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Rauzy fractal and equi-distribution of Galois- and beta-conjugates of Parry Numbers near the unit circle

L Introduction, example : Bassino’s family of cubic Pisot numbers

Letk > 2. 8(= fk) is the dominant root of the minimal
polynomial

Ps(X) = X3 — (k +2)X? + 2kX — k.

We have : k < ¢ <k +1andlimg_ (5 —k)=0.The
length of dg (1) is2k +2 =dp;

k—1

f5,(z) = —1+kz+> ((i—1)z'+(k—i+1)z* 1) pkzk 2K pkzF2
i=2

is minus the reciprocal polynomial of the Parry polynomial

n5(X).

k = 30 : the beta-conjugates are the roots of

(P2(X)P3(X) D6 (X )P10(X)P30(X ) P31 (X)) X (¢10(—X)P30(—X)).
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Rauzy fractal and equi-distribution of Galois- and beta-conjugates of Parry Numbers near the unit circle
L Introduction, example : Bassino’s family of cubic Pisot numbers

FIG.: Galois conjugates (¢) and beta-conjugates (e) of the cubic Pisot
number 3 = 30.0356. . ., dominant root of X® — 32X? + 60X — 30.
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|—C0ncentration and equi-distribution of Galois and beta-conjugates of Parry numbers near the unit circle in Solomyak’s set
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|—Concentration and equi-distribution of Galois and beta-conjugates of Parry numbers near the unit circle in Solomyak’s set

6 > 1 Perron number if algebraic integer and all its Galois
conjugates 3() satisfy : |30 < gforalli=1,2,...,d — 1
(degree d > 1, with 5© = 3).

Let 8 > 1. Rényi #-expansion of 1

ds(1) = O.tytots . .. and correspondsto 1 = Jiotiﬂ‘i ,
i—1
th = [B].t2 = [B{B}] = [8Ts(1)].ts = [B{B{B}}] =
|BT4(1)], ... The digits t; belong to Az := {0,1,2,...,[ — 11}.

Parry number : if dg(1) is finite or ultimately periodic (i.e.
eventually periodic) ; in particular, simple if dz(1) is finite.

Lothaire : a Parry number is a Perron number.

Dichotomy : set of Perron numbers

P = PpUP,
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|—Concentration and equi-distribution of Galois and beta-conjugates of Parry numbers near the unit circle in Solomyak’s set

Exploration of this dichotomy by the Erdés-Turan approach and
its improvements (Mignotte, Amoroso) applied to

“+oo
fa(z) =) _tz' for 3 € P,z € C,
i—0

with tg = —1, where dg(1) = 0.t tot3. . ., for which fg(z) is a
rational fraction if and only if 5 € Pp.

Beta-conjugates : D. Boyd 1996
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|—Concentration and equi-distribution of Galois and beta-conjugates of Parry numbers near the unit circle in Solomyak’s set

L Dichotomy — Szegd’s Theorem

Theorem (Szeg0)

A Taylor series -, anz" with coefficients in a finite subset S
of C is either equal to

. . . \%
(i) arational fraction U(z) + zm“% where

U(z)=-1+3",biz',V(z) =3P, eiz' are polynomials
with coefficients in S and m > 1, p > 0 integers, or
(i) it is an analytic function defined on the open unit disk

which is not continued beyond the unit circle (which is its
natural boundary).

Dichotomy of Perron numbers 3 <—> dichotomy of analytical
functions f5(z).
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|—In Solomyak’s set Q

|—Concentration and equi-distribution of Galois and beta-conjugates of Parry numbers near the unit circle in Solomyak’s set

B .

=1

{fz)=1+> a7 |0<qa <1}
functions analytic in the open unit disk D(0, 1).

G:={£e€D(0,1) | f(&) =0 for somef € B}
and

Gri={ctceg)
External boundary 0G—* of G~ : curve witha cuspatz =1, a

spike on the negative real axis, = [-1£/2 1], and is fractal at
an infinite number of points.

Q:=¢1uD(0,1).

DA



Rauzy fractal and equi-distribution of Galois- and beta-conjugates of Parry Numbers near the unit circle
|—In Solomyak’s set Q

|—Concentration and equi-distribution of Galois and beta-conjugates of Parry numbers near the unit circle in Solomyak’s set

Theorem (Solomyak)
The Galois conjugates (# ) and the beta-conjugates of all

Parry numbers 3 belong to 2, occupy it densely, and

PpNQ = 0.

fs(z) =

~1+3 47 = (~14+62)(1+)_ TH(2)2) Iz| < 1,
i=1 j=1

-> the zeros # 71 of f3(z) are those of 1 + >oit1 T (1) ; but
1+ Zﬁl T}}(l)zj is a Taylor series which belongs to 5.

[m]
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|—In Solomyak’s set Q

|—Concentration nd equi-distribution of Galois and beta-conjugates of Parry numbers near the unit circle in Solomyak’s set

FIG.: Solomyak’s set Q.
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|—In Solomyak’s set Q

|—Concentration and equi-distribution of Galois and beta-conjugates of Parry numbers near the unit circle in Solomyak’s set

Theorem

-> phenomenon of high concentration and equi-distribution of
number 3 occurs by clustering near the unit circle .

Galois conjugates (# /) and beta-conjugates of a Parry

Let 3 > 1 be a Parry number. Let ¢ > 0 and p. the proportion of
roots of the Parry polynomial n;(X) of 3, with

dp = deg(n;(X)) > 1, which lie in  outside the annulus

(D(o, (1— o)1)\ D(0,(1 - e))). Then

pe <

L1
cdp (LOanﬁHZ - §L095> )

* 1 *
(i) e < g (Loslmsl ~ 3Lodin3(0)] )

[m]
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|—Concentration and equi-distribution of Galois and beta-conjugates of Parry numbers near the unit circle in Solomyak’s set

|—In Solomyak’s set Q

(i) Let pi1dp the number of roots of nj;(X) outside

D(0,(1 —¢)~1) in Q, except 8 (since 3 ¢ Q). By Landau’s
inequality

M(f) < Ifll.  forf(x) € C[X]
applied to n;(X) we deduce

BL—e)% < M(n3) < [Inf]2.

Since —Log(1 —€) >,

p1 <

1 (Loglnjlz  Logs
€ dp dp
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|—In Solomyak’s set Q

|—Concentration and equi-distribution of Galois and beta-conjugates of Parry numbers near the unit circle in Solomyak’s set

Let uodp the number of roots of nj3(X) in D(0,1 — ¢). Then

(L)% < M(ng) < [Inll2 = lInjll2
by Landau’s inequality applied to ng(X). We deduce

1 Log||n%||2

B2 < — =
€ dp

Since . = pg + o, we deduce the inequality.
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|—In Solomyak’s set Q

|—C0ncentrat|on and equi-distribution of Galois and beta-conjugates of Parry numbers near the unit circle in Solomyak’s set

(ii) Applying Jensen’s formula

2w
o/, Log|nj(e'?)|d¢ — Log|n3(0)] = > Log
|bj|<1
where (byj) is the collection of zeros of n;(z). We have
> Log =Y Logi > € podp.
Ibi|<1 0] Ibi|<1—e 0]
Since maxe(o 2q] [N5(e'?)| < [njll1

e S (Log|nj|ly — Log|n%(0)|)
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|—Concentration and equi-distribution of Galois and beta-conjugates of Parry numbers near the unit circle in Solomyak’s set

|—In Solomyak’s set Q

The roots of ng(z) inside D(0, 1 — ¢) are the roots of nj(z)

outside the closed disk D(0, (1 — €)~1), including possibly 3, so
that their number is p1dp or pdp + 1.

Since nj(X) is monic, [nz(0)| = 1. We apply Jensen’s formula
to ng(z)

1
< .
s o (Log|[nsll1)

Since [ngll1 = [Injll1 and pe = pu1 + 2~ -> claim.
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|—In Solomyak’s set Q

|—Concentration and equi-distribution of Galois and beta-conjugates of Parry numbers near the unit circle in Solomyak’s set

sequence of Parry numbers, of Parry polynomials of respective
degree dp ; which satisfies

Terminology “clustering near the unit circle” : if (5) is a
. . Logpi
lim dpj =400 and _lim 95 _
|—+00

0
i—4o00 dp7i ’
then, since [ [[2 < (dp, + 1)'/2[3], the proportion .
relative to §; satisfies

i < 1 <Log(dp7i +1)
€ = p

Log[ /| >
+
dp, dp;
what shows, for ¢ > 0, that

Meji — 07 I — +o00.
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|—Concentration and equi-distribution of Galois and beta-conjugates of Parry numbers near the unit circle in Solomyak’s set

|—In Solomyak’s set Q

The sufficient conditions for having convergence of (u. )i to
zero do not imply that

m the corresponding sequence (d;); of the degrees of the
minimal polynomials P (X) tends to infinity ; on the

contrary, this sequence may remain bounded, even
stationary,

m the family of Parry numbers ()i tends to infinity ; it may
remain bounded or not
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|—Concentration and equi-distribution of Galois and beta-conjugates of Parry numbers near the unit circle in Solomyak’s set

L Erd6s-Turan’s Theorem and Mignotte's Theorem

Define the radial operator () : Z[X] — R[X],

n n

R(X)=an [[(X —b) — ROX)=]] (x -

j=0 j=0

b
|y

).

This operator leaves invariant cyclotomic polynomials. It has the
property : P(") = (P*)(") for all polynomials P(X) € Z[X] and is
multiplicative : (P1P2)" = P{"P{") for Py (X), Po(X) € Z[X].

-> roots on the unit circle.
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|—Concentration and equi-distribution of Galois and beta-conjugates of Parry numbers near the unit circle in Solomyak’s set

L Erd6s-Turan’s Theorem and Mignotte's Theorem

Theorem (Mignotte)

Let (with a,, # 0, and p1, p2,...,pn > 0)

n
R(X) = anX” _|_an_1xn—1 AF caa —l—a1X +ao = ap H(X _pjei¢j)
j=1

be a polynomial with complex coefficients, where
¢ €[0,2r) for j=1,...,n.For0 < o <n < 27, put N(a,n) =
. oo (— m—1
Card{j | ¢; € [a,n]}. Letk = 325 % —=0.916... be
Catalan’s constant. Then
5 -
1 n-al® _ 2m " h(R)

=N _
- (e, m) o

— k n
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|—Concentration and equi-distribution of Galois and beta-conjugates of Parry numbers near the unit circle in Solomyak’s set

L Erd6s-Turan’s Theorem and Mignotte's Theorem

Theorem (Mignotte)

Let (with a,, # 0, and p1, p2,...,pn > 0)

n
R(X) =anX" +ana X" '+ .. +aX +a=an [[(X — pe'?)
j=1
be a polynomial with complex coefficients, where
¢j€[0,2r) for j=1,...,n.For0 < o <n < 27, put N(a,n) =
. oo (—=1)m-1
Card{j | ¢; € [a,n]}. Letk = 325 ﬁ —=0.916... be
Catalan’s constant. Then
1 n—«

=N _
- (e, m) o

> -
)
— k n

27 )
where  h(R) 1 / Log*|R("(e'?)|d6.
0

2m Hao
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|—Concentration and equi-distribution of Galois and beta-conjugates of Parry numbers near the unit circle in Solomyak’s set
L Erd6s-Turan’s Theorem and Mignotte's Theorem

FiG.: Given an opening angle, a rotating sector contains the same
number of roots of the Parry polynomial, up to Mignotte’s discrepancy

function. Angle is fixed by the geometry of Galois conjugates to
detect beta-conjugates.
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Rauzy fractal and equi-distribution of Galois- and beta-conjugates of Parry Numbers near the unit circle
L Erd6s-Turan’s Theorem and Mignotte's Theorem

£l

Denote dis(R) = (R

n

—

|—C0ncentrat|on and equi-distribution of Galois and beta-conjugates of Parry numbers near the unit circle in Solomyak’s set

Call Mignotte’s discrepancy function

C.dis(R) = X x h(f)
with C = 2™ = (2.619...)2 = 6.859...
->

dis(R) gives much smaller numerical estimates than
Erd6s-Turan’s one : C= 162 = 256 and dis(R) = % Log——~2—

L(R)
\/|ao an|
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Rauzy fractal and equi-distribution of Galois- and beta-conjugates of Parry Numbers near the unit circle
L Erd6s-Turan’s Theorem and Mignotte's Theorem

£l

Denote dis(R) = (

h(R)
n

—

|—C0ncentrat|on and equi-distribution of Galois and beta-conjugates of Parry numbers near the unit circle in Solomyak’s set

Call Mignotte’s discrepancy function

C.dis(R) = 2~
with C =

->

n
= (2.619...)> = 6.859...

dis(R) gives much smaller numerical estimates than
Erd6s-Turan’s one : C= 162 = 256 and dis(R) = % Log——~2—
Splitting :

L(R
~ ~ ~ S q
A(ng) = h(ns) < A(Ps) +
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L Factorization of the Parry polynomial

Contents
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Rauzy fractal and equi-distribution of Galois- and beta-conjugates of Parry Numbers near the unit circle
L Factorization of the Parry polynomial

Numerator of fg(z) :

_n,B(Z) = U(Z)7

resp. U(z)(1 —zP*1) +z™lv(z).
Parry polynomial :

where P3(X) = minimal polynomial of .

where @, (X) € Z[X] are irreducible and cyclotomic, with
np <ny<...<ng,

kj(X) € Z[X] are irreducible and non-reciprocal,

gj(X) € Z[X] are irreducible, reciprocal and non-cyclotomic
-> Schinzel conjectures... Theorems.
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Rauzy fractal and equi-distribution of Galois- and beta-conjugates of Parry Numbers near the unit circle
L Factorization of the Parry polynomial

m > 0, non-simple :

N5(X) = XMPH_t; XMP X MLty pX —tmapa

XM XM XM 2 Lt X+t
Simple (m > 1) :

XMty XML XM 2 Lt X —
The Parry polynomial is of small height :

18] < H(nj) <[]

only one.

with all coefficients having a modulus < |3 except possibly
6 simple :
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Rauzy fractal and equi-distribution of Galois- and beta-conjugates of Parry Numbers near the unit circle
L Factorization of the Parry polynomial

Let 3 be a Parry number. If £ is a beta-conjugate of § which is

not a unit, then its multiplicity v¢ as root of the Parry polynomial
nj(X) satisfies :

Moreover, if

then all beta-conjugates of 5 which are not units (if any) are
simple roots of nj(X).
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Rauzy fractal and equi-distribution of Galois- and beta-conjugates of Parry Numbers near the unit circle
L Factorization of the Parry polynomial

Corollary

The beta-conjugates of a Parry number 5 € (1, 3) which are not
units are always simple roots of the Parry polynomial of 5
P, -

(X) divides nj(X) and H(n3) € {|3],[]}. Then

q
‘H %i(0)) ”X‘H g;(0 61‘
=1

IN(B)I
If £ is a beta-conjugate, not a unit, then

H(n%
N =2 implies 2% < L)




Rauzy fractal and equi-distribution of Galois- and beta-conjugates of Parry Numbers near the unit circle
L Factorization of the Parry polynomial

IFN(B)| > 202 then

q

150" < [T] (0(0)"] <3

=1
which necessarily implies v = 1 for each beta-conjugate £ of 3
which is not a unit.
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L Factorization of the Parry polynomial

dp:m+p+1:

l1+s+q+u=
1+ G+ o+ 6 =

l+q+u=

T+ =

deg. of Parry polynomial n;(X)

# of distinct factors

# of factors

counted with multiplicities

# of non-cyclotomic

factors counted with multiplicitie:
# of its non-cyclotomic

factors counted without multiplic
# of its non-reciprocal

factors counted with multiplicites
v = 1if P3(X) is non-reciprocal,
v = 0if P3(X) is reciprocal

(=] = = =
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Rauzy fractal and equi-distribution of Galois- and beta-conjugates of Parry Numbers near the unit circle
L Factorization of the Parry polynomial

L Degree of Parry polynomial and Rauzy fractal (central tile)

Gazeau+VG,

Let 5 > 1 be a Pisot number of degree d > 2. Then

H(ng) , 1
dp < #{erd|p2(x) € 5] Q') 7g(x)-ug e[o,m)}.

Better upper bound of dp : the “box" ' replaced by the central
tile (of the Rauzy fractal)

Topology of this central tile may be disconnected,... is a
prominent ingredient for counting points of the lattice Z9 which

are projected by p, to this central tile (P. Arnoux, A. Siegel, V.
Berthe, G. Barat, S. Akiyama, J. Thuswaldner,...).

(=] = = =
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L Factorization of the Parry polynomial

L Degree of Parry polynomial and Rauzy fractal (central tile)

(-4)- N

A-diwn
FiG.: Cut-and-project scheme in RY over the set Zg of s-integers.
fractal).

Slice of the band with lattice points over the central tile (Rauzy
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L Factorization of the Parry polynomial

|—Cyclotomic factors — Riemann Hypothesis — Amoroso

The special sequence (¢nj )j=1,....s Of cyclotomic polynomials in
th_e factorization of ng(x) is such that stz_l cjgo(nj)_ <dp —d,
with s < ng, where ¢(n) is the Euler function, and its
determination is complemented by

Schinzel

Theorem

There exists a constant Cy > 0 such that, for every Parry
number g, the number s of distinct cyclotomic irreducible
factors of the Parry polynomial of § satisfies

s < Cov/dp.
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Rauzy fractal and equi-distribution of Galois- and beta-conjugates of Parry Numbers near the unit circle
L Factorization of the Parry polynomial

|—Cyclotomic factors — Riemann Hypothesis — Amoroso

Amoroso : the assertion that the Riemann zeta function does
not vanish for Rez > o + ¢ is equivalent to the inequality

ﬁ(ﬁ[l <Dn> < Not,

where o = supremum of the real parts of the non-trivial zeros of
the Riemann zeta function, and o = 1/2 if Riemann hypothesis
(R.H.) true.

-> particular telescopic products of cyclotomic polynomials
which appear in factorizations of Parry polynomials.
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L Factorization of the Parry polynomial

|—Cyclotomic factors — Riemann Hypothesis — Amoroso

AMmoroso

Theorem
Lets > 1. Letcq,.

..,Cgintegers >0andn; <n, <...<ngbe
a increasing sequence of positive integers. Assume R.H. true.
Then there exists A > 0 such that

. > G \/n_s
dls(jl:ll ®n, (X) ) < Axm’
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Rauzy fractal and equi-distribution of Galois- and beta-conjugates of Parry Numbers near the unit circle
L Factorization of the Parry polynomial

|—Cyclotomic factors — Riemann Hypothesis — Amoroso

Let N = ng. Let

N
G(X)
with

{0 ifng{nlvn% "7nS}
On —

Cj

forn > 0.

ifn=n;forjec{l,2,...,s}
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L Factorization of the Parry polynomial

|—Cyc|0t0m|c factors — Riemann Hypothesis — Amoroso

- s 1G)
h(G) < 12 j2
m=1

jfm

We have 0 < Z”m B < 1 and, by Titchmarsh 14.25C,

R.H. true — Z

k) < X1/2—|—e
k <x
for any e.
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L Factorization of the Parry polynomial
L Non-cyclotomic factors

Dobrowolski

Theorem

There exists a constant C; > 0 such that for every Parry
number g and € > 0 an arbitrary positive real number, then

q u
1+3 %+ 6 < Ca((dp)(log [Ing |31 ).
j=1 j=1
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L Factorization of the Parry polynomial

L Non-cyclotomic factors

Cassels

If x is a beta-conjugate of a Parry number g such that the
minimal polynomial g(X) of y is non-reciprocal, with

n =deg(g), if x1, ..., xn—1 denote the Galois conjugates of
X = xo (Which are also beta-conjugates of (), then either

. 0.1 .
0 Il > 1+Tforatleastoneje{O,l,...,n—l},or

) . 1
(i) g(X) = —g*(X) if [xj| < 1+07holdsfor all
j=0,1,...,n—1.

In the second case, since

g(X) = [T (X — xj) = — [T[=0 (1 — xX) is monic, all the
beta-conjugates x; of 3 (j =0, 1,...,n — 1) are algebraic units,
i.e. IN(xj)| = 1.

(=] = = =
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Rauzy fractal and equi-distribution of Galois- and beta-conjugates of Parry Numbers near the unit circle
L Factorization of the Parry polynomial

L Non-cyclotomic factors

Cassels

Theorem

where x1,

If x is a beta-conjugate of a Parry number § such that the
minimal polynomial (of degree n) of x is non-cyclotomic and

0.1
Ixjl < 1+

, Xn—1 denote the Galois conjugates of x (= xo), if

= forj=0,1,...,n—1,

then at least one of the beta-conjugates xg, x1, - - -, Xxn—1 Of 8
has absolute value 1.

-> likely to be often applicable because of high concentration of
beta-conjugates near the unit circle.
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L Factorization of the Parry polynomial
L Non-reciprocal factors

Smyth

For every Parry number 3, the inequality

q

log [njl[2
TN < ogt

j=1

log 69
holds where 0y = 1.3247... is the smallest Pisot number,

dominant root of X3 — X — 1, where y = 1if Pg(X) is
non-reciprocal and v = 0 if Pg(X) is reciprocal.
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L Factorization of the Parry polynomial

L Non-reciprocal factors

Corollary

If 5 is a Parry number for which the minimal polynomial is

non-reciprocal and dg(1) = 0.t tot5 . . ., of preperiod length
m > 0 and period length p + 1, satisfies (with tg = —1)

m
if 3 is simple thz
4
m < g =
if 3 is non-simple th (1 +tps1)® + D (G — tprjza)?
j=0 j=1

then the Parry polynomial of 5 has no non-reciprocal irreducible
factor in it (§2 = 3.0794...).
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L Factorization of the Parry polynomial
L Non-reciprocal factors

Explicitely in the “simple” case : 3 for which dg(1) has
necessarily the form

ds(1) =0.100...01

5
Algebraic integers (/35)s5>3 are Perron numbers studied by
Selmer, roots of

x5+2 o X(H-l 1.
The case § = 0 corresponds to the golden mean
7=(1+5)/2.
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|—An Equidistribution Limit Theorem

Previous Theorems express the “speed of convergence" and
the "angular equidistributed character” of the conjugates of a
Parry number, towards the unit circle, or of the collection of
conjugates of a “convergent" sequence of Parry numbers.
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|—An Equidistribution Limit Theorem

Previous Theorems express the “speed of convergence" and
the "angular equidistributed character” of the conjugates of a
Parry number, towards the unit circle, or of the collection of
conjugates of a “convergent" sequence of Parry numbers.

So far, the limit of this concentration and equidistribution
phenomenon is not yet formulated. In which terms should it be
done ? What is the natural framework for considering at the
same time all the conjugates of a Parry number and what is the
topology for which convergence is intuitively invoked ?
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|—An Equidistribution Limit Theorem

Previous Theorems express the “speed of convergence" and
the "angular equidistributed character” of the conjugates of a
Parry number, towards the unit circle, or of the collection of
conjugates of a “convergent" sequence of Parry numbers.

So far, the limit of this concentration and equidistribution
phenomenon is not yet formulated. In which terms should it be
done ? What is the natural framework for considering at the
same time all the conjugates of a Parry number and what is the
topology for which convergence is intuitively invoked ?

Context : Bilu's Theorem.
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|—An Equidistribution Limit Theorem

Rauzy fractal and equi-distribution of Galois- and beta-conjugates of Parry Numbers near the unit circle

h(B) =

Absolute logarithmic height of a Parry number g

are) g7 21 : @ulmax(0. Log|dl)

K := algebraic number field generated by g, its Galois and
beta-conjugates, so that K > Q(3)

Weighted sum of Dirac measures

5= [K a Z Ofo(6)}

where (images are Galois- or beta-conjugates)

o: pB—po or o

B —§.
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|—An Equidistribution Limit Theorem

Bilu

Let (5 )i>1 be a strict sequence of Parry numbers which

satisfies
lim h(g) — 0.
1—00
Then
lim Ag = vy =1y Haar measure.

i—o0

Topology : a sequence of probability measures {u } on a
metric space S wealky converges to y if for any bounded
continuous function f : S — R we have (f, ux) — (f, ) as

k — oo.

Strict : A sequence {ak } of points in Q" is strict if any proper
algebraic subgroup of Q" contains «y for only finitely many

values of k. s s - =
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|—An Equidistribution Limit Theorem

Bilu's ingredients : Erd6s - Turan’s Theorem, for sequences of
Parry numbers which tend to 1.

Possible generalizations : to general convergent sequences of
Parry numbers with

im dp; =400 and fim =294 _

. . 0,
| —400 |—400 dp7i

Need : p-adic control of the beta-conjugates to have
convergence property for the measure : given by the forms of
irreducible factors in the factorization of the Parry polynomials.

Rumely : reformulation in terms of Potential Theory, equilibrium
measures, -> A. Granville Theorem. Like in electrostatics,
repulsive effects between conjugates...

u]
L)
1
ul
!
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L Rauzy fractal from Galois- and beta-conjugates of a Parry number

Idea : take advantage of this concentration and equi-distribution
phenomenon to make Rauzy fractal constructions

using not only the Galois conjugates but also the beta-conjugates.
-> expectation : continuity theorems with 3

Over adele space Ak, where K is the algebraic number field
generated by the Galois- and the beta-conjugates of a Parry
number 3.

Classical Rauzy fractal : invariant under the action of some
Galois group.
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