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Plan of the talk

Balance properties of infinite words
associated with quadratic Pisot numbers

@ Simple and non-simple quadratic Pisot numbers

@ The set of B-integers, infinite word associated to a quadratic
Pisot number

© Balance properties: k-balanced word
© Theorem
© Sketch of the proof
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Quadratic Pisot numbers

[ is a quadratic Pisot number iff 3 is
@ algebraic integer greater than 1
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[ is a quadratic Pisot number iff 3 is
@ algebraic integer greater than 1
o of degree 2
@ such that its Galois conjugate has modulus less than 1.
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Quadratic Pisot numbers

[ is a quadratic Pisot number iff 3 is
@ algebraic integer greater than 1
o of degree 2
@ such that its Galois conjugate has modulus less than 1.

Rényi (-expansion of unity is the lexicographically greatest
sequence

dg(l) = tytot3---, wheret; € N
such that 1 =73, t37.
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Quadratic Pisot numbers

[ is a quadratic Pisot number iff 3 is
@ algebraic integer greater than 1
o of degree 2
@ such that its Galois conjugate has modulus less than 1.

Rényi (-expansion of unity is the lexicographically greatest
sequence
dg(l) = tytot3---, wheret; € N

such that 1 =73, t37.

For 3 being quadratic Pisot, dg(1) can be
e finite, d3(1) =pq, p>q>1

e eventually periodic, dg(1) = pg“, p>q>1
(= pg“ denotes pqqq - - - )
(no other possibility)
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Quadratic Pisot numbers

[ is a quadratic Pisot number iff 3 is
@ algebraic integer greater than 1
o of degree 2
@ such that its conjugate element has modulus less than 1.

Rényi (-expansion of unity is the lexicographically greatest
sequence
dg(l) = tytot3---, wheret; € N

such that 1 =3, t37.

For 3 being quadratic Pisot, dg(1) can be
e finite, dz(1) =pq, p>q>1
» (3 is called a simple quadratic Pisot number,
e eventually periodic, dg(1) = pg“, p>q>1
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Quadratic Pisot numbers

[ is a quadratic Pisot number iff 3 is
@ algebraic integer greater than 1
o of degree 2
@ such that its conjugate element has modulus less than 1.

Rényi (-expansion of unity is the lexicographically greatest

sequence
dg(l) = tytot3---, wheret; € N

such that 1 =3, t37.

For 3 being quadratic Pisot, dg(1) can be
e finite, dz(1) =pq, p>q>1
» (3 is called a simple quadratic Pisot number,

e eventually periodic, dg(1) = pg“, p>q>1
» (3 is called a non-simple quadratic Pisot number.
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A [(-expansion of x > 0 is a representation of the form
X :Xk,Bk‘i‘kal/Bk_l + ... +X0+X_1ﬁ_1 +X_2ﬁ_2 e

where x; € Ng are obtained by the 'greedy algorithm'.
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A (-expansion of x > 0 is a representation of the form
x = x5+ xu1 B o xoFxa BT x84
where x; € Ng are obtained by the 'greedy algorithm'.
We denote: (X)g = XkXk—1-" X0 ® X_1X_2 "
The set of non-negative (-integers:

Zg ={x>0 | (X)5 = XiXk—1-"Xxo®}
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A (-expansion of x > 0 is a representation of the form
x=x0"+ 518+ xo X BT A xaB R

where x; € Ng are obtained by the 'greedy algorithm'.

We denote: (X)g = XkXk—1-" X0 ® X_1X_2 "

The set of non-negative (-integers:

Zg ={x>0 ’ (X)5 = XiXk—1-"Xxo®}

Theorem:
There are exactly two types of distances between neighboring
points of Zg on the real line, namely

OAA:].,
o Ap=p—[B].
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Generating substitutions for the word ug

Let us assign letters A and B to Ap, Ag:
the order of distances in Z; defines an infinite word ug
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Generating substitutions for the word ug

Let us assign letters A and B to Ap, Ag:
the order of distances in Z; defines an infinite word ug

e If 3 is simple, then ug is a fixed point of
p(A) = AB,
p(B)=A%, p>q>1
A APB+— (APB)P A9 — ...

(AP denotes A--- A)
—
p
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Generating substitutions for the word ug

Let us assign letters A and B to Ap, Ag:
the order of distances in Z; defines an infinite word ug

e If 3 is simple, then ug is a fixed point of
p(A) = AB,
p(B)=A%, p>q>1
A APB+— (APB)P A9 — ...

(AP denotes A--- A)
—

p
e If 3 is non-simple, then ug is a fixed point of

¢(A) = APB,
¢(B)=A9B, p>q=>1.

A|—>APB»—>(APB)pAqB|—>--'
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k-balanced word

Notation:
@ length of a word w = wiwy -+ - wp: |w|=n

@ the number of letters A in the word w: |w|a
o factor of the word v (finite or infinite): v = w(Dww(?)
o prefix of vi v =ww(?

o suffixof vi v=wBw
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k-balanced word

Notation:
@ length of a word w = wiwy -+ - wp: |w|=n
@ the number of letters A in the word w: |w|a

o factor of the word v (finite or infinite): v = w(Dww(?)

o prefix of vi v =ww(?
o suffixof vi v=wBw

Definition: A word u in the binary alphabet A = {A, B} is
k-balanced, if for every pair of factors w, w of u, it holds

wl=1[%] = [|lwla—[¥[a] < k.
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k-balanced word

Notation:
@ length of a word w = wiwy -+ - wp: |w|=n
@ the number of letters A in the word w: |w|a

o factor of the word v (finite or infinite): v = w(Dww(?)

o prefix of vi v =ww(?
o suffixof vi v=wBw

Definition: A word u in the binary alphabet A = {A, B} is
k-balanced, if for every pair of factors w, w of u, it holds

wl=1[%] = [|lwla—[¥[a] < k.

Questions:

© Are the words ug k-balanced for some k?
@ If yes, what is the minimal k7
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Balance properties of ug

Theorem (Adamczewski):

For every quadratic Pisot number 3 there is a kK € N such that ug
is k-balanced.
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Balance properties of ug

Theorem (Adamczewski):

For every quadratic Pisot number 3 there is a kK € N such that ug
is k-balanced.

Theorem (our result)

e If B is a quadratic simple Pisot number, dg(1) = pq, then

—1
ug Is <1 + LPJ> -balanced .
p+1—gq
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Balance properties of ug

Theorem (Adamczewski):

For every quadratic Pisot number 3 there is a kK € N such that ug
is k-balanced.

Theorem (our result)

e If B is a quadratic simple Pisot number, dg(1) = pq, then

—1
ug Is <1 + LPJ> -balanced .
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e If B is a quadratic non-simple Pisot number, dg(1) = pg*
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ug is <P);—D -balanced .
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Balance properties of ug

Theorem (Adamczewski):

For every quadratic Pisot number 3 there is a kK € N such that ug
is k-balanced.

Theorem (our result)

e If B is a quadratic simple Pisot number, dg(1) = pq, then

—1
ug Is <1 + LPJ) -balanced .
p+1—gq

e If B is a quadratic non-simple Pisot number, dg(1) = pg*

then )
ug is <P);—D -balanced .

@ These bounds are optimal, i.e. they cannot be improved.

’

Ondtej Turek Balance properties of infinite words associated with quadratic Pis



Proof of the Theorem (non-simple Pisot case) - part 1 of 3

We define sequences {ué")}oo and {Wé")}nzl of factors of ug:

n=1
w) = B
Wé") — B(p(wé"_l)) forneZ, n>2,
”g(an) = prefix of ug of the length ‘Wén)) , neN
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Proof of the Theorem (non-simple Pisot case) - part 1 of 3

We define sequences {ué")}oo and {Wé")}:ozl of factors of ug:

n=1
Wél) = B
_1)
Wé") — B(p(wé" ) forn€Z, n>2,
”g(an) = prefix of ug of the length ‘Wén)) , neN
Main idea:

(m{ _1,,(
° ‘uﬁ = ‘Wﬂ
° ué") contains "many” letters A, Wé") contains "many” letters

B.
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Proof of the Theorem - part 2 of 3

The important property of the pairs ué"), wé"):

Lemma

The difference |u£}")\ A— |Wén) |a is maximal in the following sense:
If v, V' is a pair of factors of ug of the same length and

Via=1V0a > (6]~ [wi]a,
then . W
V=] > 6] =w)
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Proof of the Theorem - part 3 of 3

Behavior of the difference |U§3n)|A - |W;(3n)|A
A
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Proof of the Theorem - part 3 of 3

Behavior of the difference |U§3n)|A - |W;(3n)|A
A

_ | ptg
t= LqHJ
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Proof of the Theorem - part 3 of 3

Behavior of the difference |U§3n)|A - |W;(3n)|A
A

_ | ptg
t= LqHJ

t t+1 n
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Proof of the Theorem - part 3 of 3

Behavior of the difference |U§3n)|A - |W;(3n)|A

A
T-11
— | pta=t
T‘[ q 1
.
_ | pta
t—LmJ

t t+1 T n
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A
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— | pta=t
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.
_ | pta
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Final remarks

@ The proof for the simple Pisot case is analogous.
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Final remarks

@ The proof for the simple Pisot case is analogous.

@ The idea seems to be generalizable for certain Pisot numbers
of higher degrees.
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