Involutivn symetrie v jazycch nekonecnych slov

školitel: Ing. Štěpán Starosta, Ph.D.
e-mail: zobrazit e-mail
typ práce: dizertační práce
zaměření: MI_MM, II_SIMI
odkaz: http://users.fit.cvut.cz/~staroste/
popis: Tematem doktorske prace jsou nekonecna slova, jejichz jazyk je uzavreny na jednu nebo vce involuc. Typickym prkladem takove involuce je zrcadlen, ktere konecnemu slovu prirad jeho pozpatku cteny obraz. Slova invariantn na tuto ope- raci jsou palindromy. Otevrene otazky, ktere budou tezistem vyzkumu, souvisej zejmena: 1. s HKS domnenkou o jazycch mor ckych slov obsahujcch nekonecne mnoho palindromu; 2. s domnenkou Blondin-Masseho et al. o neexistenci ciste mor ckych slov, ktera by mela konecny, ale kladny palindromicky defekt. 3. s hledanm trd primitivnch mor zmu, jejichz pevne body obsahuj nekonecne mnoho zobecnenych palindromu, a nasledna formulace zobecnene HKS domnenky; 4. s problemem existence nekonecneho slova, ktere by melo predepsanou grupu symetri generovanou vce involutivnmi mor zmy. 5. s enumerac konecnych slov s jistymi vlastnostmi, jako jsou napr. nulovy pa- lindromicky defekt, absence prekryvu, atp. Detailnejs formulace problemu lze nalezt napr.  HKS domnenka [6], resen HKS domenky pro binarn slova [14], castecna resen pro vets abecedy [7, 9, 8, 5];  domnenka Blondin-Masseho et al. [2], castecne resen v [1];  zname prklady pevne bodu mor smu obsahujc nekonecne mnoho zobecnenych palindromu a zaroven majc predepsanou grupu symetr generovanou invo- lutivnmi antimor smy [13, 11];  enumerace slov s maximalnm poctem palindromu (bez prekryvu) [3, 15, 4, 12] ([10])
literatura: [1] B. Basic, On highly potential words, Eur. J. Comb., 34 (2013), pp. 1028{1039. [2] A. Blondin Masse, S. Brlek, A. Garon, and S. Labbe, Combinatorial properties of f-palindromes in the Thue-Morse sequence, Pure Math. Appl., 19 (2008), pp. 39{52. [3] A. Glen, J. Justin, S. Widmer, and L. Q. Zamboni, Palindromic richness, European J. Combin., 30 (2009), pp. 510{531. [4] C. Guo, J. Shallit, and A. M. Shur, On the combinatorics of palindromes and antipalindromes, preprint available at http://arxiv.org/abs/1503.09112, (2015). 1 [5] T. Harju, J. Vesti, and L. Q. Zamboni, On a question of Hof, Knill and Simon on palindromic substitutive systems, preprint available at http://arxiv.org/abs/1311.0185, (2013). [6] A. Hof, O. Knill, and B. Simon, Singular continuous spectrum for palindromic Schrodinger operators, Comm. Math. Phys., 174 (1995), pp. 149{159. [7] S. Labbe and E. Pelantova, Palindromic sequences generated from marked morphisms, Eur. J. Comb., 51 (2016), pp. 200{214. [8] S. Labbe, A counterexample to a question of Hof, Knill and Simon, Electron. J. Comb., 21 (2014). [9] Z. Masakova, E. Pelantova, and S. Starosta, Interval exchange words and the question of Hof, Knill, and Simon, preprint available at http://arxiv.org/abs/1503.03376, (2015). [10] E. Pelantova and S. Starosta, Languages invariant under more symmetries: overlapping factors versus palindromic richness, Discrete Math., 313 (2013), pp. 2432{2445. [11] , Palindromic richness for languages invariant under more symmetries, Theoret. Comput. Sci, 518 (2014), pp. 42{63. [12] M. Rubinchik and A. M. Shur, Eertree: An ecient data structure for processing palindromes in strings, preprint available at http://arxiv.org/abs/1506.04862, (2015). [13] S. Starosta, Generalized Thue-Morse words and palindromic richness, Ky- bernetika, 48 (2012), pp. 361{370. [14] B. Tan, Mirror substitutions and palindromic sequences, Theoret. Comput. Sci., 389 (2007), pp. 118{124. [15] J. Vesti, Extensions of rich words, Theoret. Comput. Sci., 548 (2014), pp. 14{ 24. 2
naposledy změněno: 02.02.2016 10:36:00

za obsah této stránky zodpovídá: Ľubomíra Dvořáková | naposledy změněno: 12.9.2011
Trojanova 13, 120 00 Praha 2, tel. 224 358 540, pevná linka 224 923 098, fax 234 358 643
České vysoké učení technické v Praze | Fakulta jaderná a fyzikálně inženýrská | Katedra matematiky