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Analog-to-digital (A/D)conversion

Inherently analog signals: Speech, high quality audio, images,
video, etc.
Objective: Represent an “analog signal” (takes its values in a
continuous set) by finitely many bits=: ’quantization’

How is this done - a natural approach

Let x ∈ [0, 1], and xN := N-bit truncation of the standard binary
(base-2) representation of x ,

xN =
N∑

n=1

bn2−n, bn ∈ {0, 1}.

Then:

1. |x − xN | ≤ 2−N

2. (b1, b2, . . . , bN) provide an N-bit quantization of x with the
accuracy of 2−N (essentially optimal in rate-distortion sense).
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Example ctd.

Next: can we compute the bits bn on an analog circuit?

Successive approximation

Let x0 := 0 and define un := 2n(x − xn) for n ≥ 0. Then

un = 2un−1 − bn, n = 1, 2, . . . ,

bn = b2un−1c =

{
1, un−1 ≥ 1/2,
0, un−1 < 1/2.

Remarks

1. Note that un = T (un−1) where T is the doubling map.

2. The values of un and bn above are macroscopic and bounded.
So the successive approximation algorithm as above can be
implemented on an analog circuit.

3. Given the optimality of the accuracy for a given bit budget,
are we done?



Example ctd.
When designing an A/D converter (ADC), accuracy is not the only
concern! In fact, truncated base-2 representations (:= “pulse code
modulation” or PCM) are far from being the most popular choice
of A/D conversion method.

Why not?

In practice, analog circuits are never precise:

I arithmetic errors, e.g., through nonlinearity,

I quantizer errors, e.g., threshold offset,

I thermal noise...

Therefore:

I All relations hold approximately, and all quantities are
approximately equal to their theoretical values;

I in particular, in the case of the above described algorithm,
only for a finite number of iterations, given that dynamics of
an expanding map has “sensitive dependence on initial
conditions”.



More resilient algorithms to compute base-2
representations?

Question. Are there better, i.e., more resilient, algorithms than
“successive approximation” for evaluating bn(x) for each x?

Answer. The bits in the base-2 representations are essentially
uniquely determined. Therefore, there is no way to recover from an
erroneous bit computation:

I a 1 assignment for bn when x < xn−1 + 2−n means an
“overshoot” from which there is no way to “back up” later,

I a 0 assignment for bn when x > xn−1 + 2−n implies a
“fall-behind” from which there is no way to “catch up” later.
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Example ctd. – conclusion

1. Any ADC based on base-2 expansions is bound to be not
robust.

2. The fundamental problem with base-2 expansions is the lack
of redundancy in these representations.

3. As this is a central problem in A/D conversion (as well as in
D/A conversion), many alternative bit representations of
numbers, as well as of signals, have been adopted or devised
by circuit engineers, e.g., beta-representations and Σ∆
modulation.

4. Both “beta-encoding” and “Σ∆ modulation” produce
redundant representations of x ∈ [0, 1].



Rest of the talk

I introduce basic notation and terminology

I focus on a class of converters called Algorithmic Converters,
and establish mathematical framework (including a formal
definition of robustness)

I discuss accuracy characteristics of certain widely used
algorithmic converters: PCM (truncated binary expansion),
sigma-delta schemes (truncated Sturmian words), beta
encoders (truncated beta representations)

I identify problems with these classes – robustness vs. accuracy

I introduce a novel algorithmic converter, the Golden Ratio
Encoder, with superior characteristics – proof of stability,
approximation rate, robustness...
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Basic definitions – encoder and decoder maps

Let X be a compact normed space (the space of analog objects).
EN is an N-bit encoder if

EN : X 7→ {0, 1}N .

A progressive family of encoders (EN)∞1 is generated by a single
map ψ : X 7→ {0, 1}N such that

EN(x) = (ψ(x)1, . . . , ψ(x)N).

A map DN : Range(EN) 7→ X is a decoder for EN .
In general, x ∈ X cannot be perfectly recovered from EN(x). That
is, quantization is inherently lossy.
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Basic definitions – distortion and accuracy

For a given decoder DN for the encoder EN , the distortion can be
measured by

δX (EN ,DN) = sup
x∈X
‖x − DN(EN(x))‖.

We define the accuracy of EN as

α(EN) = inf
DN

δX (EN ,DN).

Above the choice of norm depends on the setting.

Remark.
When designing a progressive encoder family, one of the objectives:

α(EN)→ 0 as N →∞

as quickly as possible, e.g., exponential in N.
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Algorithmic converters
x

un-1

n

D

b

un

unit time delay

(Q,F)

un ∈ U : state (continuous) of the circuit at time n
x ∈ X : the object to be quantized

Q : U × X 7→ {0, 1} F : U × X 7→ U

The pair (Q,F ) define a progressive family of encoders as follows:

bn = Q(un−1, x) un = F (un−1, x).

The encoder EN associated with (Q,F ) is defined by

EN(x) := (b1, . . . , bN).



Algorithmic converters ctd.

Definition. Let ψQ,F be the generator of the progressive family of
encoders as defined above, i.e., for x ∈ X ,

ψQ,F (x) := (b1, b2, . . . ).

We say (Q,F ) defines an algorithmic A/D converter if the map
ψQ,F is invertible on X .

Remark. A large fraction of the ADCs used in practice, e.g., PCM
(base-2), Σ∆ modulators, beta-encoders, are algorithmic
converters. We will come back to this.
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Algorithmic converters – robustness

Recall: Accuracy is not the only concern when evaluating the
performance of an A/D converter!

What else?

An ADC must be implemented, at least partly, on analog circuitry.
Analog circuits are never precise.

In a typical implementation, the algorithmic converter functions are
inaccurate:

(Q,F )←→ (Q̃, F̃ )

It is vital that the accuracy of the underlying algorithmic encoder is
not drastically effected when such a change takes place.
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Algorithmic converters – robustness

Quantify: Functions Q and F typically are compositions of
elementary maps:

I Addition: u 7→ u + a, a ∈ R, (u, v) 7→ u + v .

I Multiplication: u 7→ bu, b ∈ R

I Decision element: u 7→ qτ (u) =

{
0, if u < τ,

1, if u ≥ τ.
Above, a, b, τ are parameters whose values are likely to vary
within some tolerance.

Definition. Suppose Q = Qλ,F = Fλ where λ ∈ Rd : parameters.
Let EλN be the associated algorithmic encoder. We say that EλN is
robust with respect to λ, if ∃ε > 0 such that

δX (EγN ,D
λ
N)→ 0 as N →∞ whenever‖γ − λ‖ < ε.
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Examples

I. PCM (truncated binary) is an algorithmic converter.

Set Q(u, x) = q1(2u) and F (u, x) = 2u − q1(2u).

Encoder: (Successive approximation) For x ∈ [0, 1], initial state
u0 = x

bn = q1(2un−1) un = 2un−1 − bn, n = 1, 2, . . .

EN(x) = (b1, . . . , bN) → N-bit trunc. binary exp. of x .

Generator: ψQ,F (x) = bits in the binary expansion of x .

Decoder: DN(x) = 2−N−1 +
N∑

n=1

bn2−n.

Accuracy: α(EN) = O(2−N) (optimal).



Examples - PCM ctd.

Let’s investigate PCM in terms of its robustness properties.

Recall: Q(u, x) = q1(2x) and F (u, x) = 2u − q1(2x).

Important parameters: multiplication by 2 and threshold value
(= 1) of q1.

Imperfect implementation:

I multiply by 2 + ε ⇒ |ε/4| ≤ δX (ẼN ,DN),

I use qτ with |τ − 1| ≈ ε ⇒ |ε/2| ≤ δX (ẼN ,DN).

PCM is not robust. To achieve the theoretical accuracy, one needs
to implement a precise multiplier and a decision element with a
precise “toggle point”.
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Digression – first-order Σ∆ modulation

Next, we review a family of ADCs which is popular in practice.
Let x ∈ [0, 1]. Define

Tx : u 7→ 〈u + x〉.

Let u0 = ϕ ∈ [0, 1) be arbitrary, and set
un = T n

x (ϕ), n = 1, 2, . . .

bn =

{
0 if un−1 ∈ [0, 1− x),

1 if un−1 ∈ [1− x , 1),

 1st-order Σ∆


un = un−1 + x − bn, n = 1, 2, . . .

bn = bun−1 + xc

 1st-order Σ∆

Remarks.

1. For irrational x , the above recursion produces Sturmian words.
A first-order Σ∆ modulator encodes x by the associated N-bit
truncated Sturmian word.

2. Σ∆ has been used for A/D conversion since 1960s.
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Digression – first-order Σ∆ modulation

Remarks ctd.

3. Encoding. Let EN : x 7→ (bn)N
1

4. Decoding. Set hn = 1/N, n = 1, ...,N, and define

DN : (bn)N
1 7→

N∑
n=1

hnbn.

Then |x − DN(EN(x))| ≤ 1/N.

5. One can improve this error bound by using a different
reconstruction kernel h̃. In particular, Güntürk proved that

|x −
N∑

n=1

h̃nbn| ≤ CxN
−2 log2+ε N.

Proof uses machinery from discrepancy theory.



Digression – first-order Σ∆ modulation

Remarks ctd.

6. One can also obtain a lower bound for the approximation
error:

6.1 Consider the 1st-order Σ∆ scheme with u0 = 1/2, let bx,1/2 be
the corresponding Sturmian word. Then for

A1/2(N) := {(bx,1/2)N
1 : x ∈ (0, 1)}, #A1/2 =

3

π2
N2+O(N log N).

6.2 In fact, (bx,1/2)N
1 = (by ,1/2)N

1 if x , y are between two consec.
N-Farey points (Güntürk-Lagarias-Vaishampayan, cf. Mignosi).
Then

C/N ≤ sup
x∈(0,1)

|x − Dopt
N (bx,1/2)N

1 |



Digression – first-order Σ∆ modulation

Remarks ctd.

7. One can use 1st-order Σ∆ to quantize “varying input”, e.g.,
samples of functions whose Fourier transform is compactly
supported in [−1/2, 1/2]. Let xn = f (n/λ) where λ > 1 is the
oversampling factor. With u0 = ϕ ∈ [0, 1), let, for n = 1, 2, ...,

un = Txn(un−1), bn = q1(un−1 + xn),

One can also run this recursion backwards. Set
E (f ) = (bn)∞−∞, and use the decoder Dφ

Dφ : (bn)∞−∞ 7→ (1/λ)
∑

bnφ(· − n/λ).

Here φ is an appropriate sampling kernel. Then we have
(Daubechies-DeVore)

‖f − Dφ(E (f ))‖∞ ≤
1

λ
Var(φ).



Digression – higher-order Σ∆ modulation

Rewrite the iteration for the 1st-order Σ∆:

un = un−1 + x − bun−1 + xc (∆u)n = x − q1(un−1 + x)

Generalize to kth-order: u−k+1 = · · · = u0 = 0, and{
(∆ku)n = x − bk

n

bk
n = q1(ρ(x , un−1, ..., un−k+1))

}
kth-order Σ∆

Remarks

1. With an appropriate choice of (hn)N
1 , one can show

|x −
N∑

n=1

hnb
k
n | ≤ CN−k

if un remain bounded (unif. in N) (i.e., the scheme is stable).



Digression – higher-order Σ∆ modulation

Remarks ctd.

2. ρ is chosen to ensure stability (non-trivial). First infinite
family of stable Σ∆ schemes of arbitrary order (not
implementable in practice) was constructed by Daubechies
and DeVore (∼ 2000). For 2nd-order schemes, a wide family
of rules ensure stability (OY-2002).

3. We can rewrite the recursion as

un = Lkun−1 + (x − q1(ρ(u, x)))1

4. Error estimates can be improved (the piecewise affine system
has tiling invariant sets)...

5. Question. Can we again count the number of possible
N-words obtained via a kth-order Σ∆ scheme? A possible
generalization of Sturmian shifts? ...



Back to examples of algorithmic converters
Recall
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un ∈ U : state (continuous) of the circuit at time n
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Q : U × X 7→ {0, 1} F : U × X 7→ U
The pair (Q,F ) define a progressive family of encoders as follows:
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Back to examples of algorithmic converters

II. First-order Σ∆ schemes are algorithmic converters.

Set Q(u, x) = q1(u + x) and F (u, x) = u + x − q1(u + x).

Encoder: For x ∈ [0, 1] and initial state u0 ∈ [0, 1) arbitrary,

bn = q1(un−1 + x), un = un−1 + x − bn, n = 1, 2, . . .

EN(x) = (b1, . . . , bN) → N-bit Σ∆ encoding of x

Generator: ψQ,F (x) = (b1, b2, . . . ).

Decoder: DN(x) =
1

N

N∑
n=1

bn.

Accuracy: α(EN) = O(1/N).



Examples – first-order Σ∆ ctd.

Robustness

Let’s investigate 1st-order Σ∆ in terms of its robustness properties.
Recall: Q(u, x) = q1(u + x) and F (u, x) = u + x − q1(u + x).

Important parameters:

I Threshold value (= 1) of q1.

I No multiplier needed!

Imperfect implementation:

I use qτ with |τ − 1| ≤ ε ⇒ δX (ẼN ,DN) = O(1/N).

First-order Σ∆ is robust! Main reason Σ∆ is popular...

Note. The accuracy of an N-bit 1st-order Σ∆ encoder is of
O(1/N), much worse than O(2−N), accuracy of PCM.
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First-order Σ∆ is robust! Main reason Σ∆ is popular...

Note. The accuracy of an N-bit 1st-order Σ∆ encoder is of
O(1/N), much worse than O(2−N), accuracy of PCM.



Examples – first-order Σ∆ ctd.

Robustness

Let’s investigate 1st-order Σ∆ in terms of its robustness properties.
Recall: Q(u, x) = q1(u + x) and F (u, x) = u + x − q1(u + x).

Important parameters:

I Threshold value (= 1) of q1.

I No multiplier needed!

Imperfect implementation:

I use qτ with |τ − 1| ≤ ε ⇒ δX (ẼN ,DN) = O(1/N).
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Examples – kth-order Σ∆

III. kth-order Σ∆ schemes are algorithmic converters.

State space U ⊂ Rk .

Set Q(u, x) = q1(ρ(u, x)) and F (u, x) = Lku + x − q1(ρ(u, x)).

ρ : U × X 7→ R is called “quantization rule”. (stability!)

Lk is the k × k lower triangular matrix of 1s.

Encoder: For x ∈ [0, a], a < 1, initial state u0 ∈ B ⊂ Rk arbitrary,

bn = Q(un, x) un+1 = F (un, x), n = 1, 2, . . .

EN(x) = (b1, . . . , bN) → N-bit Σ∆ encoding (order k) of x

Decoder: DN(x) =
N∑

n=1

hnbn; hn: approp. sampling kernel

Accuracy: α(EN) = O(1/Nk).
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Examples – kth-order Σ∆ ctd.

Robustness

Again, what about robustness of a kth-order Σ∆-scheme?

Important parameters:

I Threshold value (= 1) of q1, and

I multiplications and additions performed in the quantization
rule ρ.

kth-order Σ∆ with a wide family of quantization rules is robust!
[Daubechies-DeVore, OY]

Note. The accuracy of an N-bit kth-order Σ∆ encoder is of
O(N−k), still much worse than O(2−N), accuracy of PCM.
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Examples – beta encoders

IV. Beta encoders (Daubechies et al.) are algorithmic
converters.

Let 1 < β < 2, and compute truncated cautious (not greedy, not
lazy) beta representations of x ∈ [0, 1).

Set Q(u, x) = q1(βu − µ) and F (u, x) = βu − q1(βu − µ).

Note that this corresponds to the recursion

un = βun−1 − bn, bn = bβun−1 − µc
with u0 = x

I µ = 0: greedy selection,
I µ = (2− β)/(β − 1): lazy selection
I 0 < µ < (2− β)/(β − 1): cautious selection.
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lazy) beta representations of x ∈ [0, 1).

Set Q(u, x) = q1(βu − µ) and F (u, x) = βu − q1(βu − µ).

Encoder: For x ∈ [0, 1) and initial state u0 = x ,

bn = q1(βun−1 − µ), un = βun−1 − bn, n = 1, 2, . . .

EN(x) = (b1, . . . , bN) → an N-bit trunc. β-rep. of x .

Decoder: DN(x) =
N∑

n=1

bnβ
−n.

Accuracy: α(EN) = O(β−N).



Examples – beta-encoders ctd.

Robustness

Recall: Q(u, x) = q1+µ(βu) and F (u, x) = βu − q1+µ(βu + µ).

Important parameters: Threshold value (= 1 + µ) of q and
multiplication by β

Imperfect implementation:

I use qτ with |τ − (1 + µ)| ≤ ε ⇒ δX (ẼN ,DN) = O(β−N).

I multiply with β + ε at each multiplier ⇒ Cε ≤ δX (ẼN ,DN).

I The assumed value of β is different from the actual
implemented value. Partial solution in [Daubechies-OY], still
not satisfactory.

Beta encoders are robust wrt quantizer threshold value. They are
not robust wrt multiplication by β.
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Moral so far...

Encoders that enjoy superior accuracy properties (PCM, Beta)
suffer from robustness issues.

Encoders that enjoy superior robustness properties (Σ∆) have
inferior accuracy characteristics.

Next, we present a scheme with the best of both worlds!



The Golden Ratio Encoder (GRE)

Main idea. The above (classical) implementation of
beta-encoders:

un+1 = βun − bn; bn = Q(un); u1 = x .

The characteristic polynomial: p(y) = y − β; choice of bn ensures
|un| remain bounded –in this case, the scheme is stable.

Question. Is it possible to use more suitable difference equations
and still obtain a β representation of x ∈ [0, 1)?

We want the characteristic polynomial to have integer coefficients
(coefficients ±1 are preferred), have one of its roots at β ∈ (1, 2),
and that ∃(bn) to keep the resulting system stable.
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GRE
Consider

un+2 = un+1 + un − bn; u0 = x , u1 = 0.

The characteristic equation is p(y) = y2 − y − 1 whose roots are

φ =
1 +
√

5

2
(the golden ratio), and − 1

φ
.

Using φ2 = φ+ 1, we obtain

DN(b) =
N−1∑
n=0

bnφ
−n = x − φ−N(uN + φuN+1).

Proposition. If there is rule for choosing bn such that |un| ≤ C ,
then the above iteration produces a beta encoding of x with β = φ
(hence the name). That is, for the corresp. encoder EN ,

|x − DN(EN(x))| = O(φ−N).

Next, we establish such rules...
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Stability of GRE

Simplest stable GRE. Set

bn = q1(un+1 + un) =

{
0, if un+1 + un < 1,

1, if un+1 + un ≥ 1.

Proposition. For x ∈ [0, 1), if we run

un+2 = un+1 + un − bn; bn = q1(un+1 + un); u0 = x ; u1 = 0,

we have 0 ≤ un ≤ 1 for every n.

Remarks.

1. The corresponding GRE is stable, thus its accuracy is O(φ−N).

2. Not even one multiplication!

3. Unfortunately, not robust wrt quantizer threshold: Replace q1

with q1+ε ⇒ unstable scheme! Need to do more work...
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Numerical Experiment
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Stability of GRE

Stable GREs with better robustness properties.

Describe the GRE iteration with a 2d-map. Define

TQ :

[
u
v

]
7→
[

0 1
1 1

] [
u
v

]
− Q(u, v)

[
0
1

]
.

Then, we can rewrite the recursion as[
un+1

un+2

]
= TQ

[
un

un+1

]
.

Note: We now observe that GRE is an algorithmic converter.

Above, we used Q(u, v) = q1(u + v). We will now construct
alternative Q for which the scheme is stable and robust.



Stability of GRE

Stable GREs with better robustness properties (ctd.)

Use Q(u, v) = qτ (u + γv) =: Qγ
τ (u, v) with γ 6= 1 and approp. τ .

Note. If implemented with Qγ
τ , the parameters of concern

regarding robustness are γ and τ .

Main Theorem. For every 1 < γ < 3, there exists ν1 < ν2, and

η > 0 such that GRE implemented with Qγ′
τ is stable provided

|γ′ − γ| < η and ν1 < τ < ν2.

Corollary. The GRE implemented with Qγ
τ is robust wrt γ and τ .

In particular,

δX (GREγ
′,τ

N ,DN) = O(φ−N)

whenever |γ′ − γ| < η and ν1 < τ < ν2.

Sketch of the proof. See picture.



Stability of GRE

Stable GREs with better robustness properties (ctd.)

Use Q(u, v) = qτ (u + γv) =: Qγ
τ (u, v) with γ 6= 1 and approp. τ .

Note. If implemented with Qγ
τ , the parameters of concern

regarding robustness are γ and τ .

Main Theorem. For every 1 < γ < 3, there exists ν1 < ν2, and

η > 0 such that GRE implemented with Qγ′
τ is stable provided

|γ′ − γ| < η and ν1 < τ < ν2.

Corollary. The GRE implemented with Qγ
τ is robust wrt γ and τ .

In particular,

δX (GREγ
′,τ

N ,DN) = O(φ−N)

whenever |γ′ − γ| < η and ν1 < τ < ν2.

Sketch of the proof. See picture.



Stability of GRE

Stable GREs with better robustness properties (ctd.)

Use Q(u, v) = qτ (u + γv) =: Qγ
τ (u, v) with γ 6= 1 and approp. τ .

Note. If implemented with Qγ
τ , the parameters of concern

regarding robustness are γ and τ .

Main Theorem. For every 1 < γ < 3, there exists ν1 < ν2, and

η > 0 such that GRE implemented with Qγ′
τ is stable provided

|γ′ − γ| < η and ν1 < τ < ν2.

Corollary. The GRE implemented with Qγ
τ is robust wrt γ and τ .

In particular,

δX (GREγ
′,τ

N ,DN) = O(φ−N)

whenever |γ′ − γ| < η and ν1 < τ < ν2.

Sketch of the proof. See picture.



!1 !0.5 0 0.5 1 1.5 2
!1

!0.5

0

0.5

1

1.5

2

r1

r2

d1

d2

h1

h2

l2

l1

C1

D1

A1

B1

A2

B2

C2

D2

A*
2

B*
2

C*
2

D*
2

A

B

C

D

1

µ = 0.05

!2

!1

A#
1

C#
2

µ



Numerical Experiment
ν1 = 1.2, ν2 = 1.3, γ = 1.55.
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Highlights

1. GRE is an algorithmic A/D converter. Its implementation
does not require any “precise multiplication” or “precise
decision element”.

2. GRE enjoys exponential accuracy.

3. GRE is a “Nyquist-rate A/D converter”, i.e., it quantizes each
sample value independently (no memory). This makes GRE a
good candidate for A/D conversion in settings where classical
sampling theory does not apply, e.g., compressed sensing.

4. GRE was implemented using the Fibonacci recursion. One can
generalize and construct higher order “polynacci encoders”
with p(y) = yk − yk−1 − · · · − 1 whose largest root
βk ∈ (1, 2), all other roots inside the unit circle (thus like φ,
βk is a Pisot number). Moreover βk → 2.

5. Other technical issues, e.g., bias removal, requantization can
be resolved.

6. Finally, implementation...
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Does it work on analog hardware?
We implemented the GRE on a breadboard...

Note: 4066 is connected
+V to pin 14, -V to pin 7
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Hardware implementation

We plot un+1 vs. un, computed theoretically (left) and measured
from the circuit (right).
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Performance of the circuit
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Performance of the circuit

The RMSE error vs. number of GRE bits (J).
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Performance of the circuit

AC data.
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16-GRE-bit reconstruction of a sinusoid
x(t) = (A− B) sin(2πft) + (A + B)/2 with f = 20.2Hz , A ≈ 1.57,
and B ≈ 0.35.The sampling rate was approx. 53.33 Hz.


