of a finite inflation of E1(σ).

With additional properties, the fundamental group is not free and uncountable.



Example

Finite number of quadruple points;

A node [i , i1, γ1,T (i2) + γ2] in the triple points graph issues in an infinite
number of walks.



Example

Finite number of quadruple points;

A node [i , i1, γ1,T (i2) + γ2] in the triple points graph issues in an infinite
number of walks.

Consider the node [2, 0, 3, π(1, 0,−1), 1].
It corresponds to the intersection T (2) ∩ T (3) ∩ (π(1, 0,−1) + T (1))



Example

Finite number of quadruple points;

A node [i , i1, γ1,T (i2) + γ2] in the triple points graph issues in an infinite
number of walks.

There exists three translations vectors such that the three patterns

([v, i ], [γ1 + v, i1], [γ2 + v, i2]), ([v
′

, i ], [γ1 + v′, i1], [γ2 + v′, i2]) et

([v
′′

, i ], [γ1 + v′′, i1], [γ2 + v′′, i2]) lie at the boundary of a finite inflation
E1(σ)K [0, i ].

Consider the node [2, 0, 3, π(1, 0,−1), 1].
It corresponds to the intersection T (2) ∩ T (3) ∩ (π(1, 0,−1) + T (1))

E1(σ)4[0,2]

Pattern
[0,2][0,3]

[π(1, 0,−1), 1]



Proof of the theorem I

Lemma [Luo, Thus.]

Let B0,B1,B2 ⊂ R2 be locally connected continuum such that

(i) Interiors are disjoints int(Bi ) ∩ int(Bj ) = ∅, i 6= j .

(ii) Each Bi is the closure of its interior (0 ≤ i ≤ 2).

(iii) R2 \ int(Bi ) is locally connected (0 ≤ i ≤ 2).

(iv) There exist x1, x2 ∈ B0 ∩ B1 ∩ B2 with x1 ∈ int(B0 ∪ B1 ∪ B2).

Then there exists i ∈ {0, 1, 2} such that Bi ∪ Bi+1 has a bounded connected
component U with U ∩ int(Bi+2) 6= ∅.

In other words: if we consider three “suitable” sets that intersect simultaneously at
least twice and one triple point is in the interior of the union, then a part of one set is
surrounded by the two others.

Apply this lemma to the three-tiles intersections given by the assumption. The
infinite number of walks and the finite number of quadruple points ensures that a
triple point is an inner point of the union.

We use the last condition to ensure that the part of the third tile inside the hole
is actually outside T (i).



Proof of the theorem II

Since an infinite number of walks is issued from [i , i1, γ1,T (i2) + γ2] and
quadruple points are finite, the intersection T (i) ∩ (T (i1) + γ1) ∩ (T (i2) + γ2)
contains at least two distinct points and one lies in the interior of
T (i) ∪ (T (i1) + γ1) ∪ (T (i2) + γ2).

The lemma can be used. There exists a bounded connected component U0 such
that:

z ∈ int(T (iℓ) + γℓ) ∩ U0 U0 ⊂ C((T (iℓ+1) + γℓ+1) ∪ (T (iℓ+2) + γℓ+2)

T (iℓ) + γℓ + vℓ does not appear in the decomposition of h−NT (i) since

h
−NT (i) =

[

[γ,k]∈EN
1 [0,i ]

(T (k) + γ).

By the tiling property, int(T (iℓ) + γℓ + vℓ) is disjoint from h−NT (i).
z + vℓ 6∈ h−NT (i). =⇒ z + vℓ ∈ U ⊂ C(h−NT (i))

where U is a bounded connected component.

(T (iℓ+1) + γℓ+1 + vℓ) ∪ (T (iℓ+2) + γℓ+2 + vℓ) ⊂ h−NT (i) =⇒ U ⊂ U0

Therefore U is bounded.

Then the complementary set to T (i) has at least a bounded connected
component.



To be continued

Changing the dimension: no more Jordan theorem available?

Which properties are invariant by invertible substitution?

Application to beta-numeration or diophantine approximation?


