Mgr. Michal Kozák (Absolvent doktorského studia)
studium
školitel: | Doc. Ing. Václav Klika, Ph.D. |
zahájení studia: | 01.10.2013 |
forma studia: | kombinovaná |
státní zkouška: | 09.11.2015 |
téma disertační práce: | Studium stability reakčně-difuzních-advekčních rovnic |
popis: | Mechanismus difuzí způsobené (Turingovy nestability) homogenního stacionárního řešení v reakčně-difuzních (RD) rovnicích se od vydání Turingova článku v roce 1952 [10] hojně užívá v mnoha vědních disciplínách k modelování a k identifikaci nerovnovážných dějů. Takovéto modely umožňují vysvětlit vznik prostorových vzorů, například ve vývojové biologii a ekologii (morfogeneze, pigmentace ryb, vegetační pruhy v krajině) či chemii (chemické reakce, růst krystalů v tuhnoucích slitinách).
Je sice jisté, že RD rovnice vysvětlují vznik prostorově nehomogenního vzoru (nestabilita je způsobena difuzí) teoreticky, není však známo, zda je tento mechanismus skutečnou příčinou vzniku prostorového uspořádání v reálných systémech. Mezi často kritizované body této teorie patří 1. předpoklad značně odlišných difuzních konstant interagujících morfogenů (byť se může jednat o podobně veliké částice pohybující se ve stejném prostředí); 2. striktní kinetické podmínky (Turingův prostor, tj. množina hodnot kinetických a difuzních parametrů modelu, při kterých dochází k Turingově nestabilitě, je ve standardním pojetí malý); a 3. citlivost na počáteční podmínky, která není v realitě pozorována.
Předmětem práce je rozpracovat školitelem navrhovanou novou metodu analýzy reakčně-difuzně-advekčních (RDA) procesů, která je alternativou k nyní užívaným postupům Menzingera a kol. Předběžné výsledky získané touto metodou naznačují, že Turingův prostor je podstatně větší, než vyplývalo z Menzingerova přístupu. Podobně jako Klika a kol. [2] poukázali na skutečnost, že při přechodu od malé difuzní konstanty k nulové dochází k netriviální změně v Turingových podmínkách nestability (přítomnost nedifundujícího receptoru v systému má zásadní vliv na podmínky vedoucí ke vzniku nestability), i zde se ukazuje, že v přítomnosti advekce, byť jakkoli malé, docházík podstatné změně podmínek pro vznik Turingovy nestability.
Analýza RDA problémů je typicky uvažována jako čistě transportní proces s výměnou hmoty (reakční kinetikou) bez jakýchkoli vlivů teploty, vnějšího prostředí či vnějších sil. Až užití teorie směsí a nerovnovážná termodynamika umožní zohlednit i tyto ostatní jevy včetně jejich vzájemného ovlivňování. Tato obecnější formulace v nové interpretaci [1], nabízí možné vysvětlení pozorované skutečnosti, kdy prostorová organizace v přírodě nevykazuje takovou citlivost na počáteční podmínky, jak předpovídá matematická analýza stability. |
za obsah této stránky zodpovídá:
Václav Klika | naposledy změněno: 21.6.2022