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Introduction, example : Bassino’s family of cubic Pisot numbers

Let k ≥ 2. β(= βk ) is the dominant root of the minimal
polynomial

Pβ(X ) = X 3 − (k + 2)X 2 + 2kX − k .

We have : k < βk < k + 1 and limk→+∞(βk − k) = 0. The
length of dβk (1) is 2k + 2 = dP ;

fβk (z) = −1+kz+

k−1∑

i=2

(
(i−1)z i+(k−i+1)zk+i+1)+kzk+zk+1+kz2k+2

is minus the reciprocal polynomial of the Parry polynomial
n∗

β(X ).
k = 30 : the beta-conjugates are the roots of
(φ2(X )φ3(X )φ6(X )φ10(X )φ30(X )φ31(X )) × (φ10(−X )φ30(−X )).
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FIG.: Galois conjugates (⋄) and beta-conjugates (•) of the cubic Pisot
number β = 30.0356 . . ., dominant root of X3 − 32X2 + 60X − 30.
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Concentration and equi-distribution of Galois and beta-conjugates of Parry numbers near the unit circle in Solomyak’s set

β > 1 Perron number if algebraic integer and all its Galois
conjugates β(i) satisfy : |β(i)| < β for all i = 1, 2, . . . , d − 1
(degree d ≥ 1, with β(0) = β).
Let β > 1. Rényi β-expansion of 1

dβ(1) = 0.t1t2t3 . . . and corresponds to 1 =

+∞∑

i=1

tiβ
−i ,

t1 = ⌊β⌋, t2 = ⌊β{β}⌋ = ⌊βTβ(1)⌋, t3 = ⌊β{β{β}}⌋ =
⌊βT 2

β (1)⌋, . . . The digits ti belong to Aβ := {0, 1, 2, . . . , ⌈β − 1⌉}.

Parry number : if dβ(1) is finite or ultimately periodic (i.e.
eventually periodic) ; in particular, simple if dβ(1) is finite.

Lothaire : a Parry number is a Perron number.

Dichotomy : set of Perron numbers

P = PP ∪ Pa
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Concentration and equi-distribution of Galois and beta-conjugates of Parry numbers near the unit circle in Solomyak’s set

Exploration of this dichotomy by the Erdős-Turán approach and
its improvements (Mignotte, Amoroso) applied to

fβ(z) :=

+∞∑

i=0

tiz
i for β ∈ P, z ∈ C,

with t0 = −1, where dβ(1) = 0.t1t2t3 . . ., for which fβ(z) is a
rational fraction if and only if β ∈ PP .

Beta-conjugates : D. Boyd 1996



Rauzy fractal and equi-distribution of Galois- and beta-conjugates of Parry Numbers near the unit circle

Concentration and equi-distribution of Galois and beta-conjugates of Parry numbers near the unit circle in Solomyak’s set

Dichotomy – Szegö’s Theorem

Theorem (Szegő)

A Taylor series
∑

n≥0 anzn with coefficients in a finite subset S
of C is either equal to

(i) a rational fraction U(z) + zm+1 V (z)

1 − zp+1 where

U(z) = −1 +
∑m

i=1 biz i , V (z) =
∑p

i=0 eiz i are polynomials
with coefficients in S and m ≥ 1, p ≥ 0 integers, or

(ii) it is an analytic function defined on the open unit disk
which is not continued beyond the unit circle (which is its
natural boundary).

Dichotomy of Perron numbers β <—> dichotomy of analytical
functions fβ(z).
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Concentration and equi-distribution of Galois and beta-conjugates of Parry numbers near the unit circle in Solomyak’s set

In Solomyak’s set Ω

B := {f (z) = 1 +
∞∑

j=1

ajz
j | 0 ≤ aj ≤ 1}

functions analytic in the open unit disk D(0, 1).

G := {ξ ∈ D(0, 1) | f (ξ) = 0 for some f ∈ B}

and
G−1 := {ξ−1 | ξ ∈ G}.

External boundary ∂G−1 of G−1 : curve with a cusp at z = 1, a
spike on the negative real axis, =

[
−1+

√
5

2 ,−1
]
, and is fractal at

an infinite number of points.

Ω := G−1 ∪ D(0, 1).
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In Solomyak’s set Ω

Theorem (Solomyak)

The Galois conjugates (6= β) and the beta-conjugates of all
Parry numbers β belong to Ω, occupy it densely, and

PP ∩ Ω = ∅.

fβ(z) = −1+
∞∑

i=1

tiz
i = (−1+βz)

(
1+

∞∑

j=1

T j
β(1)z j), |z| < 1,

-> the zeros 6= β−1 of fβ(z) are those of 1 +
∑∞

j=1 T j
β(1)z j ; but

1 +
∑∞

j=1 T j
β(1)z j is a Taylor series which belongs to B.
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In Solomyak’s set Ω

FIG.: Solomyak’s set Ω.



Rauzy fractal and equi-distribution of Galois- and beta-conjugates of Parry Numbers near the unit circle
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In Solomyak’s set Ω

-> phenomenon of high concentration and equi-distribution of
Galois conjugates (6= β) and beta-conjugates of a Parry
number β occurs by clustering near the unit circle in Ω .

Theorem

Let β > 1 be a Parry number. Let ǫ > 0 and µǫ the proportion of
roots of the Parry polynomial n∗

β(X ) of β, with
dP = deg(n∗

β(X )) ≥ 1, which lie in Ω outside the annulus
(

D(0, (1 − ǫ)−1) \ D(0, (1 − ǫ))
)

. Then

(i) µǫ ≤ 2
ǫ dP

(

Log‖n∗
β‖2 − 1

2
Logβ

)

,

(ii) µǫ ≤ 2
ǫ dP

(

Log‖n∗
β‖1 − 1

2
Log

∣
∣n∗

β(0)
∣
∣

)

.
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In Solomyak’s set Ω

(i) Let µ1dP the number of roots of n∗
β(X ) outside

D(0, (1 − ǫ)−1) in Ω, except β (since β 6∈ Ω). By Landau’s
inequality

M(f ) ≤ ‖f‖2 for f (x) ∈ C[X ]

applied to n∗
β(X ) we deduce

β(1 − ǫ)−µ1dP ≤ M(n∗
β) ≤ ‖n∗

β‖2.

Since −Log(1 − ǫ) ≥ ǫ,

µ1 ≤ 1
ǫ

(

Log‖n∗
β‖2

dP
− Logβ

dP

)

.
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In Solomyak’s set Ω

Let µ2dP the number of roots of n∗
β(X ) in D(0, 1 − ǫ). Then

(1 − ǫ)−µ2dP ≤ M(nβ) ≤ ‖nβ‖2 = ‖n∗
β‖2

by Landau’s inequality applied to nβ(X ). We deduce

µ2 ≤ 1
ǫ

Log‖n∗
β‖2

dP
.

Since µǫ = µ1 + µ2, we deduce the inequality.
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Concentration and equi-distribution of Galois and beta-conjugates of Parry numbers near the unit circle in Solomyak’s set

In Solomyak’s set Ω

(ii) Applying Jensen’s formula,

1
2π

∫ 2π

0
Log

∣
∣n∗

β(eiφ)
∣
∣dφ − Log

∣
∣n∗

β(0)
∣
∣ =

∑

|bi |<1

Log
1
|bi |

where (bi) is the collection of zeros of n∗
β(z). We have

∑

|bi |<1

Log
1
|bi |

≥
∑

|bi |<1−ǫ

Log
1
|bi |

≥ ǫ µ2dP .

Since maxφ∈[0,2π]

∣
∣n∗

β(eiφ)
∣
∣ ≤ ‖n∗

β‖1 ,

µ2 ≤ 1
ǫ dP

(
Log‖n∗

β‖1 − Log
∣
∣n∗

β(0)
∣
∣
)
.
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In Solomyak’s set Ω

The roots of nβ(z) inside D(0, 1 − ǫ) are the roots of n∗
β(z)

outside the closed disk D(0, (1 − ǫ)−1), including possibly β, so
that their number is µ1dP or µ1dP + 1.
Since n∗

β(X ) is monic, |nβ(0)| = 1. We apply Jensen’s formula
to nβ(z)

µ1 ≤ 1
ǫ dP

(Log‖nβ‖1) .

Since ‖nβ‖1 = ‖n∗
β‖1 and µǫ = µ1 + µ2 -> claim.
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In Solomyak’s set Ω

Terminology “clustering near the unit circle" : if (βi ) is a
sequence of Parry numbers, of Parry polynomials of respective
degree dP,i which satisfies

lim
i→+∞

dP,i = +∞ and lim
i→+∞

Log βi

dP,i
= 0,

then, since ‖n∗
βi
‖2 ≤ (dP,i + 1)1/2 ⌈βi⌉, the proportion µǫ,i

relative to βi satisfies

µǫ,i ≤
1
ǫ

(
Log(dP,i + 1)

dP,i
+

Log⌈βi⌉
dP,i

)

what shows, for ǫ > 0, that

µǫ,i → 0, i → +∞.
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In Solomyak’s set Ω

The sufficient conditions for having convergence of (µǫ,i)i to
zero do not imply that

the corresponding sequence (di)i of the degrees of the
minimal polynomials Pβi (X ) tends to infinity ; on the
contrary, this sequence may remain bounded, even
stationary,

the family of Parry numbers (βi )i tends to infinity ; it may
remain bounded or not
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Erdős-Turán’s Theorem and Mignotte’s Theorem

Define the radial operator (r) : Z[X ] → R[X ],

R(X ) = an

n∏

j=0

(X − bj) → R(r)(X ) =
n∏

j=0

(

X − bj

|bj |

)

.

-> roots on the unit circle.

This operator leaves invariant cyclotomic polynomials. It has the
property : P(r) = (P∗)(r) for all polynomials P(X ) ∈ Z[X ] and is
multiplicative : (P1P2)

(r) = P(r)
1 P(r)

2 for P1(X ), P2(X ) ∈ Z[X ].



Rauzy fractal and equi-distribution of Galois- and beta-conjugates of Parry Numbers near the unit circle

Concentration and equi-distribution of Galois and beta-conjugates of Parry numbers near the unit circle in Solomyak’s set

Erdős-Turán’s Theorem and Mignotte’s Theorem

Theorem (Mignotte)

Let (with an 6= 0, and ρ1, ρ2, . . . , ρn > 0)

R(X ) = anX n + an−1X n−1 + . . . + a1X + a0 = an

n∏

j=1

(X − ρje
iφj )

be a polynomial with complex coefficients, where
φj ∈ [0, 2π) for j = 1, . . . , n. For 0 ≤ α ≤ η ≤ 2π, put N(α, η) =

Card{j | φj ∈ [α, η]}. Let k =
∑∞

0
(−1)m−1

(2m+1)2 = 0.916 . . . be
Catalan’s constant. Then

∣
∣
∣
∣

1
n

N(α, η) − η − α

2π

∣
∣
∣
∣

2

≤ 2π

k
× h̃(R)

n

where h̃(R) =
1

2π

∫ 2π

0
Log+|R(r)(eiθ)|dθ.
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Erdős-Turán’s Theorem and Mignotte’s Theorem

Theorem (Mignotte)

Let (with an 6= 0, and ρ1, ρ2, . . . , ρn > 0)

R(X ) = anX n + an−1X n−1 + . . . + a1X + a0 = an

n∏

j=1

(X − ρje
iφj )

be a polynomial with complex coefficients, where
φj ∈ [0, 2π) for j = 1, . . . , n. For 0 ≤ α ≤ η ≤ 2π, put N(α, η) =

Card{j | φj ∈ [α, η]}. Let k =
∑∞

0
(−1)m−1

(2m+1)2 = 0.916 . . . be
Catalan’s constant. Then

∣
∣
∣
∣

1
n

N(α, η) − η − α

2π

∣
∣
∣
∣

2

≤ 2π

k
× h̃(R)

n

where h̃(R) =
1

2π

∫ 2π

0
Log+|R(r)(eiθ)|dθ.
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Erdős-Turán’s Theorem and Mignotte’s Theorem

FIG.: Given an opening angle, a rotating sector contains the same
number of roots of the Parry polynomial, up to Mignotte’s discrepancy
function. Angle is fixed by the geometry of Galois conjugates to
detect beta-conjugates.
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Erdős-Turán’s Theorem and Mignotte’s Theorem

Denote dis(R) = h̃(R)
n . Call Mignotte’s discrepancy function

C · dis(R) =
2π

k
× h̃(R)

n

with C = 2π
k = (2.619...)2 = 6.859....

-> dis(R) gives much smaller numerical estimates than
Erdős-Turán’s one : C= 162 = 256 and dis(R) = 1

n Log L(R)√
|a0 an|

.

Splitting :

h̃(n∗
β) = h̃(nβ) ≤ h̃(Pβ) + h̃(

s∏

j=0

Φ
cj
nj
) + h̃(

q
∏

j=0

κ
γj

j ) + h̃(
u∏

j=0

g
δj

j ).
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k = (2.619...)2 = 6.859....

-> dis(R) gives much smaller numerical estimates than
Erdős-Turán’s one : C= 162 = 256 and dis(R) = 1
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|a0 an|
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Splitting :
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β) = h̃(nβ) ≤ h̃(Pβ) + h̃(

s∏

j=0

Φ
cj
nj
) + h̃(

q
∏

j=0

κ
γj

j ) + h̃(
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j=0

g
δj

j ).
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Factorization of the Parry polynomial

Numerator of fβ(z) :

−nβ(z) = U(z), resp. U(z)(1 − zp+1) + zm+1V (z).

Parry polynomial :

n∗
β(X ) := Pβ(X )



−
s∏

j=1

(
Φnj (z)

)cj

q
∏

j=1

(
κj(z)

)γj

u∏

j=1

(
gj(z)

)δj





where Pβ(X ) = minimal polynomial of β.
where Φnj (X ) ∈ Z[X ] are irreducible and cyclotomic, with
n1 < n2 < . . . < ns,
κj(X ) ∈ Z[X ] are irreducible and non-reciprocal,
gj(X ) ∈ Z[X ] are irreducible, reciprocal and non-cyclotomic
-> Schinzel conjectures... Theorems.
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Factorization of the Parry polynomial

m ≥ 0, non-simple :

n∗
β(X ) = X m+p+1−t1X m+p−t2X m+p−1−. . .−tm+pX−tm+p+1

− X m + t1X m−1 + t2X m−2 + . . . + tm−1X + tm

Simple (m ≥ 1) :

X m − t1X m−1 − t2X m−2 − . . . − tm−1X − tm

The Parry polynomial is of small height :

⌊β⌋ ≤ H(n∗
β) ≤ ⌈β⌉

with all coefficients having a modulus ≤ ⌊β⌋ except possibly
only one.
β simple :

H(n∗
β) = ⌊β⌋.
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Factorization of the Parry polynomial

Theorem

Let β be a Parry number. If ξ is a beta-conjugate of β which is
not a unit, then its multiplicity νξ as root of the Parry polynomial
n∗

β(X ) satisfies :

νξ ≤ 1
log 2

(

log
(
H(n∗

β)
)
− log |N(β)|

)

.

Moreover, if

|N(β)| ≥
H(n∗

β)

3
,

then all beta-conjugates of β which are not units (if any) are
simple roots of n∗

β(X ).
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Factorization of the Parry polynomial

Corollary

The beta-conjugates of a Parry number β ∈ (1, 3) which are not
units are always simple roots of the Parry polynomial of β.

Pβ(X ) divides n∗
β(X ) and H(n∗

β) ∈ {⌊β⌋, ⌈β⌉}. Then

∣
∣

q
∏

j=1

(
κj(0)

)γj
∣
∣×
∣
∣

u∏

j=1

(
gj(0)

)δj
∣
∣ ≤

H(n∗
β)

|N(β)| .

If ξ is a beta-conjugate, not a unit, then,

|N(ξ)| ≥ 2 implies 2νξ ≤
H(n∗

β)

|N(β)| .
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Factorization of the Parry polynomial

If |N(β)| ≥ H(n∗

β
)

3 then

∣
∣

q
∏

j=1

(
κj(0)

)γj
∣
∣×
∣
∣

u∏

j=1

(
gj(0)

)δj
∣
∣ ≤ 3,

which necessarily implies νξ = 1 for each beta-conjugate ξ of β
which is not a unit.
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Factorization of the Parry polynomial

dP = m + p + 1 = deg. of Parry polynomial n∗
β(X )

1 + s + q + u = # of distinct factors
1 +

∑s
j=1 cj +

∑q
j=1 γj +

∑u
j=1 δj = # of factors

counted with multiplicities
1 +

∑q
j=1 γj +

∑u
j=1 δj = # of non-cyclotomic

factors counted with multiplicities
1 + q + u = # of its non-cyclotomic

factors counted without multiplicities
γ +

∑q
j=1 γj = # of its non-reciprocal

factors counted with multiplicites,
γ = 1 if Pβ(X ) is non-reciprocal,
γ = 0 if Pβ(X ) is reciprocal
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Factorization of the Parry polynomial

Degree of Parry polynomial and Rauzy fractal (central tile)

Gazeau+VG,

Theorem

Let β > 1 be a Pisot number of degree d ≥ 2. Then

dP ≤ #

{

x ∈ Zd | p2(x) ∈
H(n∗

β)

⌊β⌋ Ω′, πB(x) · uB ∈
[

0,
1

‖B‖
)
}

.

Better upper bound of dP : the “box" Ω′ replaced by the central
tile (of the Rauzy fractal)
Topology of this central tile may be disconnected,... is a
prominent ingredient for counting points of the lattice Zd which
are projected by p2 to this central tile (P. Arnoux, A. Siegel, V.
Berthé, G. Barat, S. Akiyama, J. Thuswaldner,...).
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Factorization of the Parry polynomial

Degree of Parry polynomial and Rauzy fractal (central tile)

FIG.: Cut-and-project scheme in Rd over the set Zβ of β-integers.
Slice of the band with lattice points over the central tile (Rauzy
fractal).
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Factorization of the Parry polynomial

Cyclotomic factors – Riemann Hypothesis – Amoroso

The special sequence (Φnj )j=1,...,s of cyclotomic polynomials in
the factorization of n∗

β(X ) is such that
∑s

j=1 cjϕ(nj) ≤ dP − d ,
with s ≤ ns, where ϕ(n) is the Euler function, and its
determination is complemented by

Schinzel

Theorem

There exists a constant C0 > 0 such that, for every Parry
number β, the number s of distinct cyclotomic irreducible
factors of the Parry polynomial of β satisfies

s ≤ C0

√

dP .
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Factorization of the Parry polynomial

Cyclotomic factors – Riemann Hypothesis – Amoroso

Amoroso : the assertion that the Riemann zeta function does
not vanish for Rez ≥ σ + ǫ is equivalent to the inequality

h̃
( N∏

n=1

Φn

)

≪ Nσ+ǫ,

where σ = supremum of the real parts of the non-trivial zeros of
the Riemann zeta function, and σ = 1/2 if Riemann hypothesis
(R.H.) true.
-> particular telescopic products of cyclotomic polynomials
which appear in factorizations of Parry polynomials.
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Factorization of the Parry polynomial

Cyclotomic factors – Riemann Hypothesis – Amoroso

Amoroso

Theorem

Let s ≥ 1. Let c1, . . . , cs integers ≥ 0 and n1 ≤ n2 ≤ . . . ≤ ns be
a increasing sequence of positive integers. Assume R.H. true.
Then there exists A > 0 such that

dis
( s∏

j=1

Φnj (X )cj

)

≤ A ×
√

ns
∑s

j=1 cjϕ(nj)
,
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Factorization of the Parry polynomial

Cyclotomic factors – Riemann Hypothesis – Amoroso

Let N = ns. Let

G(X ) =

N∏

n=1

Φn(x)σn

with

σn =

{
0 if n 6∈ {n1, n2, . . . , ns}
cj if n = nj for j ∈ {1, 2, . . . , s}

for n ≥ 0.
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Factorization of the Parry polynomial

Cyclotomic factors – Riemann Hypothesis – Amoroso

h̃(G) ≤

√
√
√
√
√

π

12

N∑

m=1




∑

j |m

µ(j)
j2








∑

n≤N/m

σmn

∑

k |n

µ(k)k
n





2

We have 0 ≤∑j |m
µ(j)
j2 ≤ 1 and, by Titchmarsh 14.25C,

R.H. true ⇐⇒
∑

k≤x

µ(k) ≪ x1/2+ǫ

for any ǫ.
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Factorization of the Parry polynomial

Non-cyclotomic factors

Dobrowolski

Theorem

There exists a constant C1 > 0 such that for every Parry
number β and ǫ > 0 an arbitrary positive real number, then

1 +

q
∑

j=1

γj +

u∑

j=1

δj ≤ C1

(

(dP)ǫ(log ‖n∗
β‖2

2)
1−ǫ
)

.
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Factorization of the Parry polynomial

Non-cyclotomic factors

Cassels

Theorem

If χ is a beta-conjugate of a Parry number β such that the
minimal polynomial g(X ) of χ is non-reciprocal, with
n = deg(g), if χ1, . . . , χn−1 denote the Galois conjugates of
χ = χ0 (which are also beta-conjugates of β), then either

(i) |χj | > 1 +
0.1
n

for at least one j ∈ {0, 1, . . . , n − 1}, or

(ii) g(X ) = −g∗(X ) if |χj | ≤ 1 +
0.1
n

holds for all

j = 0, 1, . . . , n − 1.

In the second case, since
g(X ) =

∏n−1
j=0 (X − χj) = −∏n−1

j=0 (1 − χjX ) is monic, all the
beta-conjugates χj of β (j = 0, 1, . . . , n − 1) are algebraic units,
i.e. |N(χj)| = 1.
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Factorization of the Parry polynomial

Non-cyclotomic factors

Cassels

Theorem

If χ is a beta-conjugate of a Parry number β such that the
minimal polynomial (of degree n) of χ is non-cyclotomic and
where χ1, . . . , χn−1 denote the Galois conjugates of χ (= χ0), if

|χj | ≤ 1 +
0.1
n2 for j = 0, 1, . . . , n − 1,

then at least one of the beta-conjugates χ0, χ1, . . . , χn−1 of β
has absolute value 1.

-> likely to be often applicable because of high concentration of
beta-conjugates near the unit circle.
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Factorization of the Parry polynomial

Non-reciprocal factors

Smyth

Theorem

For every Parry number β, the inequality

γ +

q
∑

j=1

γj <
log ‖n∗

β‖2

log θ0

holds where θ0 = 1.3247... is the smallest Pisot number,
dominant root of X 3 − X − 1, where γ = 1 if Pβ(X ) is
non-reciprocal and γ = 0 if Pβ(X ) is reciprocal.
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Factorization of the Parry polynomial

Non-reciprocal factors

Corollary

If β is a Parry number for which the minimal polynomial is
non-reciprocal and dβ(1) = 0.t1t2t3 . . ., of preperiod length
m ≥ 0 and period length p + 1, satisfies (with t0 = −1)

if β is simple
m∑

j=0

t2
j

if β is non-simple
p
∑

j=0

t2
j + (1 + tp+1)

2 +

m∑

j=1

(tj − tp+j+1)
2







≤ θ4
0 = 3

then the Parry polynomial of β has no non-reciprocal irreducible
factor in it (θ4

0 = 3.0794...).
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Factorization of the Parry polynomial

Non-reciprocal factors

Explicitely in the “simple" case : β for which dβ(1) has
necessarily the form

dβ(1) = 0.1 00 . . . 0
︸ ︷︷ ︸

δ

1

Algebraic integers (βδ)δ≥3 are Perron numbers studied by
Selmer, roots of

X δ+2 − X δ+1 − 1.

The case δ = 0 corresponds to the golden mean
τ = (1 +

√
5)/2.
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An Equidistribution Limit Theorem
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An Equidistribution Limit Theorem

Previous Theorems express the “speed of convergence" and
the “angular equidistributed character" of the conjugates of a
Parry number, towards the unit circle, or of the collection of
conjugates of a “convergent" sequence of Parry numbers.

So far, the limit of this concentration and equidistribution
phenomenon is not yet formulated. In which terms should it be
done ? What is the natural framework for considering at the
same time all the conjugates of a Parry number and what is the
topology for which convergence is intuitively invoked ?

Context : Bilu’s Theorem.
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An Equidistribution Limit Theorem

Absolute logarithmic height of a Parry number β :

h(β) :=
1

[K : Q]

∑

v

[Kv : Qv ] max(0, Log|β|v )

K := algebraic number field generated by β, its Galois and
beta-conjugates, so that K ⊃ Q(β).
Weighted sum of Dirac measures :

∆β :=
1

[K : Q]

∑

σ:K→C

δ{σ(β)}

where (images are Galois- or beta-conjugates) :

σ : β → β(i) or σ : β → ξj .
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An Equidistribution Limit Theorem

Bilu

Theorem

Let (βi)i≥1 be a strict sequence of Parry numbers which
satisfies

lim
i→∞

h(βi ) → 0.

Then
lim

i→∞
∆βi = ν{|z|=1} Haar measure.

Topology : a sequence of probability measures {µk} on a
metric space S wealky converges to µ if for any bounded
continuous function f : S → R we have (f , µk ) → (f , µ) as
k → ∞.
Strict : A sequence {αk} of points in Q

∗
is strict if any proper

algebraic subgroup of Q
∗

contains αk for only finitely many
values of k .
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An Equidistribution Limit Theorem

Bilu’s ingredients : Erdős - Turán’s Theorem, for sequences of
Parry numbers which tend to 1.

Possible generalizations : to general convergent sequences of
Parry numbers with

lim
i→+∞

dP,i = +∞ and lim
i→+∞

Log βi

dP,i
= 0,

Need : p-adic control of the beta-conjugates to have
convergence property for the measure : given by the forms of
irreducible factors in the factorization of the Parry polynomials.

Rumely : reformulation in terms of Potential Theory, equilibrium
measures, -> A. Granville Theorem. Like in electrostatics,
repulsive effects between conjugates...
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Rauzy fractal from Galois- and beta-conjugates of a Parry number

Idea : take advantage of this concentration and equi-distribution
phenomenon to make Rauzy fractal constructions

using not only the Galois conjugates but also the beta-conjugates.

-> expectation : continuity theorems with β

Over adele space AKβ
, where Kβ is the algebraic number field

generated by the Galois- and the beta-conjugates of a Parry
number β.

Classical Rauzy fractal : invariant under the action of some
Galois group.
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