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Quadratic Pisot numbers

β is a quadratic Pisot number iff β is

algebraic integer greater than 1

of degree 2

such that its Galois conjugate has modulus less than 1.

Rényi β-expansion of unity is the lexicographically greatest
sequence

dβ(1) = t1t2t3 · · · , where ti ∈ N

such that 1 =
∑

i≥1 tiβ
−i .

For β being quadratic Pisot, dβ(1) can be

finite, dβ(1) = pq, p ≥ q ≥ 1
- occurs when β is a simple quadratic Pisot number,

eventually periodic, dβ(1) = pqω, p > q ≥ 1
(= pqω denotes pqqq · · · )

(no other possibility)
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Onďrej Turek Balance properties of infinite words associated with quadratic Pisot numbers



β-integers

A β-expansion of x ≥ 0 is a representation of the form

x = xkβ
k + xk−1β

k−1 + · · ·+ x0 + x−1β
−1 + x−2β

−2 + · · · ,

where xi ∈ N0 are obtained by the ‘greedy algorithm’.

We denote: 〈x〉β = xkxk−1 · · · x0 • x−1x−2 · · ·

The set of non-negative β-integers:

Z+
β = {x ≥ 0

∣∣ 〈x〉β = xkxk−1 · · · x0•}

Theorem:
There are exactly two types of distances between neighboring
points of Z+

β on the real line, namely

∆A = 1,

∆B = β − bβc.
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Generating substitutions for the word uβ

Let us assign letters A and B to ∆A, ∆B :
the order of distances in Z+

β defines an infinite word uβ

If β is simple, then uβ is a fixed point of

ϕ(A) = ApB,

ϕ(B) = Aq, p ≥ q ≥ 1.

A 7→ ApB 7→ (ApB)p Aq 7→ · · ·

(Ap denotes A · · ·A︸ ︷︷ ︸
p

)

If β is non-simple, then uβ is a fixed point of

ϕ(A) = ApB,

ϕ(B) = AqB, p > q ≥ 1.

A 7→ ApB 7→ (ApB)p AqB 7→ · · ·
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k-balanced word

Notation:

length of a word w = w1w2 · · ·wn: |w | = n

the number of letters A in the word w : |w |A
factor of the word v (finite or infinite): v = w (1)ww (2)

prefix of v : v = ww (2)

suffix of v : v = w (1)w

Definition: A word u in the binary alphabet A = {A,B} is
k-balanced, if for every pair of factors w , ŵ of u, it holds

|w | = |ŵ | ⇒ | |w |A − |ŵ |A | ≤ k .

Questions:

1 Are the words uβ k-balanced for some k?

2 If yes, what is the minimal k?

Onďrej Turek Balance properties of infinite words associated with quadratic Pisot numbers



k-balanced word

Notation:

length of a word w = w1w2 · · ·wn: |w | = n

the number of letters A in the word w : |w |A
factor of the word v (finite or infinite): v = w (1)ww (2)

prefix of v : v = ww (2)

suffix of v : v = w (1)w

Definition: A word u in the binary alphabet A = {A,B} is
k-balanced, if for every pair of factors w , ŵ of u, it holds
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Balance properties of uβ

Theorem (Adamczewski):

For every quadratic Pisot number β there is a k ∈ N such that uβ
is k-balanced.

Theorem (our result)

If β is a quadratic simple Pisot number, dβ(1) = pq, then

uβ is

(
1 +

⌊
p − 1

p + 1− q

⌋)
-balanced .

If β is a quadratic non-simple Pisot number, dβ(1) = pqω,
then

uβ is

(⌈
p − 1

q

⌉)
-balanced .

These bounds are optimal, i.e. they cannot be improved.

Onďrej Turek Balance properties of infinite words associated with quadratic Pisot numbers



Balance properties of uβ

Theorem (Adamczewski):

For every quadratic Pisot number β there is a k ∈ N such that uβ
is k-balanced.

Theorem (our result)

If β is a quadratic simple Pisot number, dβ(1) = pq, then

uβ is

(
1 +

⌊
p − 1

p + 1− q

⌋)
-balanced .

If β is a quadratic non-simple Pisot number, dβ(1) = pqω,
then

uβ is

(⌈
p − 1

q

⌉)
-balanced .

These bounds are optimal, i.e. they cannot be improved.
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Proof of the Theorem (non-simple Pisot case) - part 1 of 3

We define sequences
{

u
(n)
β

}∞
n=1

and
{

w
(n)
β

}∞
n=1

of factors of uβ:

w
(1)
β = B

w
(n)
β = Bϕ(w

(n−1)
β ) for n ∈ Z, n ≥ 2,

.

u
(n)
β = prefix of uβ of the length

∣∣∣w (n)
β

∣∣∣ , n ∈ N

Main idea:∣∣∣u(n)
β

∣∣∣ =
∣∣∣w (n)

β

∣∣∣
u

(n)
β contains ”many” letters A, w

(n)
β contains ”many” letters

B.
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Proof of the Theorem - part 2 of 3

The important property of the pairs u
(n)
β ,w

(n)
β :

Lemma

The difference |u(n)
β |A − |w

(n)
β |A is maximal in the following sense:

If v , v ′ is a pair of factors of uβ of the same length and

|v |A − |v ′|A > |u(n)
β |A − |w

(n)
β |A ,

then
|v | = |v ′| > |u(n)

β | = |w (n)
β |
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Proof of the Theorem - part 3 of 3

Behavior of the difference |u(n)
β |A − |w

(n)
β |A

-

6

n

t

t

t =
⌊

p+q
q+1

⌋
�

�
�

�
�

�

t+1 T

T -1

T =
⌈

p+q−1
q

⌉
�

�
�

�
�

�

⇒ k = T − 1 =

⌈
p − 1

q

⌉
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Final remarks

The proof for the simple Pisot case is analogous.

The idea seems to be generalizable for certain Pisot numbers
of higher degrees.
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