Umělé neuronové sítě v black-box optimalizaci

školitel: Martin Holeňa
e-mail: zobrazit e-mail
typ práce: bakalářská práce, diplomová práce
zaměření: MI_MM, MI_AMSM, MINF, APIN
odkaz: http://www.cs.cas.cz/~martin/
popis: Jako black-box označujeme optimalizaci, při které se nepoužívá matematické vyjádření optimalizované funkce (typicky z důvodu, že žádné takové vyjádření není známo), ale optimalizační algoritmus má k dispozici pouze její hodnoty v konkrétních bodech. Tyto hodnoty se obvykle získávají empiricky měřením nebo pomocí experimentů, ať už probíhají fyzicky nebo v podobě simulací. Pro black-box optimalizaci se používají algoritmy, které nemají skoro žádné předpoklady o matematických vlastnostech optimalizované funkce, nejčastěji evoluční algoritmy a další přírodou inspirované algoritmy jako roje částic. Protože tyto algoritmy pracují pouze s funkčními hodnotami optimalizované funkce, blíží s k jejímu optimu podstatně pomaleji než optimalizační metody pro hladké funkce, které využívají rovněž informace o gradientu optimalizované funkce, případně o jejích druhých derivacích. Tato vlastnost je zvláště nepříjemná ve spojení se skutečností, že empirické získání hodnoty optimalizované funkce bývá obvykle značně nákladné i časově náročné. Evoluční algoritmy však lze podstatně urychlit tím, že při vyhodnocování funkční hodnoty optimalizované funkce používají empirickou black-box funkci jen občas, zatímco většinou vyhodnocují pouze její dostatečně přesný regresní model. Mezi regresními modely používanými k tomuto účelu jsou už zhruba 20 let i umělé neuronové sítě, nejdříve vícevrstvé perceptrony a později pak sítě s radiálními bázovými funkcemi. Pod vlivem současné popularity moderních typů neuronových sítí, často označovaných jako hluboké neuronové sítě, byly nicméně v posledních letech navrženy dva nové přístupy k urychlení black-box optimalizace založené právě na moderních neuronových sítích. První z nich spočívá v optimalizaci na latentním prostoru nižší dimenze, zobrazovaném generativní neuronovou sítí do původního prostoru, v němž leží vstupy optimalizované black-box funkce. Druhá na sítích typu GAN (generative adversarial network), jejichž dvě komponenty se používají pro explorační a exploatační složku optimalizace.
literatura: viz https://www.cs.cas.cz/~martin/diplomka67.html
poznámka: Práce je primárně zamýšlená jako diplomová, ale pokud by někdo, kdo chce pokračovat z bakaláře do magistra, chtěl na tomto tématu pracovat od 3. až do 5. ročníku, rád mu seznámení s ním umožním už v bakalářce.
naposledy změněno: 09.04.2024 11:49:16

za obsah této stránky zodpovídá: Čestmír Burdík | naposledy změněno: 9.9.2021
Trojanova 13, 120 00 Praha 2, tel. +420 770 127 494
České vysoké učení technické v Praze | Fakulta jaderná a fyzikálně inženýrská | Katedra matematiky