Balance properties of infinite words associated with quadratic Pisot numbers

Ondřej Turek

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Journées Numération 2008

Balance properties of infinite words associated with quadratic Pisot numbers

- Simple and non-simple quadratic Pisot numbers
- 2 The set of β-integers, infinite word associated to a quadratic Pisot number
- Salance properties: k-balanced word
- Theorem
- Sketch of the proof

- β is a quadratic Pisot number iff β is
 - algebraic integer greater than 1

- β is a quadratic Pisot number iff β is
 - ${\ensuremath{\,\circ\,}}$ algebraic integer greater than 1
 - of degree 2

-

- β is a quadratic Pisot number iff β is
 - algebraic integer greater than 1
 - of degree 2
 - such that its Galois conjugate has modulus less than 1.

- β is a quadratic Pisot number iff β is
 - algebraic integer greater than 1
 - of degree 2
 - such that its Galois conjugate has modulus less than 1.

Rényi β -expansion of unity is the lexicographically greatest sequence

$$d_{eta}(1) = t_1 t_2 t_3 \cdots, \quad ext{where } t_i \in \mathbb{N}$$

such that $1 = \sum_{i \ge 1} t_i \beta^{-i}$.

 β is a quadratic Pisot number iff β is

- algebraic integer greater than 1
- of degree 2
- such that its Galois conjugate has modulus less than 1.

Rényi β -expansion of unity is the lexicographically greatest sequence

$$d_{eta}(1) = t_1 t_2 t_3 \cdots, \quad ext{where } t_i \in \mathbb{N}$$

such that $1 = \sum_{i \ge 1} t_i \beta^{-i}$.

For β being quadratic Pisot, $d_{\beta}(1)$ can be

• finite, $d_eta(1)=pq,\ p\geq q\geq 1$

「同 ト イ ヨ ト イ ヨ ト ― ヨ

 β is a quadratic Pisot number iff β is

- algebraic integer greater than 1
- of degree 2
- such that its Galois conjugate has modulus less than 1.

Rényi β -expansion of unity is the lexicographically greatest sequence

$$d_{eta}(1) = t_1 t_2 t_3 \cdots, \quad ext{where } t_i \in \mathbb{N}$$

such that $1 = \sum_{i \ge 1} t_i \beta^{-i}$.

For β being quadratic Pisot, $d_{\beta}(1)$ can be

- finite, $d_eta(1)=pq,\ p\geq q\geq 1$
- eventually periodic, d_β(1) = pq^ω, p > q ≥ 1 (= pq^ω denotes pqqq...)
 (no other possibility)

 β is a quadratic Pisot number iff β is

- algebraic integer greater than 1
- of degree 2
- such that its conjugate element has modulus less than 1.

Rényi β -expansion of unity is the lexicographically greatest sequence

$$d_{eta}(1) = t_1 t_2 t_3 \cdots, \quad ext{where } t_i \in \mathbb{N}$$

such that $1 = \sum_{i \ge 1} t_i \beta^{-i}$.

For eta being quadratic Pisot, $d_eta(1)$ can be

- finite, $d_{\beta}(1) = pq$, $p \ge q \ge 1$
 - \blacktriangleright β is called a simple quadratic Pisot number,
- eventually periodic, $d_eta(1)=pq^\omega$, $p>q\geq 1$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □

 β is a quadratic Pisot number iff β is

- algebraic integer greater than 1
- of degree 2
- such that its conjugate element has modulus less than 1.

Rényi β -expansion of unity is the lexicographically greatest sequence

$$d_{eta}(1) = t_1 t_2 t_3 \cdots, \quad ext{where } t_i \in \mathbb{N}$$

such that $1 = \sum_{i \ge 1} t_i \beta^{-i}$.

For β being quadratic Pisot, $d_{\beta}(1)$ can be

- finite, $d_{eta}(1) = pq$, $p \geq q \geq 1$
 - \blacktriangleright β is called a **simple** quadratic Pisot number,
- eventually periodic, $d_eta(1)=pq^\omega$, $p>q\geq 1$
 - \blacktriangleright β is called a **non-simple** quadratic Pisot number.

伺 と く ヨ と く ヨ と …

β -integers

A β -expansion of $x \ge 0$ is a representation of the form

$$x = x_k \beta^k + x_{k-1} \beta^{k-1} + \dots + x_0 + x_{-1} \beta^{-1} + x_{-2} \beta^{-2} + \dots,$$

where $x_i \in \mathbb{N}_0$ are obtained by the 'greedy algorithm'.

A B + A B +

β -integers

A β -expansion of $x \ge 0$ is a representation of the form

$$x = x_k \beta^k + x_{k-1} \beta^{k-1} + \dots + x_0 + x_{-1} \beta^{-1} + x_{-2} \beta^{-2} + \dots,$$

where $x_i \in \mathbb{N}_0$ are obtained by the 'greedy algorithm'.

We denote: $\langle x \rangle_{\beta} = x_k x_{k-1} \cdots x_0 \bullet x_{-1} x_{-2} \cdots$

The set of non-negative β -integers:

$$\mathbb{Z}_{\beta}^{+} = \{ x \ge 0 \mid \langle x \rangle_{\beta} = x_{k} x_{k-1} \cdots x_{0} \bullet \}$$

同 ト イヨ ト イヨ ト ヨ うくや

β -integers

A β -expansion of $x \ge 0$ is a representation of the form

$$x = x_k \beta^k + x_{k-1} \beta^{k-1} + \dots + x_0 + x_{-1} \beta^{-1} + x_{-2} \beta^{-2} + \dots,$$

where $x_i \in \mathbb{N}_0$ are obtained by the 'greedy algorithm'.

We denote: $\langle x \rangle_{\beta} = x_k x_{k-1} \cdots x_0 \bullet x_{-1} x_{-2} \cdots$

The set of non-negative β -integers:

$$\mathbb{Z}_{\beta}^{+} = \{ x \geq 0 \mid \langle x \rangle_{\beta} = x_{k} x_{k-1} \cdots x_{0} \bullet \}$$

Theorem:

There are exactly two types of distances between neighboring points of \mathbb{Z}_β^+ on the real line, namely

• $\Delta_A = 1$,

•
$$\Delta_B = \beta - \lfloor \beta \rfloor$$
.

「同 ト イ ヨ ト イ ヨ ト ― ヨ

Generating substitutions for the word u_{β}

Let us assign letters A and B to Δ_A , Δ_B : the order of distances in \mathbb{Z}_{β}^+ defines an infinite word u_{β}

Generating substitutions for the word u_{β}

Let us assign letters A and B to Δ_A , Δ_B : the order of distances in \mathbb{Z}_{β}^+ defines an infinite word u_{β}

• If β is *simple*, then u_{β} is a fixed point of

$$arphi(A) = A^{p}B,$$

 $arphi(B) = A^{q}, \quad p \ge q \ge 1.$
 $A \mapsto A^{p}B \mapsto (A^{p}B)^{p}A^{q} \mapsto \cdots$
 $(A^{p} \text{ denotes } \underbrace{A \cdots A}_{p})$

Generating substitutions for the word u_{β}

Let us assign letters A and B to Δ_A , Δ_B : the order of distances in \mathbb{Z}_{β}^+ defines an infinite word u_{β}

• If β is *simple*, then u_{β} is a fixed point of

 $\varphi(A) = A^{p}B,$ $\varphi(B) = A^q, \quad p > q > 1.$ $A \mapsto A^p B \mapsto (A^p B)^p A^q \mapsto \cdots$ $(A^p \text{ denotes } \underbrace{A \cdots A})$ • If β is *non-simple*, then u_{β} is a fixed point of $\varphi(A) = A^{p}B,$ $\varphi(B) = A^q B, \quad p > q > 1.$ $A \mapsto A^{p}B \mapsto (A^{p}B)^{p}A^{q}B \mapsto \cdots$

k-balanced word

Notation:

- *length* of a word $w = w_1 w_2 \cdots w_n$: |w| = n
- the number of letters A in the word w: $|w|_A$
- factor of the word v (finite or infinite): $v = w^{(1)}ww^{(2)}$
 - prefix of v: $v = ww^{(2)}$
 - suffix of v: $v = w^{(1)}w$

伺 と く ヨ と く ヨ と

-

k-balanced word

Notation:

- *length* of a word $w = w_1 w_2 \cdots w_n$: |w| = n
- the number of letters A in the word w: $|w|_A$
- factor of the word v (finite or infinite): $v = w^{(1)}ww^{(2)}$
 - prefix of v: $v = ww^{(2)}$
 - suffix of v: $v = w^{(1)}w$

Definition: A word *u* in the binary alphabet $\mathcal{A} = \{A, B\}$ is *k*-balanced, if for every pair of factors *w*, \hat{w} of *u*, it holds

$$|w| = |\hat{w}| \quad \Rightarrow \quad ||w|_{\mathcal{A}} - |\hat{w}|_{\mathcal{A}}| \leq k.$$

k-balanced word

Notation:

- *length* of a word $w = w_1 w_2 \cdots w_n$: |w| = n
- the number of letters A in the word w: $|w|_A$
- factor of the word v (finite or infinite): $v = w^{(1)}ww^{(2)}$
 - prefix of v: $v = ww^{(2)}$
 - suffix of v: $v = w^{(1)}w$

Definition: A word *u* in the binary alphabet $\mathcal{A} = \{A, B\}$ is *k*-balanced, if for every pair of factors *w*, \hat{w} of *u*, it holds

$$|w| = |\hat{w}| \quad \Rightarrow \quad ||w|_A - |\hat{w}|_A| \leq k.$$

Questions:

- Are the words u_β k-balanced for some k?
- If yes, what is the **minimal** k?

Theorem (Adamczewski):

For every quadratic Pisot number β there is a $k \in \mathbb{N}$ such that u_{β} is k-balanced.

Theorem (Adamczewski):

For every quadratic Pisot number β there is a $k \in \mathbb{N}$ such that u_{β} is k-balanced.

Theorem (our result)

• If β is a quadratic simple Pisot number, $d_{\beta}(1) = pq$, then

$$u_{eta}$$
 is $\left(1+\left\lfloorrac{p-1}{p+1-q}
ight
floor
ight)$ -balanced

Theorem (Adamczewski):

For every quadratic Pisot number β there is a $k \in \mathbb{N}$ such that u_{β} is k-balanced.

Theorem (our result)

• If β is a quadratic simple Pisot number, $d_{\beta}(1) = pq$, then

$$u_eta$$
 is $\left(1+\left\lfloorrac{p-1}{p+1-q}
ight
floor
ight)$ -balanced.

• If β is a quadratic non-simple Pisot number, $d_{\beta}(1) = pq^{\omega}$, then

$$u_{\beta}$$
 is $\left(\left| \frac{p-1}{q} \right| \right)$ -balanced.

Theorem (Adamczewski):

For every quadratic Pisot number β there is a $k \in \mathbb{N}$ such that u_{β} is k-balanced.

Theorem (our result)

• If β is a quadratic simple Pisot number, $d_{\beta}(1) = pq$, then

$$u_eta$$
 is $\left(1+\left\lfloorrac{p-1}{p+1-q}
ight
floor
ight)$ -balanced.

• If β is a quadratic non-simple Pisot number, $d_{\beta}(1) = pq^{\omega}$, then

$$u_{\beta}$$
 is $\left(\left| \frac{p-1}{q} \right| \right)$ -balanced.

• These bounds are optimal, i.e. they cannot be improved.

Proof of the Theorem (non-simple Pisot case) - part 1 of 3

We define sequences
$$\left\{u_{\beta}^{(n)}\right\}_{n=1}^{\infty}$$
 and $\left\{w_{\beta}^{(n)}\right\}_{n=1}^{\infty}$ of factors of u_{β} :

$$egin{array}{rcl} w^{(1)}_eta &=& B \ w^{(n)}_eta &=& B arphi(w^{(n-1)}_eta) & ext{ for } n\in\mathbb{Z}, \ n\geq 2, \end{array}$$

$$u_eta^{(n)} = ext{ prefix of } u_eta ext{ of the length } \left| w_eta^{(n)}
ight|, \quad n \in \mathbb{N}$$

回 と く ヨ と く ヨ と

3

Proof of the Theorem (non-simple Pisot case) - part 1 of 3

We define sequences
$$\left\{u_{\beta}^{(n)}\right\}_{n=1}^{\infty}$$
 and $\left\{w_{\beta}^{(n)}\right\}_{n=1}^{\infty}$ of factors of u_{β} :

$$\begin{split} w_{\beta}^{(1)} &= B \\ w_{\beta}^{(n)} &= B\varphi(w_{\beta}^{(n-1)}) \quad \text{for } n \in \mathbb{Z}, \ n \ge 2, \\ u_{\beta}^{(n)} &= prefix \text{ of } u \text{ of the length } \left| u_{\beta}^{(n)} \right| \quad n \in \mathbb{Z} \end{split}$$

$$u_eta^{(n)} = ext{ prefix of } u_eta ext{ of the length } \left| w_eta^{(n)}
ight|, \quad n \in \mathbb{N}$$

Main idea:

•
$$|u_{\beta}^{(n)}| = |w_{\beta}^{(n)}|$$

• $u_{\beta}^{(n)}$ contains "many" letters A , $w_{\beta}^{(n)}$ contains "many" letters B .

The important property of the pairs $u_{\beta}^{(n)}, w_{\beta}^{(n)}$:

Lemma

The difference $|u_{\beta}^{(n)}|_{A} - |w_{\beta}^{(n)}|_{A}$ is maximal in the following sense: If v, v' is a pair of factors of u_{β} of the same length and

$$|v|_{\mathcal{A}} - |v'|_{\mathcal{A}} > |u_{\beta}^{(n)}|_{\mathcal{A}} - |w_{\beta}^{(n)}|_{\mathcal{A}},$$

then

$$|v| = |v'| > |u_{\beta}^{(n)}| = |w_{\beta}^{(n)}|$$

Behavior of the difference $|u_{\beta}^{(n)}|_{A} - |w_{\beta}^{(n)}|_{A}$

Ondřej Turek Balance properties of infinite words associated with quadratic Pis

• The proof for the simple Pisot case is analogous.

→ 3 → < 3</p>

- The proof for the simple Pisot case is analogous.
- The idea seems to be generalizable for certain Pisot numbers of higher degrees.

A B M A B M